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CONCISE REPRESENTATION OF GENERALISED GRADIENTS
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Abstract

Computing the generalised gradient directly using its standard definition can involve
forming the convex hull of a very large number of vectors. Here an alternative concise
parametrization is developed for the generalised gradient of the signed rank regression
family of objective functions, a class of piecewise linear functions which includes both
convex and nonconvex members. The approach uses the geometry of the epigraph
explicitly and this suggests extensions to more general functions. A nondegeneracy
condition is assumed which is natural in optimization problems.

1. Introduction

It is roughly ten years since Clarke introduced his concept of the generalised
gradient of a locally Lipschitz function and since then considerable effort has
been expended in deriving and classifying the similar constructs of possible
interest. An excellent account of these developments is given in Rockafellar [9],
and Clarke's work is described in detail in his 1983 book [3]. At about the same
time, growing interest in the calculation of solutions to nondifferentiable optimi-
zation problems was evidenced by the publication of Mathematical Programming
Study 3 (Balinski and Wolfe [1]). Thus a stimulating blend of application and
technique was available, and the last decade has seen substantial progress. In
particular we note the work of Fletcher ([4], Chapter 14) and Womersley [11] in
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providing a unified approach to mathematical programming problems and com-
posite nondifferentiable optimization problems. Womersley's approach makes
extensive use of results developed in this paper.

Here we consider the important question of finding a representation of the
generalised gradient that is appropriate from both the analytic and computational
point of view. Our calculations are carried out for a particular family of
nondifferentiable (actually piecewise linear) functions containing both convex and
nonconvex examples which is of interest in developing robust rank based statisti-
cal estimation procedures. This family of functions has the general form of a
piecewise linear, composite function

F(x) = /,(!•)= t 1,1 rUo (1.1)
/=i

where
r = Mx - f,

M\RP -» R" is assumed to have rank p, (r| is the vector with components |r,|,
7 = 1,2, ...,n, n is an index set ranking the components of |r| (we adopt the
convention that the ranking is in increasing order of magnitude), and the TJ,,
/ = 1,2,...,n are scores which specify the particular realisation of h(r). This
function is important in statistical estimation as it provides the extension to the
regression problem of the signed rank estimator of location (Randies and Wolfe
[7]). Provided the TJ, are nondecreasing functions of / then F(x) is convex, but the
resistance of the estimator to the effects of extreme outliers can be increased by
reducing the size of the scores weighting the large residuals. If the scores then
redescend, the resulting function is no longer convex. The problem that F(x) is no
longer convex is shared by the corresponding M-estimator (Huber [5]), and
interest in studying it at all derives in part from evidence that the redescending
M-estimators are of value. In fact the rank based estimators start with an
advantage in not requiring an estimate of scale to be computed simultaneously.

EXAMPLE 1.1. In Figure 1, plots of F against x are given for the particular case

I io \ 10

1 - 1

where

/, = . l*i , 1 = 1,2,... 10,

for Y =2,1, .9, .85, .8, .75, .7. The scores ij, are nondecreasing for Y = 2, but
redescend for Y < 2. They start becoming negative as Y is reduced below 7 = 1 .
The loss of convexity as Y is decreased is clear.
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FIGURE 1. Example of a redescending signed rank function

REMARK 1.1. An interesting feature of Figure 1 is the apparent smoothness of
this strictly piecewise linear curve. This derives from the property that, if the ij,
are all distinct, then, whenever the graphs of the moduli of two residuals cross, the
scores associated with them exchange, and the gradient of .F(x) is discontinuous.
But there are as many as n2 corners to the graph of F(x), and this leads to a much
smoother picture than that which would be obtained if all the TJ, had been the
same (the case of ll estimation which gives just n corners in the location
problem). This apparent greater smoothness is closely related to the higher
efficiencies attainable by rank estimates. But it is also associated with the
difficulties in computing them, which has largely served as a deterrent to their use
up till now.

Here the object of primary interest is the generalised gradient 9F(x) of the
locally Lipschitz function F. It is defined by (for example, Clarke [3])

dF(x) = conv{zr e R"; 3 sequence { x w } (1.2)

such that
{}

(ii) vF(xik)) exists for all k and
(iii) vF(x<*>) -> zT.)

It has the following properties.
(i) 3F(x) is a nonempty, compact, convex set in Rp.
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(ii) 9F(x) is upper semicontinuous. That is if {x<*>} -• x, z ( * ) r e dF(\w),
and z<*> -* z, then z7" e 3F(x).

(iii) The generalised gradient of the composite function F(x) = /(x) + h(r(x))
where / , r are smooth (the notation is chosen to stress that (1.1) is an important
special case) is related to the generalised gradients of the component functions by

3F(x) c conv{zr e RP; ZT = v/(x) + wTM,

w T e8/ i ( r ) , M = v r ( x ) } . (1.3)

(iv) The generalized gradient of the max function

, / = 1,2 wi}

is
3F(x) = conv{ v/,(x), i e o, a = {i; /,(x) = F(x)} }. (1.4)

It is important to note that (1.3) can be a strict inclusion, although this cannot
happen in the convex case. However, in the nonconvex case it provides one source
for a potential difficulty. This occurs when the set that is easy to construct may be
larger than the set that is strictly appropriate for generating descent directions for
minimization and for testing for optimality. This problem is considered in Section
3.

A second quantity of importance is an appropriate form of directional deriva-
tive for locally Lipschitz functions. Here two possibilities are considered. They are
equivalent in the convex case.

(i) The usual one-sided directional derivative

( ) %

(ii) The generalised directional derivative in the sense of Clarke

: Q . hrcsup n ^ . (1.6)

Relevant properties of F° include the following (Clarke [3]).
(i) F°(x: t) is a positively homogeneous convex function of t e RP.

(ii) 3F(x) = {vT e R"; F°(x:t) > vTt, Vt e R'}.
(iii)F°(x:t) = maxvG3F(x)v

rt.
(iv) F(x + t) < F(x) + F°(x:t) + o(||/||).
(v) 0 e 3F(x) (int 9F(x)) if and only if

F ° ( x : t ) > 0 ( > 0 ) , V t e ^ ^ . t ^ O .

Clearly F given by (1.1) is locally Lipschitz. To compute its generalised
gradient using (1.2), it is necessary to have a means for referencing the tied and
zero residuals which given rise to the nondifferentiability. We assume that there
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[si Concise representation of generalised gradients 61

are ng distinct groups of ties plus a group of zero residuals at x, and we reference
the /th group of ties by an index set vt, \vt\ = k, + 1, / = 1,2,... ng, and the zero
group by an index set v0> \vo\ = kQ. To reference individual elements it is
convenient to assume an order imposed on each of the vt (so that v^j) is the jth
element of ?, under this order). To set up the sequence {x(t)} we must consider
displacements to points x + et at which F is differentiable. That is we must
consider displacements et, e > 0 small enough, which break ties and remove
zeros. This gives

VF(x + et) = gT + £ £ T,XO)V | 4 (1 -7)
x = 0 je»,

where xO) is a n operation which associates the correct score with ry at x + et,
and where g is the gradient of the differentiable part of F at x. Because F is
piecewise linear we can write (1.2), for e > 0 small enough, as

VF(x) = conv { vF(x + et) } (l .8)

where the convex hull is taken over all t which produce distinct values of \?F.
Except in degenerate situations, t can be chosen to give all possible assignations
of scores to residuals in the groups of ties, and all possible assignations both of
sign and score to the residuals in the group of zeros. Thus the number of distinct
vectors generating the convex hull representation (1.8) in the case of distinct
scores is

2*0*0! I I (*, + I)'

REMARK 1.2. This calculation highlights two important defects of the convex
hull form of the generalised gradient (1.8). These are:

(1) The convex hull form can be based on a very large number of vectors, so
that the corresponding parametrization is very unwieldly; and

(2) The representation concentrates on points adjacent to x where F is smooth.
Thus it is not giving direct insight into the structure of F which is contained in
the tied and zero residuals.

Our aim is to develop a representation which overcomes both these objections.
Thus we require it to be more concise (involving no more parameters than the
natural dimension of the object described), and to reflect the natural geometry of
the epigraph of F, by stressing the connection between the extreme points, edges,
facets etc. on the one hand and the tied and zero residuals on the other. This
representation is developed first for the convex members of our family of
piecewise linear functions in the next section, and then extended to the nonconvex
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case in Section 3. Piecewise linearity is used explicitly. In particular, the property

tha t the generalised gradient is constant on edges and facets of the epigraph of F

(epi F is the set of points [*] with ir > F(x)) is often used rather than a more

elabora te limiting argument based on upper semicontinuity of dF(x). But the

availability of this alternative suggests a means for extending the results to more

general classes of functions.

In the convex case the results are closely related to those given in Osborne [6],

where it is shown also that the representation is the right one for characterising

the min imum of F and for use with descent methods of minimization, and where

projected and reduced gradient algorithms are given which are directly applicable

to our ma in example. However, this example is of independent interest (and not

only for the reason that it is more complicated than those previously attempted).

T h e extension to nonconvex problems is new. We believe that the use of

generalised gradients simplifies our argument, but the convex case can be treated

wi thout this apparatus . Suitable references include Rockafellar [8] and Osborne

[6].

2. Representation in the convex case

When F is convex (corresponding to the case in which the scores in (1.1) are
nondecreasing) then the generalised gradient is also called the subdifferential.
Here we construct a compact parametrization of the subdifferential of (1.1).

The important observation is that the points of nondifferentiability of F are
determined by certain basic structural elements: (a) tied residuals, and (b) zero
residuals. Making use of the index notation defined above in equation (1.7), we
can summarise the connected sets of points such that h(r) has a particular
structure and is compatible with a particular ordering /* by means of the structure
equations

*»,<;)(r) = lrl*,o+i> - |r|,,<i) = 0, (2.1a)

j = 1,2,..., kf, i=l,2,...,ng,

and

W O =' = 0, j = l,2,...,k0. (2.16)

T h e <j>j are called structure functionals. Note that the set of structure functionals is

irreducible in the sense that no smaller number expresses the correct configura-

t ion of ties and zeros and thus the nature of the nondifferentiability at r(x).
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REMARK 2.1. The definition of <>„,(,), i > 1 involves a specialised residual which
we refer to as the origin of the ith group of tied residuals. Independence of the
choice of origin is an important aspect of our results which is not discussed here.
It is demonstrated for related problems in Clark and Osborne [2] and Osborne [6].

REMARK 2.2. It is convenient to assume that the sets of points satisfying the
groups of structure equations have the obvious dimensions, and that independent
displacements can be made from the current point to break individual ties or
remove individual zeros. This is a form of nondegeneracy condition, and it can be
expressed as a condition on the rank of a matrix. Let

V=[VO\V1\--- \Vn\, (2.2)

where the submatrices are derived from the different groups of structure function-
als and have columns defined by

(2-3)

, ' > 0,

= *,oij)(M
T), i = 0, (2.4)

where 8j = sgn(ry). Then our nondegeneracy condition is

rank(K)= £ * , = *</>. (2.5)
i = 0

Degeneracy has implications for the development of algorithms. An appropriate
treatment in the context of descent methods is given in [6]. It is shown that the
assumption is natural and involves no real restriction in practice.

Now let w G 3r/i(r), where the notation indicates the generalised gradient with
respect to r. Then, if h,, i = 1,2, ...,m, are the extreme points of 3rA(r),

m m

w=EX,h,, *,>0, I A , = 1. (2.6)
i-i /-I

The problem with this representation is that m can be very large. However, an
alternative representation can be motivated by noting that (1.1) can be rewritten
in terms of the structure functional at r(x) to give

i - l

xUM W t o (2-7)
i-l jev, /£'o
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where x(j) is defined after (1.7), 0, associates the correct sign with rp vc is the set
of indices not contained in vit i = 0,1, . . . , ng, and the part of h(f) that does not
involve the structure functionals is differentiable at r(x). The argument leading to
(1.8) now shows that w can be written (to simplify notation where possible, we
assume the index sets in (2.1) are mapped into 1,2,..., k and define the matrix $
byic,.(<I>)= v^f. i = l,2,. . . ,k)

k

w = h* + E M,K,($) = h* + $u, (2.8)
/-i

where h* is the gradient of the differentiable part of h at r(x) and is given by

h* = E VXUM + E ( E Hxty)kl(i*l(i,- (2-9)

It remains to determine the range of allowable values of u. Specialising w to be
h,, / = 1,2, . . . , m w e obtain

h, = h* + $u(l), i = 1,2,..., in. (2.10)

The convex hull formula for 3F now gives u e U where the polyhedral convex set

U = c o n v { u ( " , i = 1 , 2 , •••, m } <zRk (2.11)

is called the constraint set associated with the subdifferential.

REMARK 2.3 It is the property that U is necessarily polyhedral which is special
to piecewise linear functions and makes this representation particularly attractive
in this case.

To obtain dxF from 9r/i we use the chain rule (1.3)

to obtain

zT e dF(\) ~ z = g + Vu, (2.12)

where

g = M r h * ,
V = M r $ is just (2.2), and u e ( / . The formula (2.12) is our concise parametriza-
tion of the subdifferential. The key to its utility is the specification of U, and we
now show that U can be determined starting from a knowledge of h* and $.

REMARK 2.4. It turns out that U depends on the geometry of epi F, and it is a
useful first step to relate the differential properties to the basic descriptive
quantities including extreme points, edges, facets, etc. The link is provided by the
set of normal directions at x

{ [ \ ] } (2.13)
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Basic properties include
dim(A0 = rank(F) + 1, (2.14)

and
dim(iV) = p + 1 => x is an extreme point,
dim(iV) = / ) = » x s £ , a n edge, and
dim(iV) = / > - l = > x e G , a facet.

The key tool in finding U is the directional derivative of F which is unambigu-
ously defined in the convex case. Its utility stems directly from property (iii) of
F°. Given t let zT e dF(x). Then, using (2.12),

trz = trg + tTVu < iT% + max tTVx\ = F'(x : t) (2.15)
UG U

This has the form of a linear inequality on u e U and the set of all such
inequalities provides the required description of the constraint set as a conse-
quence of property (ii) of F°. But U is polyhedral convex by (2.11) so we expect
to be able to specialise the set of t required. In fact, it is necessary to consider
only directions in the (relative) edges corresponding to connected sets of points
containing x and having normal sets of dimension k, where k + 1 is the
dimension of N(\). To be specific, let t be a direction in the facet G/y- (connected
set with normal set having dimension k — 1) having bounding edges £,, E} at x.
Then we can write

t = at, + 0t ,

where t,, t7 are directions in £,, Ej respectively, and a, /? > 0 as a consequence
of the convexity of F. Now linearity gives

But this is compatible with the maximization expressed in (2.15) only if the
particular u maximising (2.15) for t achieves the maximum for each of t,, ty

separately. Thus the inequality for t is a consequence of the inequalities for t,, ty

provided a, fi > 0, showing that higher dimensional configurations than edges
contribute no new information, provided epi F is convex.

To characterize the edges at x, we turn to the alternative characterization of the
geometry of epi F in terms of structure functional. In particular, it follows from
(2.14) that the different ways of reducing the dimension of N(x) by 1 each
correspond to removing one of the structure equations holding at x. For the
signed rank regression function this means either:

(a) relaxing one structure functional in a group of ties. The most general
situation corresponds to the group splitting into two subgroups in the edge. One
subgroup can retain the original origin, but a new origin must be found for the
other subgroup, and the structure equation deleted expresses the tie at x between
the two subgroup origins.
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(b) a subgroup of zero residuals relaxing to a nonzero group of tied residuals.
An origin must be found for the subgroup, and this choice defines the structure
equation deleted. In both cases the requirement to choose new subgroup origins
on the edge Eq (say) means that the set of structure functionals on Eq may differ
from that at x. However, both must give a description of the same situation at x
(that is, describe the same configuration of ties and zeros). To express this, let the
structure functionals at x be §v $2,...,$k, the functional being relaxed be <j>q,
and the set of structure functionals on Eq be <j>[q),...,4>^lx, with corresponding
gradient matrix 3>(<?). The new situation that obtains on Eq (except at x) is that
the term involving 4>q in (2.7) becomes differentiable. It follows by an argument
similar to that leading to (2.8) that the representations of dF at x and on Eq must
be related by

hq = h* + fyc,(*), (2.16a)

and

[*<«>!*,(*)] s. (2.16b)

where h^ is the gradient of the differentiable part of h on Eq, where f9, Sq, sq are
defined by the transformation of the structure functionals, and P is a permuta-
tion matrix which takes account of any column rearrangement. To determine the
direction t in the edge, note that it must satisfy

*J«>(r + XMi) = 0, i = 1,2,..., k - 1 (2.17)

for X > 0 small enough. Differentiating with respect to X gives

K,.($(9))rMt = K,(F("))7't = 0, i = l,2,...,k-l. (2.18)

Also ^ ( r + At) =* 0 so that (setting \q = Kq(V))

Kq((S>)TMt = v / t * 0 . (2.19)

REMARK 2.5. The following calculation expresses £q in terms of the transforma-
tion of the structure functionals by calculating F'(x: t) on Eq.

so that, as t in Eq satisfies (2.18), (2.19),

F'(x:t) = gT
qt. (2.20)

Also z r e dF(Eq) =» zT G 9F(x) by the upper semi continuity of 3F. In particu-
lar, dF(Eq) O dF(x) defines a subset £7of U. In addition, from (2.16)

V= K<*>[S,|0] P-1 + v,[sj|l] J*"1. (2.21)
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Thus, as F'(\: t) is independent of the choice of z e dF(Eq),

F'(x : t) = gTt + urKTt, u G V

It follows that

(2.22)

independent of the particular choice of u e U.
It is an immediate consequence of (2.16a) and the chain rule (compare also

(2.22)) that

g, = g + ?,V (2.23)

The desired inequality for U now follows. From (2.22)

gTt +(v?t)[sT
q\l]p-1u < F(x:t), Vu e U.

But (2.23) gives

so that

sgn(v/t){?9 - > 0, VUG U. (2.24)

It should be noted that (2.18), (2.19) need not specify t uniquely. However, (2.24)
is independent of the manner in which the specification of t is completed.

There are two cases to consider in deriving these inequalities for the signed
rank regression function.

Case (a) Let <f>1,...,<l>k characterize a group of tied residuals pointed to by an
index set which is specialized to v. We set v = v 1 U v2 where v1 points to the
subgroup tied to the origin of v and v2 points to the new subgroup. Then the new
structure functional are

= |r | - | r | - (| r | - | r |

where £ maps v2 back into v. Thus the mapping (2.16) is

'lx 0 0
=$/>,

(2.25)

(2.26)
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where $x corresponds to the unchanged structure functional, Ix and I2 are unit
matrices of appropriate dimension, and e is a vector of ones. It remains to
estimate $q. The argument is familiar. We write (1.7) in terms of the v</>, by
adding and subtracting origin terms and this shows a contribution to g at x from
the group of ties given by

Applying this argument on Eq, and noting that there are contributions from both
subgroups, we obtain

= Agl + Ag2 = ( I ux{I)kl(1)ic,l (1)(Jl/r)

+ ( E 'Jx

This expression defines f9, but there are still two possibilities, because if vrt > 0
then the second subgroup grows in magnitude relative to the first, while if \Jt < 0
then this behaviour is reversed. As scores are assigned according to rank we have
(setting x("i(l)) = l,s = l + k)

C = t Vj, v/t>0, (2.27a)
j-s-M + l

S; = I Vj, v/t < 0. (2.27b)
j - i

Inserting the appropriate quantities from (2.26), (2.27) into (2.24), noting that all
possible ways of splitting up a group of ties into two subgroups are allowed and
that vft can be chosen to have either sign in (2.19), we obtain the system of
inequalities

j J j

*-i T'x(>'(i))+./-i ^ ^-> U<->U)^ i-i 1'x("(*+1)W+i (2.28)
y - i 7=1 7=1

for J = 1,2, ...,k + l, and u any selection of / indices from j'(l), v{2) • • • v(k
+ 1).

Case (b) Let ^, <j>2 • • • ^>k characterize a group of zero residuals. Again v is
the associated index set and the splitting into subgroups defined by the partition
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v = vx u P2. The structure functional associated with the second subgroup are

and it is important to note that t can be chosen in £ to give any selected pattern
of signs for the 0, = sgn(/y(x + et)), j e v2, e > 0 small enough by satisfying the
appropriate system of equations (2.18), (2.19). Identifying terms in (2.16) gives

s =1 < 2 - 3 0 a )

Also, because the subgroup of nonzero ties must be associated with the larger
scores, the argument leading to (2.27) gives

111

Substituting from (2.30), (2.31) into (2.24) and noting that all combinations of
signs are possible for 0p 0q we obtain the inequalities

j J

+i (2.32)

for J = 1,2,..., k + 1, and u any selections of / indices from p(l), v(2),..., v{k
+ 1). In the case of a single zero residual this corresponds to the usual result that
3|JC| = [-1,1] when x = 0.

REMARK 2.6 All the results needed to put together the concise representation of
9F(x) have now been derived. The general form is given in (2.12). To construct g
requires h* specified in (2.9), V is given in (2.2), (2.3), and the inequalities (2.28)
and (2.32) specify the constraint set U.

3. Representation in the nonconvex case

Here we consider the manner in which the approach used in the previous
section extends to the non-convex case corresponding to redescending TJ, in (1.1).
Certainly some problems occur, and the referee suggested that this section should
be called 'difficulties in the nonconvex case', but we prefer to be more sanguine.
Some progress can be made as the ideas of structure functional and normal set
can be employed to characterize the geometry of epi F. The key requirement is a
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suitable construct to replace the directional derivative, and for our purposes this
is provided for locally Lipschitz functions by Clarke's generalised directional
derivative.

REMARK 3.1. F° is computable for the signed rank regression function (1.1).
The only complexity occurs in the groups of ties where the procedure is as follows
(for each group):

(i) rank the i j x ( y ) , j e p.,
(ii) rank the OjtTKJ(M

T), j Pj, and

(iii) accumulate the products of corresponding terms.
This construction works in the nondegenerate case because then there is a
displacement to an adjacent point which achieves any desired order for the
residuals within the group, in particular an ordering which matches the terms in
(i) and (ii).

It would seem that the development of the previous section could be paralleled,
in particular to specify the constraint set U. But there is one problem because t, a
direction in a facet, may not be expressible as a combination of directions in the
bounding edges with positive weights. Thus the edges may not completely specify
BF(x) so that using just the constraints derived from the edges may give too large
a set.

EXAMPLE 3.1. This positive-weight condition is essential. Geometrically it
ensures that epi F does not have reentrant corners. If this condition does not hold
then it is easy to give an example where the inclusion is proper. Consider

F(x,y) = max{x,-x -y}, y > 0,

= max{x,-x+ y], y < 0,

in which the graph of F is a piecewise linear saddle (see Figure 2). Then the
convex hull form of the generalised gradient at x = 0, y = 0 is given by

A compact representation is obtained by selecting structure functional which
describe the discontinuities in gradient for y > 0 and y < 0 respectively. An
appropriate choice is

4>x = -2x -y, 4>2 = -2x + y .

Setting

we can obtain a representation of U by evaluating the u, expressing the extreme
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FIGURE 2. Contours of Example 3.1

points in the convex hull form. This gives

The edges £, e i?3 at F = 0, x = 0, y = 0 and the corresponding directions t,
are

E2={F=x,-2x-y-0},
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Property (iii) of the generalised directional derivative now gives the constraints
determined by the edges:

F°(0:t1) = l > - l + 2(Ul + i/2))

F°(0: t 2 ) = 3/2 > -1 /2 + 2u2,

F°(0:t3) = 3/2 > - l / 2 + 2Ml.

Clearly these inequalities specify a large set than the convex hull of u,, / = 1,2,3
determined above.

Also the use of F° does lead to results which can be counter intuitive if the
connection with the directional derivative is stressed. Necessarily we have

F ( x : t ) < F ° ( x : t ) (3.1)
and strict inequality can hold. The above calculations suffice to show this. For
example we have

F 0 (0 : t 2 ) = 3 / 2 > F ( 0 : t 2 ) = - i ,

F 0 (0: t 3 ) = 3 / 2 > F ( 0 : t 3 ) = - i

Note that 0 e dF(0) but 0 is a stationary point which is neither a maximum nor a
minimum. Here this behaviour is a special case of property (v) of F°. The
difficulty comes about because, although (1.2) shows clearly enough that dF is the
right kind of set to be considering in the sense that it is likely to know about
descent directions at the current point, in certain circumstances it is too large a
set.

The directional derivative F is a more precise quantity for verifying descent
directions. The class of functions for which F° = F' is called regular. It inherits
most of the nice properties of the convex case. In particular, it is a consequence of
property (v) of F° that for piecewise linear regular functions 0 e 3F(x) => x is a
local minimum in the sense that F is nondecreasing along straight lines at x. But
if F is not regular at x then 0 e 9F(x) gives a more general class of stationary
point at x and further work is required to characterise it. The above discussion
shows that concave functions cannot be regular at points of nondifferentiability,
and figure 1 shows that redescending signed rank estimators cannot be regular
everywhere. But a further difficulty is introduced because now the chain rule for
generalised gradients (property (iii)) is only an inclusion, and the inclusion can be
strict [12]. Thus we again have the problem that the convenient specification may
lead to too big a set if F is not regular.

Clearly regularity is a desirable property so that criteria for regularity are
important. One such is that if F can be represented in a neighbourhood of x as
the maximum over a finite number of smooth functions then F is regular. Such
functions are called locally max. Let

F(x) = max(/,(x), i = l ,2, . . .m) (3.2)
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and

a={i ; / , (x) = F(x)}.
Then

> zrt + 0(a)(z

> F ° ( x : t ) + 0(o),

as 3F(x) = conv{V/)(x), / G o } and max,{/)(x + at)} can be attained for i £ o
if a > 0. The regularity of F(x) now follows from (3.1).

REMARK 3.2 For locally max functions the obvious structure functionals are

< / > , = / o ( , + i ) - / o ( i ) . ' = 1 , 2 , . . . | o | - 1 .

Taking

g r = V / o ( 1 ) ( x ) ,

we obtain the representation of the generalised gradient as

zT G dF(\) => z = g + Vu.

In this case it is not necessary to assume nondegeneracy in order to characterise U
as this representation must be equivalent to the convex hull representation (1.4),
so that

£ / = j u ; n , > 0 , i = l , 2 , . . . | o | - l ,

Optimality properties of locally max functions have been discussed in [10].
The results given in this Section are fragmentary but they do suggest a number

of interesting problems for further research. One investigation we hope to
undertake involves the modification of our reduced-gradient algorithm for mini-
mizing (1.1) in the convex case. Our aim is to gather empirical data concerning its
behaviour in the nonconvex case for score functions which make sense in
practical estimation problems (this is not the case for the score functions chosen
to produce figure 1 when Y < 1). Our expectation is that reentrant behaviour of
epi F is unlikely in a neighbourhood of the global minimum if the estimation
procedure is sensible. Also, if epi F is not reentrant at x then locally F can be
represented as the maximum of its linear pieces so that it must be regular at x
(and this argument clearly has some range of validity even if F is not piecewise
linear). In these circumstances our concise formula for 3F is exact, not just an
inclusion.
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