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EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A
NONLINEAR SECOND ORDER DIFFERENTIAL EQUATION IN

HILBERT SPACE

by DANG DINH HAI

(Received 14th June 1988)

This paper is concerned with the existence and uniqueness of solutions for the Picard boundary value problem

x"(t) + kx'(t) + f(t, x(t), x'(t)) = 0, x(0) = x(n) = 0

in a real Hilbert space. Our theorems improve corresponding results of Mawhin for \k\ large.
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1. Introduction

Let H be a real Hilbert space. We consider the following Picard boundary value
problem in H

x"(t) + kx'(t) + f(t,x(t),x'(t)) = O, t e l (1)

X(0) = X(TI) = 0 (2)

where / = [0, JI], / : / x H x J / - H and keU.
The problem (l)-(2) was studied in [2] for the case H = W, where references to the

corresponding literature are also given. The results in [2] were generalized to the case of
a Hilbert space by Mawhin in [3]. The purpose of this note is to establish some
existence and uniqueness results, which extend (but do not contain) the corresponding
results of Mawhin [3]. Our approach is based on the Leray-Schauder fixed point
theorem.

2. Existence and uniqueness theorems

We first set some notations.
We denote by (•,•) the inner product in H and by | | the corresponding norm. The

norm in C(I,H), C\I,H) and L2(I,H) will be denoted by | | 0 , |-|t and | | | | respectively.

Theorem 1. Suppose that:
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(i) / : / x H x H-*H is completely continuous;
(ii) k # 0 and there exist nonnegative numbers a, b, c with

a | b2 ^ \k\
4 2n(l—e~w")

such that

/ o r all tel and all x,yeH;
(Hi) there exist a continuous function h: U + -*U+ and a constant K such that

where

2 2 (6)

2 7 t c ( l e )

|y|2 (8)

for all tel, yeH and xeH such that \x\fZR. Then the problem (l)-(2) has at least
one solution.

Proof. Define the operator A:Cl{I,H)-*Cl(I,H) by

X~f ] e"s(]Nx(x)dT]ds + e-k'\eks(]Nx(z)dx]ds (9)
e — 1 0 \s / 0 \s /

where Nx(r) = f(x, x{x), x'(x)).
It is easy to see that A is completely continuous and that the problem (l)-(2) is

equivalent to the fixed point problem x = Ax. To apply the Leray—Shauder fixed point
theorem, we look for a constant C such that for all possible solutions of the equations

tel, /te(0,1) (10)

or, cquivalcntly,
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x"(t) + kx'(t) + XNx(t) = O, X(0) = X(TT) = 0 (11)

we have

Now let x be a possible solution of (11) with Ae(0,1). Then

(X"(T), X(T)) + k(x'(z), x(t)) + W(X(T), X(T)) = 0

i.e.,

(x', x)'(t) - |X'(T)|2 + (k/2) (\x\2)'(z) + l(Nx(z), X(T)) = 0. (12)

Integrating (12) over (s,n) and using the boundary conditions, we get

- 2(x'(s), x(s)) - k\x(s)\2 + 2 J [A(NX(T), X(T)) - |X'(T)|2] dz = 0
5

or, after multiplication of both members by e*s,

- (^ |x(s) | 2 ) ' + 2e*
s5[A(N(x(T),x(T))-|x'(T)|2]dT = O. (13)

s

Integrating (13) over (0, t) and using the boundary conditions, we get

\ (]|x(t)|2 = 2e~kt \ eks(] R N ( X ( T ) , *W) - |X'(T)|2] dz) ds. (14)
0 \s /

We claim that

\x\o*R (15)
where R is defined by (7).

Indeed, by (4) and Cauchy's inequality,

| | 2 + c|x(T)| + |x'(T)|2. (16)

Assume first that fc>0. By (14) and (16),

|x(t)|2 g 2n i = f ^ [(a + fc2/4)|x|2 + c|x|0], t e /
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from which (15) follows.
Suppose next that k<0. By rewriting (14) as

XI tl = i

and using (16), we deduce

i _ - , i * K * o
|x(r)|2 ^In l—\-. [(a + &2/4)|x|2 + c|x|0], teI

from which (15) follows. This proves the claim.
Taking the inner product of (11) with —x{t) and integrating over / give

(17)

which implies, by (15),

(18)

Hence, by the mean value theorem, there exists toel such that

(19)

Now, taking the inner product of (11) with x\t) gives, by (8),

or

d U('"2 ds
dt J (20)

By the mean value theorem, (5) and (18)—(20), it follows that
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I*'«)P j s M/n ds K ds

I h(sHW\-i h^w\Hh(^w\ forall'e/-
Hence

which completes the proof of Theorem 1.

Theorem 2. Suppose that:

(i) / : / x H x H-+H is continuous;
(ii) /c#0 and there exist nonnegative numbers a,b with

a + b2/4<

such that

(x-u,f(t,x,y)~f(t,u,v))^a\x-u\2 + b\x-u\\y-v\ (21)

for all tel and all x,y,u,veH.
Then the problem (l)-{2) has at most one solution.

Proof. Let x, u be two solutions of (l)-(2). Put z = x — u. Then

z"(t) + kz'(t) + f(t, x(t), x'(t)) - f(t, u(t), u'(t)) = 0

Z(O) = Z(7!) = O.

As in the proof of Theorem 1, we deduce

|z(t)|2 = 2e-*'j eksC\P{x)d-z\ds = 2e-k> ] eks(\ p{r)dx\ds (22)

where

p(T) = (/(T, X(X), X'(X)) - / (T, U(X), M'(T)), Z(X)) - \z\x)\2.

Since

P(T) g (a + fe2/4)|z(x)|2 for all t G /

it follows from (22) that
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which proves Theorem 2.

DANG DINH HAI

\z(t)\2^0, tel

Remarks. 1. Theorem 1 gives conditions under which (l)-(2) has a solution without
the smallness assumption on a and b. As is well known, such an assumption is essential
in the proof of many earlier results.

2. We note that (3) is satisfied for nonnegative numbers a, b verifying

b = 4

In Theorem 1 of [3], it is assumed that
the 2-Nagumo condition i.e.

is continuous and h + \k\ satisfies

ds

Mawhin proved an existence result to (l)-(2) for completely continuous / satisfying (4)
with a,b,^0, a + b<l and verifying (8) for all tel, yeH and xeH with \x\^
n( 1 — a — b) ~l c. Thus if we assume that

->2%. (23)

and that (8) holds for all tel and all x,y,eH, then the assertion of our Theorem 1 is
stronger than the one in Theorem 1 of [3]. In Theorem 2 of [3], uniqueness of a
solution is established for continuous / satisfying (21) with a,b, ^ 0 and a + b<l. Thus
our Theorem 2 strengthens Theorem 2 of [3] for the case where (23) holds.

3. We mention that a similar result to Theorem 1 was established in [1] for the
following periodic boundary value problem in U

x"(t) + f(x(t))x'(t) +g(t, x(t)) = e(t), t e [0, In-]

x(0) - x(2n) = x'(0) - x'(2n) = 0.

Acknowledgements. The author wishes to thank the referee for having suggested the
present simplified proof of Theorem 1.
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