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TIME LAGS AND DENSITY DEPENDENCE IN
AGE DEPENDENT TWO SPECIES COMPETITION

K, GdPALSAMY

Sufficient conditions are obtained for the existence and linear

stability of time independent age distributions in two species

competition with age and time lagged density dependent mortality

and fertility functions.

1. Introduction

Let P.(t) and P^[t) denote the total population sizes (or

biomasses) at time t 5 0 of two interacting species living in a common

habitat and competing for a common pool of resources. The competition for

resources will be implicit in our model similar to that in the two species

Lotka-Volterra competition system. Assuming constant sex ratios in the two

species we can consider P (fc) and PAt) to be the population of females

only; immigration, emigration and internal dispersion in the habitat are

assumed to play no significant role in the dynamics of the community.

We suppose that the two species contain respectively P, (a, t)da and

pAa, t)da individuals with ages between a and a + da (a > 0) at time

t so that we have
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(1.1) PAt) = I pAa, t)da , PAt) = | p (a, t)da , t > 0 .
' 0 ' 0

The rates of change of the two species densities are by definition

Dp (a, t) and Dp (a, t) where

p.(a+h,t+h)-p.{a,t)
(1.2) Dp.(a, t) = lim — r , i = 1, 2 .

Assuming the exis tence of the l imi t s in (1.2) we consider the following

time lagged model system

(DpAa, t) + f±[a, PAt), P2(t-T))p1(a, t) = 0 ,

(1.3) | a > 0 , t > 0 ,
2(a, t) + /2(a, P 1 ( * - T ) , P2(t))p2(a, t) = 0 ,

* > 0 ,

P (0, t) = \ b [a, PAt), PAt-T))pAa, t)da ,
0

P2(0, t) = j fc2(a, P1(t-i), P2(t))p2(a, t)da ,

(1.5) P,.(a, s) = <p.(a, s) , a > 0 , s € [-T, Oj , i = 1, 2 ,

= f «p.(a,
J o

 1(1.6) P.(s) = f «p.(a, s)da , s € [~T, 0] ,

where x is some fixed nonnegative constant; f. and /„ denote the age

and density dependent mortality rates with time lags in interspecific

interactions, b and b denote the age and density dependent fertility

functions again having time lags in the interspecific interactions; <p.

and <p2 denote the initial age distributions needed for the formulation of

the model.

The model system (l.l)-(l.6) will be meaningful only if <p , <p , f ,

/„, b^, b2 are nonnegative functions of the respective arguments. Also

since the total initial populations have to be finite, <p-(*, s) should

belong to L (R ) for each s € [-T, 0] . We have specifically assumed
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that f. and b. (i = 1, 2) are independent of t explicitly and this

assumption can be interpreted to represent the temporal uniformity of the

environment.

One of the fundamental questions for (l.l)-(l.6) is the following;

under what conditions on /., b. and T does the system (l.l)-(l.lt) have

if if

time independent nontrivial solutions, and when such solutions exist, are

they stable with respect to some suitable stability criterion? When such

stable time invariant solutions exist for (l.l)-(l.U) we say that the two

species community has a stable age distribution. Existence of a stable age

distribution is the analogue of the existence of a stable steady state for

the corresponding age independent system.

In this article we investigate the above question for the case of a

competitive interaction with some additional constraints on the vital rates

/. and b. (i = 1, 2) . Age dependent population systems without time
If If

delays have been considered by several authors (Gurtin and MacCamy [3, 4,

5], Gurtin and Levine [6], Haimovici [7] and Rotenberg [S]). The question

of the relation between an age independent system and a corresponding age

dependent system has been considered by Gurtin and MacCamy [4] and Gurtin

and Levine [6] who have established an asymptotic (as t •*• °° ) relation

between such models by constructing a higher dimensional lumped parameter

system (in terms of ordinary differential equations) to represent the age

dependent distributed parameter system. Assuming the existence of

stationary age distributions Haimovici [7] considers their stability in a

system of two interacting populations explicitly taking into consideration

the dynamical nature of the habitat's resources and pollution.

In this article we add another realistic feature namely time lags in

the age dependent models and obtain sufficient conditions for the existence

of stationary age distributions in (l.l)-(l.l») and show that the time lags

in interspecific interactions have no effect on the linear stability of the

age distributions although the decay rates of perturbations will depend on

the magnitudes of the time delays. Such "harmless" nature of time lags in

interspecific interactions have been noted by the author for the age

independent models in [1, 21.
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2. Existence and uniqueness of solutions

We first narrate our assumptions on the vital rates of /. and b.

(i = 1, 2) so that the system (l.l)-(l.6) will denote a competition

system. Let BC[0, °°) denote the linear space of bounded continuous real

functions on [0, °°) with the norm defined by

ll/ll = {max|/(t)|, t 6 [0, »)} .

Let K be the cone of nonnegative functions of BC[0, <*>) . Let

C[-T, 0] denote the space of real continuous functions with a norm defined

by \\g\\ = {max.\g(s)\, s € [-T, 0]} ; let K be the nonnegative cone of

functions in C[-T, 0] . We present our first set of assumptions on

f., b. and <p. for i = 1, 2 .

Ai. f± € C(R
+ x Kl x K2, R

+) , fx^d* on R+ x ̂  x ̂  ,

f2 € C(R+ x K2 x ̂ , R+) , f2 > d* on R+ x ̂  x ̂  ,

(d* d* are positive constants);

f and / are Lipschitzian with respect to their last

two arguments uniformly in a € R ; that is, for

i = 1, 2 ,

I/Ja, P^, P^-Zja, P», P»)l ̂ ^[||P^P»]|+||P^P»||]

(<i , d are positive constants) ,

e C(R + x ̂  x x2, R
+) ,

r + +•* +
£\2 • &-. ^ ^ \"> ^ A A A 9 r\ J 9 D — p Oil r\ * A ^ A ,

(8^, 60 a r e positive constants);

b , i> are Lipschitzian with respect to their last two

arguments uniformly in a € R ; that is, for i = 1, 2 ,
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(3 , Bp are positive constants],

M*> Pl» P2^ € L°°(R+' R+) f o r f i x e d Pl« P2 ' * = 1. 2 •

36 92>
9 ^ ' g ^ € C(R x Kl x

3Z?2 r +, ̂  tC(R x ̂  x ̂  R ) .

A3. »,.(', s) € ̂ (R*, R+) n C(R+, R+) for each s € [-T, 0] ,
If

i = 1, 2 .

By a solution of (l.l)-(l.6) on [0, T] we mean

p. : R+ x [_Tj T] * R+ (i = 1, 2) with the following properties:

51. p.(«, t) € ̂ (R*, R+) for each t € [-T, 21] ;

52. P,-(a, •) € C([-T, 7], R+) for each a € R+ ;

53. #P- exists along the characteristics t - a = constant

on R+ x {R* n [0, T]} and is continuous {i = 1, 2) ;

Sit. p. satisfies the system (l.l)-(l.6) for

(a, t) € R+ x [_T, T] .

Let us first convert the system (l.l)-(l.6) into an equivalent system

of integral equations. For brevity we denote by P the pair (P , PS) .

If we let

p.(a+x, t+x) = p.{x) , i - 1, 2 ,

then (1.3) considered at (a+x, t+x) becomes

fJp+x, P(t«))p£(x) = 0

which has a solution of the form

p.(x) = p.(O)expL f.[a+8, P(t+8))da\
Z |_ •'0 x J

and hence
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(2.1) p.(a+x5 t+x) = p.(a, t)exp - J* f^a+s, P(t+s))ds\ .

For a > t we choose (a, t) = (a-t, 0) in (1.3) and x = t in (2.1) so

that

(2.2) p i (a , t ) = «pi(a-t, O)exp

with

- j f^a-t+s, P^

< t < a , i = l , 2 ,

PAs) = {PAs), PAs-x)) ,

PAs) = [PAs-x), PAS)) .

For 0 < a < t we choose (a, t) = (0, t-a) in (1.3) and x = a in

(2.1) so that

(2.3) pAa, t) = BAt-a)exp - | f^s, PAt-a+s))ds

t > a > 0 , £ = 1, 2 ,

where

(2.U) BAt) = p.(0, t) , t = 1, 2 , t > 0 .

Define M. and ^ . (£ = 1, 2) as follows:

t-a
Af.(a, t, PAt)) = exp

(2 .5 )

L.(a, t, P = exp

- j / J s , Pi(a+s))ds ,

- fAa+s, PAs))ds
J0

It will now follow from (l.l), (1.3), (2.2)-(2.5) that

(2.6) P.(t) = f B.(a)M.[a, t, P.(t))da + | <p.(a, O)L.(a, t, P.(t))do ,
^ - J Q •'0

(2.7) P-(s) = $.(s) = [<P,(a,

t > 0 , i = 1, 2 ,

, s € [-T, 0] , i = 1, 2 ,
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rt
(2.8) B.(t) = B.{a)b.{t-a, PAt))M.[a, t, P.{t))da

If J * If 7r U If Is

^ a , t, ^

i = 1, 2 , t > 0 .

The equivalence of (2.6)-(2.8) with (l.l)-(l.6) is established by the

following whose proof is identical to a similar result of Gurtin and

MacCamy [4]; hence we omit the details of the proof of the following.

THEOREM 1. Suppose the system (l.l)-(l.6) satisfies the conditions

Ai_, A2j A3. If (p , p ) is a solution of (l.l)-(l.6) then the total

populations P , P and the birth rates B , B satisfy the integral

equations (2.6)-(2.8). Conversely if P., P?, B , B are nonnegative

continuous solutions of (2.6)-(2.8) on [0, T] and if p , p are defined

by (2.2)-(2.U) on R+ x [0, T] then such p , p provide a solution of

(1.1)-(1.6) on R+ x [o, T] .

The following a priori estimates are useful to prove our existence

theorem below. It will immediately follow from the bounds for /. and b.

that

M.{a, t, P) 5 exp[-d*(ifc-a)] < 1 , if t > a
if %

(2.9)
LJLa, t, P) <

From (2.7)-(2.8) we derive that

ft
B.(t) < &1BAa)exv[-d*.(t-a)]da + ei*.(O)exp[-d*t] , i = 1, 2 ,

and hence by Gronwall's inequality,

(2.10) B.(t) < ei#.(0)exp[6.t] , 6. = 6* - d* .
t ' If "If "lr Ir If Is

(2.5), (2.6) and (2.10) lead to
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(2.11) P.(£)-*.(0) 5 3**-

if.{a, O)\l-exv[-d*.t)\da
>0

•u i

5 [e**.(0)exp(6:ft)+<l>.(0)d*lt for * > 0 .
Is Is 1s Is Ir

We can now prove the following result on the existence and uniqueness

of solutions of the integral equations (2.6)-(2.8).

THEOREM 2. Assume that the system (l.l)-(l.6) satisfies the

hypotheses k\, hz, A3. Then there exists a unique set of continuous

functions (P , P , B , B ) such that

P. : R+ -> R+
 J B. : R+ ->• R+ (i = 1, 2) ,

"^ Is

which satisfy the integral equations (2.6)-(2.8).

Proof. We will first show the existence of local solutions on some

(possibly small) interval [0, T] c R such that

P. 6 <7([0, T], R+) , B. € C([0, T], R+) , i = 1, 2 ,
Ts is

s a t i s f y i n g (2 .6 ) - (2 .8 ) and then show the P . and B. can be continued as
is Is

solutions for any finite interval in R

For some fixed positive number T we let

C+[-T, T] = {f 6 C([-T, T],R) I / > 0} .

Let || • || _ denote the supremum norm in C [-T, T] . Then for any

(x, y) € C+[-T, T] x C+[-T, T] we define

| | (ar , y)\\ = \\x\\T * \\y\\T ,

cf = C
+[-T, T] , c-y = C+[-T, r] x C+[-T, r] .

Members of Cy will be denoted by z with the meaning that

z(t+s) - 2t(s) for s € [-T, 0] and t € [0, T] . Now for any fixed
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P, = (P , P ) € C? , (2.8) is a linear system of uncoupled Volterra

integral equations in B = (B 5 B ) and hence (2.8) will have a unique

continuous solution under the assumptions A1-A3. Let us denote such a

solution by

Bit) = BT{Pt) , t € [0, T] ,

If we supply this solution [B , B ) in (2.6) we find that (2.6) will be

satisfied if and only if (Pn+, POJJ is a fixed point of the operator

where IL and II respectively denote the right sides of (2.6) for

i = 1, 2 . It is not difficult to see from the nature of M., L. and the

hypotheses on f.,b.,<p. that

1* 1* 1*

B : (?T + (?f and II : c£ -•• c£

(which guarantees the nonnegativity of P. and S. ). We will first show

that there exist positive constants r*, t* such that II is a mapping of

a sphere = {pt-
into itself and also is a contraction where $. is defined on [-T, t*J

by the following:

(2.12)

r
s)da for s € [-T, 0] ,

vt

O)da for 8 € [0, t*] .
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We note that similar to (2.11) one gets the estimates

which together with (2.7) and (2.12) lead to

2

Thus if we choose

2

r* = 6} exp(6ir)+di]
3 3 3

then II is a mapping of S +*(*, J?*) into itself for all t* 5 7 . We

then will have to show that for small t* > 0 , II is a contraction.

Let P*1' and Pj. be arbitrarily chosen in S.J&, r*) and

consider

p ( D f p(2)

(2.6),

n p;1' -IT PI2 for t < t* . Corresponding to the chosen

let = B\P and B(2)(a) = B\P[2) Then from

, *.

*. *•

Using the elementary inequality

\ex-ey\ 5 |x-i/| for x, y < 0

we derive from (2.5) that
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P^ka+s)]-] , P{t
2)(a+s)\\ds

(using Ai).

Now, using (2.10),

f* I a f
1 ~ Jo ̂  ° S Jo

1 /2 .

In a similar way

(a, 0)

H*

Now we have to estimate

from (2.8),

B^ha) - B[2\a)

in order to estimate J^ ;

, a,

a, p[2)(a)J]ia

f 9^0, Oj^fa+a, P^l)(a))-i1(a4a,

f 9^o, 0)61 (o+a, P[2)( a '

By the uniform Lipschitz continuity of b in A2 we get

for a € [0, t*]
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and hence we have

(a-o, P ^ N a ) ) ^ ^ , a, p[l)(a))-M1(a, a,

- f0
1 Il

' * *

da

Thus

IK1 }-p

,<1> P (2) |
t t t*

where g {a) •* 3, as a •+ 0

that

By Gronwall's inequality it will follow

Using th is estimate for R-Aa) we get

, a,

Ola) a s a - 0 .
t*

Thus
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and hence

p(D p(2) 0(t) as t ->• 0
t*

which together with a similar bound for

as

leads to

t* •*• 0 showing that if t* is small enough, the mapping II on

SJ.*(*> P*) is a contraction. Hence the system (2.6)-(2.8) has a unique

solution for 0 S t 5 {* for t* sufficiently small and positive.

Now if [0, T] is any finite interval on R , we can consider

[0, T] as a finite union of intervals of length less than or equal to

t* . Since the estimate (2.11) is valid for any finite interval we can

extend the solution of (2.6)-(2.8) from [0, t*] to [0, T] and this

completes the proof.

3. Stationary age distributions and their linear stability

We will now establish the existence of time independent solutions

p*, p| of (1.1)-(1.6); such solutions satisfy

(3.1)

(3.2)

- + f.[a, P * P*)p*.(a) = 0 , i = 1, 2 , a > 0 ,

P* = I p1(a)da , i = 1, 2 ,

Jo

p*(0) = f 6. (a, P* P*)(1 Jo
(3.3)

All solutions of (3.1) are of the form

, i = 1, 2 .

(3.U) pi(a) = p*(0)exp - j* /.(e, P«, P|)dB , f = 1, 2 , a > 0 ,

which together with (3.3) lead to
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(3.5)

61(a, P*. P*)exp

Z>2(a, P*, P|)exp

^ ( 8 , P*. P*)<feL ,

, P*.

Thus the existence of stationary solutions of ( l . l ) - ( l . 6 ) reduces to the

existence of a pair of positive constants P*, P* satisfying (3.5). We

can now prove the following.

THEOREM 3 . Assume that f. and b. satisfy (Ai) and (A2) and let

(3.6) ^, P2) = J" fci(a, P1, P2)exp da ,

i = 1, 2 , Px > 0 , ? 2 >0,

suppose the following hold:

(3.7) Ai.. F.(0, 0) > 1 , i = 1, 2 ;

As. tfeere exists a positive constant C for which

FX{C, 0) < F2(C, 0) ,

(3.8)
, C) > F2(0, C) .

Then there exists a unique pair (?*, P*) o/ reaZ numbers P* >"0 ,

P* > 0 SMCTZ that

(3.9) = 1

and the unique nonnegative solution of (3.l)-(3.3) is given by

(3.10)

pHa) = P*. exp

i = 1, 2 , a > 0 .

Proof. Consider the elements of the surfaces defined by

z = FX[PX> P2) , 3 = F2(PX, Pg) , P1 > 0 , P2 > 0 ,
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in the (P , ?2, z) space. By hypothesis (Aj) we have 'dF^/'dP. < 0 and,

by (A2), 3i./3P. 2 0 for all P > 0 , P > 0 , £ = 1, 2 ,

j = 1, 2 . Hence by (A*) the intersections of these surfaces with the

plane z = 1 define two curves on the z = 1 plane connecting the lines

{s = 1, P = 0, Pp > 0} and {2 = 1, P = 0, P > 0} . These two curves

are defined by

and ' P 2 "

which by (As) will intersect at a unique point say (P*, P*) with

P* > 0 , P* > 0 (see figure). The uniqueness of the point [P*, P*) is

a consequence of the smoothness of the surfaces z = F [P , P ) and

z =

n)

(The figure corresponds to the case F(0, 0) > Pp(0, 0) > 1 . The other

possibility 1 < F{0, 0) £ F (0, 0) is treated similarly.) It will now
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follow that for such a pair (P*, P*) the unique nonnegative solution of

(3.l)-(3.3) is given by (3.10).

Now to examine the linear stability of the stationary age

distributions p* p* we let

p.(a, t) = pHa) + w.(a, t) ,
Is Is Is

PAt) = P* + pAt) , £ = 1 , 2 , a > 0 , * > 0 ,
X- ts is(3.11)

in (l.l)-(l,5) and derive the folloving variational system after neglecting

the nonlinear terms in the perturbations u. and p. (i = 1, 2) . (Such

a procedure of linear stability analysis can be justified as has been done

in Gurtin and MacCamy [4].)

(3.12)

DuAa, t) = -f^a, P*, t) - p|(a)
1-3

2 36.f°° f°° 2 9 6 .
M i ( 0 , t ) = 6 . ( a , P * . P | ) W i ( a , t)da * p*(a) I ^ p . .

* Jo l 1 2 * Jo ^ U=i dPj ^
•da

where i = 1, 2 and

(3.13)

= P l ( t ) '

= p1(t-x) , = p2(t) .

To consider the asymptotic behaviour as t •*• °° of solutions of (3.12) we

l e t

u.(a, t) = £.(a)exp[XtJ , £.(a) -»• 0 as a •*• ~ ,
Is Is is

(3.1U)
= p* exp[Xt] ,

i = 1, 2 , a > 0 , t > 0 ,

Using (3.1U) in (3.12)-(3.13),
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da

(3.15)

= J" b.(a, P*.
0

J"
U

>| f ^ P <
where •£ = 1, 2 , and

= P l ' P12 = P2

P21 = P l P22 = P2 '

If we integrate the first of (3.15) and use the fact that

a •+• °° we can derive that p* and p| are governed by

(3.16)

= f

= f [62(«. P*. P*)-/2(a,

From the first of (3.15) we get

(3.18) ZAa) = {5,-(0)P;(a)/p;(0)exp[Xa]}

- p*(a)exp[-Xa]

which by the second of (3.15) becomes,

(3.19) £,-(a) = [P;(a)/pU0)c. exp(Xa)J
Lr If It I,

f ! f Vi »I

Jo *

2 3Z>.

4

-Xa

2 3f.

in* LX8r

•+• 0 a s

i = l, 2 ,

Xs,
e as,

, i = 1, 2 ,
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where

(3.20) t = 1 - -^ j" 6i(a, P*. = 1, 2 .

Now supplying £ (a) and ZAa) from (3.19) in (3.l6)-(3.1T) we derive

that

(X-i4 )p* - A, oPo exp(-Xx) = ff, ,(X)p* + £?,2(X)p* exp(-Xi) ,

(3.21)

where

(3.22) [.. = [ p*(a)
"Si. 3/7

da ,

(3.23) g, .(X) =

da , i , j = 1, 2 ,

(3.2U) ^(a) = ̂ (a, P*. P, , i = 1, 2 .

To solve the linear perturbational system (3.12) it is enough to find the

constants X, p* p* satisfying (3.21) since one can then use (3.19) to

find the perturbations from (3.11*). A nontrivial solution (p* p*) for

(3.21) will exist if and only if X is a root of the equation

det = 0

or equivalently

(3.25) X2 - exp[-2Xx] = , x)

where
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S2(X, T ) =

The following result establishes the linear local asymptotic

stability of the stationary age distributions p?{a) and pi(a) .

THEOREM 4. Assume the following:

A s . 0 < 3 * < d * ( i = 1 , 2 ) ( s e e ( A i ) c m d ( A 2 ) ) ;

ki. U^+il^+l^tO) II}2 < hiiA^A^-A^zJ-W

Then all the roots of (3.25) have negative real parts and hence the

perturbations u.(a, t) = 5-(a)exp[At] -*• 0 as t •* °° for i = 1, 2 aw<i

a > 0 .

Proof. Define F (A, T) and ^(A, T) as follows:

^(A, T) = A2 - ^{\^A22) + \±A22 - A±2A21 exp(-2Ax) ;

F2(K T) = A51(A) + S2(A, T) .

Using (As) one can show that for A with Re(A) > 0 , o and c are

positive and bounded away from zero. Now since A. . > 0 and T > 0 we

find from the nature of the dependence of g• • on A that for all

A = u ± iw with u > 0 and a) > 0 we have

(3.26) If^X, T)-F2(A, T ) |
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where

P = {^+^2+1^(0

It will now follow, from (A ) and (3.26), F (A, T) = FAX, f) cannot have

roots with zero or positive real parts and this completes the proof.

In conclusion we remark that the condition (3.7) means that the net

reproduction rates of each species is greater than unity; a condition of

this type is well known in age dependent populations. (3.8) can be

interpreted to mean that the intraspecific competitive inhibition is higher

than that of the interspecific interaction. The conditions of Theorem h

are analytical and do not lend themselves for any worthwhile interpretation

in terms of the model parameters.

References

[J] K. GopaIsamy, "Time lags and global stability in two species

competition", Bull. Math. Biol. 42 (1980), 729-737.

[2] K. Gopalsamy, "Harmless delays in model systems", submitted.

[3] Morten E. Gurtin & Richard C. MacCamy, "Non-linear age-dependent

population dynamics", Arah. Rational Mech. Anal. 54 (197M,

281-300.

[4] Morton E. Gurtin and Richard C. MacCamy, "Some simple models for

nonlinear age-dependent population dynamics", Math. Biosoi. 43

(1979), 199-211.

[5] M.E. Gurtin and R.C. MacCamy, "Population dynamics with age

dependence", Nonlinear analysis and mechanics: Heriot-Watt

Symposium, Vol. Ill, 1-35 (Research Notes in Mathematics, 30.

Pitman, London, 1979).

[6] Morton E. Gurtin and Daniel S. Levine, "On predator-prey interactions

with predation dependent on age of prey", Math. Biosci. 47

(1979), 207-219.

https://doi.org/10.1017/S0004972700005281 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005281


Two species competition 29 1

[7] Adolf Haimovici, "On the growth of a population dependent on ages and

involving resources and polluation", Math. Biosei. 43 (1979),

213-237•

[£] Manuel Rotenberg, "Equilibrium and stability in populations whose

interactions are age-specific", J. Theoret. Biol. 54 (1975),

207-22U.

School of Mathematics,

Flinders University of South Australia,

Bedford Park,

South Australia 5042,

Austra M a .

https://doi.org/10.1017/S0004972700005281 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005281

