
4
The quark model: combinatorics
and groups

The quark model was initially introduced to explain the emerging plethora of hadrons as bound
states of quarks, and this is how we start with its study.

4.1 Bound states
Hadrons – mesons and baryons – are bound states of (anti-)quarks. Mesons are quark–antiquark
bound states, held together by the strong nuclear force for which the mediating quanta (par-
ticles) are the gluons. Baryons consist of three quarks, bound by gluons. It is then clear that
the three-particle bound states – baryons – are more complicated than mesons. Furthermore,
even the description of mesons as bound states is hard in the case of the “light” quarks. For
these one needs a relativistic description of bound states, which is considerably more compli-
cated than the non-relativistic one, and needs more development☞ . One can reliably discuss,
using the methods of non-relativistic quantum theory, only the mesons consisting of the “heav-
ier” quarks: the t-, b- and c-quarks and with less precision also the bound states with the
s-quark.

The bound states may be analyzed in this way, as a non-relativistic system, if the mass of
all constituents is sufficiently bigger than the binding energy. For example, the binding energy of
the hydrogen atom (13.6 eV) is 2.66×10−5 times that of the electron rest energy, and 1.45×10−8

times the proton rest energy, so that the non-relativistic analysis of the hydrogen atom is very
accurate. This analysis may then be adapted to many hadronic systems, and we first recall some of
the important results about the hydrogen atom.

Unlike the hydrogen atom and the similar positronium, the bound states of quarks and anti-
quarks will additionally require combinatorial and group-theoretical results since, in addition to
the electric charge and spin, quarks also have a “flavor” (u, d, c, s, b, t) and a “color” (red, yel-
low, blue). With this in mind, the Reader is referred to the group-theoretical results collected in
Appendix A to begin with, and the literature [565, 258, 581, 256, 80, 260, 333, 447] for more com-
plete explanations, proofs and detailed theory, which also offer a more complete and pedagogical
organization.
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128 The quark model: combinatorics and groups

4.1.1 The non-relativistic hydrogen atom without spin
Together with the linear harmonic oscillator, the hydrogen atom is the most frequently discussed
system in all books on quantum mechanics [362, 363, 471, 328, 480, 134, 391, 407, 360, 472,
29, 339, 242, 3, 110, 324, for example] [☞ also Section 1.2.5]. It is well known that in this two-
particle system one can separate the dynamics of the atom as a whole and the relative motion of
the electron in the CM-system. Since the proton (nucleus) mass is 1,836.15 times larger than the
electron mass, the so-called reduced mass, me mp

me+mp
≈ me differs from the electron mass only by a

1
1,837.15 fraction, which may usually be neglected. Besides, the coordinate origin of the CM-system
is very close to the proton location,1 and one approximates the electron as moving within the
electrostatic field of the stationary proton.

The Schrödinger equation is

ih̄
∂

∂t
Ψ(�r, t) = H Ψ(�r, t), H =

[
− h̄2

2me
�∇2 + V(r)

]
, (4.1)

where H is the non-relativistic Hamiltonian and V(r) is a central potential, which for the hydrogen
atom is the Coulomb potential. This may be solved in spherical coordinates, looking for solutions
in the form of so-called stationary states:

Ψn,�,m(�r, t) = e−iωn,�,mt Rn,�(r) Ym
� (θ, φ), ωn,�,m :=

En,�,m

h̄
, (4.2)

since we know that

�∇2(· · ·) =
1
r2

( ∂
∂r

r2 ∂

∂r
· · ·

)
− 1

r2 L2(· · · ) =
1
r

( ∂2

∂r2 (r · · · )
)
− 1

r2 L2(· · · ), (4.3)

L2Ym
� (θ, φ) = �(�+1) Ym

� (θ, φ). (4.4)

The Ym
� (θ, φ) are the spherical harmonics, the eigenfunctions of the angular part of the Laplacian:

L2(· · ·) := − 1
sin θ

∂

∂θ

(
sin θ

∂

∂θ
· · ·

)
− 1

sin2 θ

( ∂2

∂φ2 · · ·
)

, (4.5)

which is the square of the operator of so-called “dimensionless angular momentum,” i.e., of the
angular momentum divided by h̄2. The radial part of �∇2 and the identity

1
r2

( ∂
∂r

r2 ∂

∂r
· · ·

)
≡ 1

r

( ∂2

∂r2 r · · ·
)

(4.6)

suggest the substitution Rn,�(r) = un,�(r)
r , whereby the radial differential equation becomes

− h̄2

2me

d2un,�

dr2 +
[
V(r) +

h̄2

2me

�(�+1)
r2

]
un,� = En,� un,�, (4.7)

which is effectively a one-dimensional problem, with r ∈ [0, ∞) and where the effective potential
is the sum of the “actual” potential and the “centrifugal barrier,” h̄2

2me

�(�+1)
r2 . For the hydrogen atom,

we have the Coulomb potential,

V(r) = − 1
4πε0

e2

r
= −αe h̄ c

r
, αe :=

e2

4πε0 h̄ c
, (4.8a)

1 To be precise, the coordinate origin of the CM-system is at 1/1,837.15 = 5.443 21×10−4 of the distance between the
proton center and the electron center, i.e., of the Bohr radius, i.e., 2.880 42×10−14 m from the proton center. Rutherford’s
experiment [☞ p. 45] showed that the atom nucleus must be smaller than about 2.7×10−14 m – which we certainly
expect for the simplest, hydrogen nucleus, with a single proton. Thus, the coordinate origin of the CM-system is just
outside the proton that forms the atom nucleus, and more precise analyses must take into account the complementary
motion of the proton in the CM-system.
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4.1 Bound states 129

for which the solutions are well known:

En = −1
2
α2

e mec2 1
n2 , n = 1, 2, 3, . . . (4.8b)

Ψn,�,m(�r, t) =

√( 2
n a0

)3 (n − � − 1)!
2n[(n+1)!]3

e−r/(na0)
( 2r

na0

)�
L2�+1

n−�−1

( 2r
na0

)
Ym

� (θ, φ), (4.8c)

where

Lq
k−q(x) := (−1)q dq

dxq

[
ex dk

dxk (e−xxk)
]

are the Laguerre polynomials, (4.8d)

a0 :=
4πε0 h̄2

me e2 = 0.529×10−10 m is the Bohr radius. (4.8e)

Recall that the complex phase – and so also the sign – of the wave-functions Ψn,�,m(�r, t) is not
measurable [☞ Chapter 5], so different Authors may use different sign conventions in these
definitions (4.8c)–(4.8d) for convenience in some particular computations.

A discussion of this solution for the hydrogen atom may be found in every quantum me-
chanics textbook, and it is well known that Bohr’s spectrum of the hydrogen atom (4.8b) is
degenerate: Since the energy depends only on the principal quantum number n, states with differ-
ent (permitted) values of the quantum numbers �, m (and spin, s and ms) have the same energy.
Since [☞ Appendix A.3]

n = 1, 2, 3, . . . , � = 0, 1, 2, . . . (n−1), |m| � �, m ∈ Z, s = ± 1
2 , (4.9)

it follows that the number of states with the same energy equals

n−1

∑
�=0

�

∑
m=−�

2 = 2
n−1

∑
�=0

(2�+1) = 2 n2, (4.10)

where the factor 2 stems from two possible values of spin. Since the potential is central, i.e.,
it depends only on the distance between the center of the Coulomb field and the electron that
moves in that field, the system manifestly has rotational symmetry. In 3-dimensional space, rotation
transformations form the Spin(3) group. This symmetry would explain the independence of the
energy from the quantum number m (quantifying the direction of the angular momentum) and
spin, but not the independence from �, which quantifies the intensity of the angular momentum.2

Indeed, the hydrogen atom – and more generally, the Coulomb, i.e., the Kepler problem – has
another symmetry, generated by the components of the so-called Laplace–Runge–Lenz vector:

for V(r) = −κ
r

, �A := �p ×�L − me
κ
r
�r. (4.11)

It may be shown that the Cartesian components of the Laplace–Runge–Lentz vector commute with
the Hamiltonian H in equation (4.1). In turn, the dimensionless operators

Li :=
1
h̄

(�r×�p )i = −i εij
k xj ∂

∂xk (4.12)

2 The continuous group of rotations is generated by operators of the dimensionless angular momentum (4.12): Each
rotation may be represented as the result of the action of the operators R(�ϕ) := exp{ϕiLi}, which change the direction
of the atom. Since rotations are symmetries, it follows that the result of a rotation is not measurable, and the energy of
the atom cannot depend on its direction. However, neither of these operators changes �: R(�ϕ)Ym

� = ∑μ cm
μ Yμ� . Therefore,

the rotation symmetry does not explain the fact that states of the hydrogen atom with different � nevertheless have the
same energy (4.8b).
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satisfy the relations

[L j, Lk] = iε jk
lL l , [L j, Ak] = −iε jk

lA l , [A j, Ak] = ±iε jk
lL l , for

{E<0,
E>0; (4.13)

where the operators

A j =
1√

2meH

[
h̄
2i
ε j

kl
(
∂

∂xk L l + L l
∂

∂xk

)
− me κ

h̄
êj

]
(4.14)

are the components of the quantum dimensionless Laplace–Runge–Lenz vector, normalized by the
energy of the stationary state upon which the operators A j act. The structure of the symmetry
group generated by the operators L j and A j depends on the choice of the sign in the third of
the commutator relations (4.13). When acting on bound states (for which E < 0), the commutator
relations (4.13) specify the continuous group Spin(4); [☞ Section A.5]. When acting on e− + p+ →
e− + p+ scattering states (for which E > 0), L j and A j generate the group Spin(1, 3). The operators
Ai change � through its full range � ∈ [0, n−1] while the operators L j change m through its full
range m ∈ [−�, �], both in unit increments. This extended Spin(4), i.e., Spin(1, 3), symmetry of the
hydrogen atom implies that the energy, as obtained by Bohr’s formula (4.8b), does not depend on
�, m and ms.

Thus, the Spin(4) symmetry fully explains the number and classification of hydrogen atom
bound states. The lesson from this simple and very well known system is that symmetries may
well be of great use in listing and classifying the possible states – very similar to the situation in
Section 2.3.12.

Of course, as we know from the discussion in standard quantum mechanics textbooks, Bohr’s
formula (4.8b) is not the end of the story, and the value for energy acquires “corrections” owing
to several different physical phenomena which we briefly review in the subsequent sections. It is
well known that these corrections split the degeneracy, and so “break” the approximate Spin(4)
symmetry of the hydrogen atom to Spin(3) ⊂ Spin(4). The quark model uses this correlation in
reverse, and deduces some of the details of the quark dynamics from the hierarchy of approximate
symmetries.

4.1.2 Relativistic corrections
The approach in Section 4.1.1 may easily be amended using stationary-state perturbation theory,
and this “corrects” the energy values (4.8b). One of these corrections stems from the fact that the
non-relativistic physics is of course only an approximation, and that the relativistic kinetic energy
is

Trel = mec2[√1 + (�p/mec)2 − 1
]

= mec2
∞

∑
k=1

( 1
2
k

)( �p2

m2
e c2

)k
,

≈ �p2

2me
− (�p2)2

8m3
e c2

+
(�p2)3

16m5
e c4

− · · · .

(4.15)

The first and second relativistic corrections to the Hamiltonian are then represented by the
operators

H ′
rel := − h̄4

8m3
e c2

(�∇2)2, H ′′
rel := +

h̄6

16m5
e c4

(�∇2)3, (4.16)

and the first-order perturbative correction of the energy is

E(1,r1)
n = 〈n|H ′

rel|n〉 =
∫

d3�r Ψ∗
n,�,m(�r) H′

rel Ψn,�,m(�r). (4.17)
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This is calculable by simple substitution of the wave-functions, the application of H′
rel on Ψn,�,m(�r),

and computation of the ensuing integral. However, it is faster to use that

h̄2

2me
�∇2 = V(r) − H, (4.18)

so that

H ′
rel = − 1

2mec2

[
V(r) − H

]2 = − 1
2mec2

[
V2 − H V − V H + H2], (4.19)

H ′′
rel = +

1
2m2

e c4

[
V(r)− H

]3

= − 1
2m2

e c4

[
V3 − V H V − V2 H + V H2 − H V2 + H2 V + H V H − H3], (4.20)

the matrix elements of which are easier to compute, since H† = H acts equally on |n, �, m, ms〉 as
well as on 〈n, �, m, ms|, producing its eigenvalue, En, given by the relation (4.8b).

For second-order corrections, one ought to compute both the second-order perturbation cor-
rection stemming from H′

rel as well as the first-order perturbation correction stemming from H′′
rel.

For the first of these two contributions, we must re-diagonalize the basis |n, �, m, ms〉 to avoid the
1
0 -divergences in the formula (1.19), whereas the second contribution requires a little more at-
tention for the term 〈VH V〉 owing to the fact that (�∇2 1

r ) = −4π δ(r). However, this pointillist
contribution is limited to the cases � = 0 = m, [ ✎why?] which are not hard to compute sepa-
rately. In the general case, we’ll need the results [407, 471, 242, 472, 29, 328, 362, 363, 360, 3,
for example]:

〈r2〉 = n4a 2
0

[
1 + 3

2

(
1 − �(�+1)− 1

3
n2

)]
, (4.21a)

〈r〉 = n2a0

[
1 + 1

2

(
1 − �(�+1)

n2

)]
, (4.21b)

〈r−1〉 =
1

n2 a0
, (4.21c)

〈r−2〉 =
1

(�+ 1
2 )n3 a 2

0
, (4.21d)

〈r−3〉 =
1

�(�+ 1
2 )(�+1)n3 a 3

0
. (4.21e)

The first-order perturbative energy correction stemming from H ′
rel is

E(1,r1)
n = 〈n, �, m, ms|H′

rel|n, �, m, ms〉 = − 1
2mec2

[
〈V2〉 − 2E(0)

n 〈V〉 + (E(0)
n )2

]
= −1

2
α4

e mec2 1
4n4

[ 4n
(� + 1

2 )
− 3

]
. (4.22)

4.1.3 Magnetic corrections
Besides their electric charges, the electron and the proton both also have an intrinsic (dipole)
magnetic field: �μe and �μp, respectively. Since the electron and the proton move one with respect
to the other, the motion of the electron produces a current that, by the Biot–Savart law, creates a
magnetic field proportional to the angular momentum of the electron about the proton, �B ∝ �L, and
this magnetic field interacts with the intrinsic magnetic dipole of the proton. Of course, it would be
nonsense saying that this same magnetic field, caused by the motion of the electron, also interacts
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132 The quark model: combinatorics and groups

with the intrinsic magnetic dipole field of the electron: In its own coordinate system, the electron
of course does not move, and so produces neither an electric current nor a magnetic field.

However, in the electron’s rest-frame it is the proton that moves. This then produces a current
and a corresponding magnetic field �B′, which interacts with the intrinsic magnetic dipole of the
electron. To relate �B′ and �B, one must transform the vector of this “rotating” magnetic field from
the electron’s coordinate system into the proton’s. Since the electron’s coordinate system rotates
about the proton, one must iterate this transformation from moment to infinitesimally adjacent
moment, approximated by successive infinitesimal Lorentz boosts. The resulting effect is called
Thomas precession and provides the relation �B′ = 1

2
�B [296].

With two intrinsic magnetic dipoles �μe,�μp, and the “orbital” magnetic field �B, there then exist
three additions to the hydrogen atom Hamiltonian:

HSeO = −�μe · ( 1
2
�B), HSpO = −�μp · �B,

HSeSp = − μ0

4π

[(
3(�μe·r̂)(�μp·r̂) −�μe·�μp

) 1
r3 +

8π
3

�μe·�μp δ
3(�r )

]
,

(4.23)

taking the dipole–dipole interaction term from standard texts such as Ref. [296].

Digression 4.1 One of the original motivations for the Abraham–Lorentz model of the
electron was also the attempt to explain – with classical physics – the origin of the elec-
tron’s intrinsic dipole moment. In this model, the electron was supposed to be a teeny
electrically charged sphere. If that sphere rotated, the charge distribution on the sphere
would also rotate and so produce a circular current, which would in turn produce a mag-
netic field by the Biot–Savart law. This is the source of the idea that the electron rotates
about its own axis, has spin (= intrinsic angular momentum), and that its intrinsic mag-
netic dipole moment is a consequence of this rotation and proportional to this spin. For
a classical rotating electric charge q for which the charge and mass (m) distribution
coincide, the magnetic dipole is proportional to the angular momentum:

�μ =
q

2m
�L, (4.24a)

and μe := e/2me is called the Bohr magneton (for the electron).
In fact, this identification is completely backwards: It is the electron’s magnetic

moment that may be measured and so has a real physical meaning; the rotation of
the electron about its own axis – spin – is a fictitious quantity, defined through the
relation (4.24a) in terms of the intrinsic magnetic moment. This backwards-engineered
explanation stems from G. E. Uhlenbeck and S. A. Goudsmit, who measured the magnetic
dipole moment of the electron in 1925, then concluded that this magnetic moment stems
from a rotation of the electron about its own axis [528]; all along, they assumed the elec-
tron to be represented as an electrically charged sphere, following the Abraham–Lorentz
model [☞ Digression 3.13 on p. 123].

Besides, the operators L j that generate rotations close the Spin(3) ∼= SU(2) alge-
bra, which has two classes of representations: tensors and spinors [☞ Digression A.2 on
p. 465]. It is easy to show that 360◦-rotations around any axis map tensor functions into
themselves, but spinors into their negative multiple. Because of this property, physically
observable quantities cannot be spinors. Since all real functions over the phase space are
observables in classical physics, it follows that there is no room for spinors in classical
physics. In quantum physics, however, wave-functions (and abstract state vectors in the
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4.1 Bound states 133

Hilbert space) are not directly observable, and so can be spinorial representations. In this
sense, half-integral spin is an exclusively quantum-mechanical phenomenon.

It then also follows that the classical relation (4.24a), based on the fictive rotation
of a fictive sphere in the Abraham–Lorentz model of the electron need not hold for the
electron, which is a spin- 1

2 particle.3 Indeed, Dirac’s relativistic theory of the electron
provides for the electron’s magnetic moment a result that is twice as large as the classical
value, which is further corrected by quantum field theory effects:

�μe = 2
[
1 +

αe

2π
+ · · ·︸ ︷︷ ︸

quantum field theory

] (−e)
2me

�S. (4.24b)

Of course, if ever the electron turns out to show a structure, this relation will have to be
revisited, just as the proton’s magnetic moment is today determined using the fact that
it is composed of three quarks, as well as a variable number of gluons (which hold those
three quarks in the bound state) and virtual quark–antiquark pairs.

For our purposes, write [☞ relation (4.24b)]

�μe = −geμB
�Se, μB :=

e
2me

, ge = 2.002 319 304 361 1(46) ≈ 2, (4.25)

�μp = +gpμN
�Sp, μN :=

e
2mp

, gp = 2.7928, (4.26)

where μB and μN are, respectively, Bohr’s (electron) and nucleon magnetic moments. Note that the
electron “g-factor,” ge, is measured to a precision of 12 significant figures, and is in full agreement
with the result of quantum electrodynamics [293]. The value 1

2 (ge−2) is also referred to as the
“anomalous magnetic moment,” in the sense that ge deviates from the “bare” value of 2 in the
Dirac theory of the electron; this should not be confused with the (quantum) anomalies mentioned
elsewhere in this book [☞ Section 7.2.3].

Inserting the expressions for the magnetic dipole moments, the three additions (4.23) to the
hydrogen atom energy become, after a little algebra (see Refs. [362, 363, 407, 471, 328, 242, 472,
29, 360, 3] for example),

HSeO = −
( ge(−e)

2me
h̄�Se

)
·
(

1
2

e
4πε0mer3 h̄�L

)
≈ e2

4πε0

h̄2

2m2
e c2

1
r3

�L · �Se, (4.27a)

HSpO =
gp e2

4πε0

h̄2

mempc2
1
r3

�L · �Sp, (4.27b)

HSeSp ≈ gp e2

4πε0

h̄2

mempc2

[(
3(�Se · r̂)(�Sp · r̂) − �Se · �Sp

) 1
r3 +

8π
3

�Se·�Sp δ
3(�r )

]
, (4.27c)

where “≈” indicates the use of the approximation (4.25). Comparing the constant pre-factors
(which all have the same units), one expects the latter two contributions to be of the same order
of magnitude, and about mp/2gpme ≈ 329 times smaller than the first, so the first perturbation
dominates.

3 The adjective “spin-j” simply specifies that the particle (or wave, or field) has a characteristic orientation of sorts, so
that its representative, its wave-function, transforms as one of the representations of the angular momentum algebra,
|j, m〉 with |m| � j; the special case j = 0 denotes rotation invariance [☞ Appendix A.3]. Conceptually, a “spin-j field” is
simply a generalization of the electric and magnetic spin-1 (vector) fields, and “spin-j particles” are the quanta of spin-j
fields.
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Furthermore, one expects that 〈 1
r3 〉 ∼ (a0)−3 and 〈L · �Se〉 = O(1), so that the first of these

three contributions is of the order

〈HSeO〉 =
e2

4πε0

h̄2

2m2
e c2

〈
1
r3

�L · �Se

〉
∼ αe h̄3

2m2
e c

· 1
a 3

0
=
α4

e mec2

2
. (4.28)

This result is of the same order as the relativistic correction (4.22), although its origins are
completely different; cf. equation (4.16). Using the result (4.21e), we have

E(1,SO)
n = α4

e mec2 j(j+1) − �(�+1) − 3
4

4n3�(�+ 1
2 )(�+1)

= α4
e mec2 1

4n3

{ 1
(�+ 1

2 )(�+1)
,

− 1
�(�+ 1

2 )
,

(4.29)

where we used the relation

�J := �L + �S ⇒ �L · �S = 1
2

[
J 2 − L2 − S2]. (4.30)

The corrections (4.29) and (4.22) are indeed very similar, and add up:

Efs
n = E(1,r1)

n + E(1,SO)
n = −α4

e mec2 1
4n4

[
2n

(j + 1
2 )

− 3
2

]
,

{
j = � + 1

2 ,

j = � − 1
2 ;

(4.31)

providing for the so-called fine structure of the hydrogen atom spectrum.

— ❦ —

It remains to compare the contributions:4

E(1,r2)
n = 〈H ′′

rel〉 ∼
1

m2
e c4

〈( e2

4πε0 r

)3
〉

∼ 1
m2

e c4
(αe h̄ c)3

n3 a 3
0

∼ α6
e mec2

n3 ; (4.32)

E(2,r1)
n = ∑

n′ ···�=n···

|〈n′, · · ·|H′
rel|n, · · ·〉|2

E(0)
n − E(0)

m
∼ |E(1,r1)

n |2
|E(0)

n | ∼
(
α4

e mec2/n3)2

α2
e mec2/n2 ∼ α6

e mec2

n4 ; (4.33)

E
(1,SpO)
n = 〈HSpO〉 =

gp e2

4πε0

h̄2

mempc2

〈
1
r3

�L · �Sp

〉
∼ gp αe h̄3

mempc
· 1

n3a 3
0

∼ gp

( me

mp

)α4
e mec2

n3 ; (4.34)

E
(1,SeSp)
n = 〈HSeSp〉 ∼

gp e2

4πε0

h̄2

mempc2

〈
�Se · �Sp

1
r3

〉
∼ gp

( me

mp

)α4
e mec2

n3 . (4.35)

It is not hard to see that

E(1,r2)
n : E(2,r1)

n : E
(1,SpO)
n : E

(1,SeSp)
n ≈ nα2

e : α2
e : gp

( me

mp

)
: gp

( me

mp

)
. (4.36)

Since α2
e ≈ 5.33 × 10−5 and gp

( me
mp

) ≈ 1.52 × 10−3, the last two contributions are about 28 times
larger than the first two. Therefore, we neglect the first two of these contributions in comparison
with the latter two, the sum of which gives

Ehfs
n = E

(1,SeSp)
n + E

(1,SpO)
n =

( me

mp

)
α4

e mec2 gp

2n3
±1

( f + 1
2 )(� + 1

2 )
,

{
f = j + 1

2 ,

f = j − 1
2 ;

(4.37)

and similarly provide for the so-called hyperfine structure of the hydrogen atom spectrum. This last
result introduces the so-called f -spin: �F := �J + �Sp = �L + �Se + �Sp, as a vector sum of all three
angular momenta.

4 From Equation (4.27c), it is actually the last, δ-function part that contributes to the result (4.35) and produces the
“21 cm hydrogen line,” well-known in microwave radio astronomy [407].
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When � = 0, the electron and proton spins are either parallel or antiparallel, giving the so-
called triplet and singlet states: Denote �Z := �Se + �Sp, so that the eigenvalue of Z 2 equals z(z+1).
When the electron and proton spins are parallel, z = 1 and mz = ±1, 0; for antiparallel spins z = 0
and mz = 0. In the result (4.37), � = 0, j = se and f = z, so the numerical factor becomes

±1
( f + 1

2 )(� + 1
2 )

=
{

+ 4
3 ,

−4;

{
z = 1 (triplet),
z = 0 (singlet).

(4.38)

Owing to this split in the energies, a transition is possible (for the same n) between these states,
emitting a photon of energy equal to this difference in energies, and a wavelength of 21.080 7 cm
(for n = 1). This result (to first perturbative order) differs less than 1% from the precisely measured
wavelength of 21.106 114 054 13 cm, very well known in microwave astronomy.

4.1.4 The Lamb shift
The corrections in the previous Sections 4.1.2–4.1.3 were computed with standard methods of
non-relativistic quantum mechanics, in the approach that might be called semi-quantum, since the
particles (electron and proton) receive a quantum treatment, while the binding (electromagnetic)
field is treated classically.

There exist, however, measurable consequences of electromagnetic field quantization, for the
computation of which field theory is needed. Consider here only qualitatively the following three
Feynman diagrams:

e−

e−

γ
γ

p+

p+

e−

e−

γ

e−

e−

γ

p+

p+

e−

e−

γ γ

p+

p+

(4.39)

The first of these Feynman diagrams describes the fact that, during “free” motion through “empty
vacuum,” the electron interacts with a virtual photon, which changes its mass. The second diagram
shows the reciprocal effect, whereby the photon mediating the interaction between the electron
and the proton en route interacts with a virtual e−–e+ pair (is absorbed and then re-emitted by
the pair), which effectively screens the electric charge of the nucleus and the electron in the orbit.
The third diagram describes a correction to the nature of interaction of the orbiting electron and
the mediating photon; this effectively changes the magnetic dipole moment of the electron and
contributes to the gyromagnetic ratio (4.24b) by an amount proportional to αe.

Suffice it here just to cite the resulting correction [407, 243, 150]:

E(QED)
n =

{ α5mec2 1
4n3 k(n, 0) � = 0;

α5mec2 1
4n3

[
k(n, �) ± 1

π(j+ 1
2 )(�+ 1

2 )

]
, j = � ± 1

2 , � �= 0,
(4.40)

where k(n, 0) varies mildly from about 12.7 for n = 1 to about 13.2 for n → ∞, while k(n, �) � 0.05
and also varies very mildly with n, �. Note that, unlike the corrections considered in Sections 4.1.2–
4.1.3 that are all proportional to an even power of the fine structure constant αe, this quantum-
electrodynamical contribution is proportional to α5

e .
This contribution to the energies is called the Lamb shift. Comparing

E(1,r2)
n : E(2,r1)

n : E
(1,SpO)
n : E

(1,SeSp)
n : E(QED)

n ≈ nα2
e : α2

e : gp

( me

mp

)
: gp

( me

mp

)
: αe, (4.41)

≈ (5.33×10−5·n) : (5.33×10−5) : (1.52×10−3) : (1.52×10−3) : (7.30×10−3). (4.42)
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This simple dimensional analysis suggests the Lamb shift to be almost five times larger than the
hyperfine splitting; the precise numerical results are however comparable. For example, the dipole–
dipole interaction (4.35) produces the “21 cm hydrogen line” at about 1.42 GHz, while the Lamb
shift permits the 22 p1/2

→ 22s1/2
transition at about 1.06 GHz.

4.1.5 Positronium

The analysis of the hydrogen atom in Sections 4.1.1–4.1.4 is easy to adapt to many two-particle
bound states, where the proton or the electron (or both) are replaced by other particles. Such
systems are collectively called exotic atoms. Such systems include: muonic hydrogen (p+μ−),
pionic hydrogen (p+π−), muonium (μ+e−), etc. Amongst these, consider positronium, (e+e−).
Together with the hydrogen atom, this gives a good foundation for understanding “quarkonium,”
i.e., mesons: positronium is an adequate template for mesons composed of a quark and an anti-
quark of roughly the same mass, while the hydrogen atom is an adequate template for mesons
where the masses of the quark and the antiquark significantly differ.

Since me+ = me− , the reduced mass is me+ me−
me++me−

= 1
2 me. By the simple me �→ 1

2 me substitution,
we obtain the Bohr-like formula:

En(e+e−) = 1
2 En(H) = −α2

e mec2 1
4n2 . (4.43)

The wave-functions look identical to those for the hydrogen atom (4.8c), except that the Bohr
radius is doubled:

a(pos)
0 =

memp
me+mp
meme

me+me

a(H)
0 =

2 mp

me+mp
a(H)

0 ≈ 2a(H)
0 . (4.44)

The first relativistic correction to the Hamiltonian is larger by a factor of 2, since both the
electron and the positron contribute equally. However, 〈(�p2)2〉 ∝ (mec)4, which is then diminished
by a factor of ( 1

2 )4 because of the smaller reduced mass. In total, the relativistic correction for
positronium is an eighth of the corresponding correction for the hydrogen atom.

Significant differences from the contributions that provide the hyperfine structure to the spec-
trum of the hydrogen atom are: the ratio me−

me+
= 1, the values ge+ = ge− , and that the Thomas

precession is now symmetric. The contributions analogous to (4.37) are now of the same order
of magnitude as the fine structure contributions (4.31). The Lamb shift remains suppressed by a
factor of αe as compared with the contributions analogous to (4.31) and (4.37).

There exist, however, also two entirely novel effects, with no analogues in the analysis of the
hydrogen atom:

Field latency In positronium, the center of the Coulomb field that acts on the electron moves with
the positron, and vice versa. Since the changes in the Coulomb field propagate with the finite speed
of light, this “tarrying” effect of field latency must be taken into account. This field latency may be
computed in classical electrodynamics, and its contribution to the Hamiltonian is [59]

Hlat = − e2

4πε0

1
2m2

e c2
1
r

(
p 2 + (p · r̂)2 ), (4.45)

which gives the first-order perturbative contribution:

E(lat)
n = 〈Hlat〉 = α4

e mec2 1
2n3

[ 11
32n

− 2 + ε

� + 1
2

]
, (4.46a)
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where ε is a function of the electron and the positron spins:

ε =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for j = �, s = 0,

− 3�+4
(�+1)(2�+3) for j = � + 1,
1

�(�+1) for j = �,

⎫⎪⎬⎪⎭ s = 1.
3�−1

�(2�−1) for j = � − 1,

(4.46b)

All spins contribute equally in positronium, so it seems reasonable to define �S := �Se− + �Se+ ,
where �S 2 has eigenvalues s(s+1) with s = 0, 1. Then we define �J := �L + �S, where �L 2 and �J 2 have
eigenvalues �(�+1) and j(j+1).
Virtual annihilation In positronium, the electron and the positron may temporarily annihilate into
a virtual photon which then, before the time alotted by Heisenberg indeterminacy relations, decays
into an electron and a positron. Since the electron and the positron must be at the same location
for this process, the contribution of the virtual annihilation must be proportional to |Ψ(0)|2, and
so can happen only when � = 0. [ ✎Why?] Then, since the photon has spin 1, positronium also
must have spin 1, i.e., it must be in the triplet state with s = 1 and parallel spins. The contribution
to the energy of positronium is [243]

E(ann)
n = α4

e mec2 1
4n3 , � = 0, s = 1. (4.47)

Note that both new contributions (4.46) and (4.47) are of the same order of magnitude as
the analogues of the fine and hyperfine structure contributions. The Lamb shift, as well as the
analogues of the corrections (4.32)–(4.33) are then consistently negligible in comparison with the
analogues of (4.31), (4.37), (4.40) and (4.46). The Lamb shift was shown to be O(α5

e ), and so
contributes less than 1 % of the listed contributions, which are all O(α4

e ).
Real annihilation Positronium is an unstable bound state, as the comprising parts may also really
annihilate and produce two or more photons. Just as in the previous discussion, since the elec-
tron and the positron must be at the same place to annihilate each other, the decay rate must be
proportional to |Ψ(�0, t)|2. For a two-photon decay we have the Feynman diagram

time

e+

e−

e−positronium

γ

γ

Strictly speaking, only one of the
right-hand vertices is an annihi-
lation; here we pick the lower
one. The computation shows the
result to be independent of this
choice.

(4.48)

and it follows that M must be proportional to e2

4πε0
and then also h̄−1c−1, since M is dimensionless.

We will compute (5.179) in Section 5.3.2: M = − 4 e2

ε0 h̄ c . Two-photon annihilation of positronium
may also be interpreted as an e− + e+ → 2γ scattering, for which the effective cross-section,
following the general result (3.127),

σ =
∫

d2Ω
( h̄ c

8π

)2 |M|2
(Ee− + Ee+)2

∣∣∣�p f

�pi

∣∣∣ = 4π
(αe h̄ c)2

(mec2)2
c
v

= 4π
α2

e h̄2

m2
e cv

, (4.49)

where v is the relative speed of the electron and the positron. By Conclusion 3.2 on p. 113, we
have

Γ = σ v |Ψ(�0, t)|2 =
(

4π
α2

e h̄2

m2
e cv

)( 1

πa(pos)
0 n3

)
=

(
4
α2

e h̄2

m2
e cv

)(αe( 1
2 me)c
h̄ n

)3
=
α5

e mec2

2 h̄ n3 , (4.50)
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where the familiar expression for the � = 0 wave-function of the hydrogen atom is adapted for
positronium by replacing the reduced mass, me → 1

2 me. The positronium lifetime is then

τ =
1
Γ

=
2 h̄ n3

α5
e mec2

= (1.24494×10−10 s) × n3, (4.51)

which is in excellent agreement with experiments [309].

4.1.6 Exercises for Section 4.1

✎ 4.1.1 Compute the second-order perturbative energy correction En due to H ′
rel.

✎ 4.1.2 Compute the second-order perturbative energy correction En due to H ′
SeO.

✎ 4.1.3 Compute the first-order perturbative energy correction En due to H′′
rel.

✎ 4.1.4 Why can the electron and the positron making up positronium not annihilate into a
single photon, i.e., why does the annihilation result in at least two photons?

4.2 Finite symmetries
Symmetries with the structure of finite groups are widely used in solid state physics and
crystallography. There are many such groups, and their structures may be very involved, and the
applications very detailed and technically demanding.

In relativistic field theory, however, we are in general interested only in three rather simple
finite symmetries:5

Parity P, which may be thought of simply as the mirror reflection of one of the Cartesian coor-
dinates. In 3-dimensional space, this operation may always be followed by a 180◦ rotation
in the mirror plane, which collectively flips the sign of all three coordinates. We then typ-
ically use this “more democratic” version of the parity operation: P : �r → −�r as well as
P : �p → −�p.

Time reversal T, which may be conceived classically as the simple operation T : t → −t, and the
physical meaning of which is simply that the process, under the action of T, runs backward
in time.

Charge conjugation C, which may be thought of as the Hermitian conjugation of operators and
(wave-)functions, and which physically swaps a particle for its antiparticle and vice versa.
“Charge” here, foremost, means the electromagnetic charge (see Comment 5.2 on p. 169),
but also the color in quantum chromodynamics, the weak isospin in weak nuclear inter-
actions, and any and all charges related to symmetries other than spacetime coordinate
transformations; see Chapters 5–7.

All three symmetries are of order 2, i.e., their successive applications (as defined here) result in
the identity

P 2 = 1, T 2 = 1, C 2 = 1. (4.52)

However, the application in quantum theory requires a little more care, as indicated in the
subsequent three sections.

5 As in Conclusion 2.6 on p. 78, the characteristics of the abstract mathematical model are also assigned to the concrete
physical system that the model faithfully represents. This makes the symmetries of a state in the Hilbert space of the
system also symmetries of the represented concrete physical system when in that state.
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4.2.1 Parity
In 1956, Tsung-Dao Lee and Chen-Ning Yang studied the so-called “τ–θ” problem: two strange
mesons that by this time had become known as τ and θ,6 had all the same characteristics, except
the difference in their decays:

(4.53)

The parity of a system of particles is the product of intrinsic parities of the individual particles
times a factor (−1)�, where � is the total angular momentum of the system. It follows that the
parity of the “θ”-particle is +1, and the parity of the “τ”-particle is −1, since the pion’s parity is −1,
and 2- and 3-pion states in the processes (4.53) have total angular momentum equal to the spin
of the “θ+”- and the “τ+”-particles, i.e., � = 0. The existence of two particles that were identical
in all except their parity characteristics was very unusual. Lee and Yang proposed that they are in
fact one and the same particle, but that the P-symmetry is violated in these weak interactions. On
a second glance, they realized that parity conservation has not been experimentally confirmed in
weak processes, so they recommended several experimental tests.

The same year, Chien-Shiung Wu (known as “Madam Wu”) successfully completed the first
of such experiments, working with E. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudson. This
experiment proved that there really do exist processes in Nature that are not invariant under the
action of the parity operation. In the β-decay,

60
27Co → 60

28Ni + e− + ν̄e, (4.54)

Madam Wu’s group showed that most electrons are emitted in high correlation with the spin of the
cobalt-60 nucleus. If �pe and �S, respectively, are the operators of the electron’s linear momentum
and the spin of the cobalt-60 nucleus, and |Ψ〉 the state of this nucleus before the decay, it follows
that 〈Ψ|�pe·�S|Ψ〉 �= 0. Now, since parity P flips the sign of the linear momentum but not of spin, it
follows that

〈Ψ|�pe·�S|Ψ〉 = 〈Ψ|1�pe·1 �S 1|Ψ〉 = 〈Ψ|P−1P�pe·P−1P �S P−1P|Ψ〉
=

(〈Ψ|P−1
)(

P�peP
−1
)·(P�SP−1

)(
P|Ψ〉) = 〈Ψ′|�p ′

e ·�S ′|Ψ′〉
= 〈Ψ′|(−�pe)·(+�S)|Ψ′〉 = −〈Ψ′|�pe·�S|Ψ′〉, (4.55)

where |Ψ′〉 = P|Ψ〉 – whatever that action on the state |Ψ〉 may be7 – and, of course

�p ′
e := P�peP

−1 = −�pe, and �S ′
e := P�SP−1 = +�S. (4.56)

If we assume that [H, P] = 0 (that parity is a symmetry of the system), it follows that:

1. either |Ψ′〉 = c|Ψ〉 and so 〈Ψ′| = c∗〈Ψ|, whereby the relation (4.55) would have to imply
that 〈Ψ|�pe·�S|Ψ〉 = 0, which was proven wrong by Madam Wu’s experiment;

2. or |Ψ〉 �∝ |Ψ′〉 are degenerate states – which does not follow from otherwise successful
nuclear models applicable to the cobalt-60 nucleus.

In fact, were we even to allow the possibility that the nuclear models err and |Ψ′〉 �= c|Ψ〉, so that
|Ψ′〉 and |Ψ〉 are two distinct but degenerate states of the cobalt-60 nucleus, it may be shown [29]

6 The early notation for the “τ”-particle must not be confused with the τ-lepton, which was experimentally detected only
in 1975, almost two decades later.

7 In any concrete representation, P acts on the wave-function by changing the argument of that wave-function, and also
by changing both the integration measure and limits in expressions such as 〈Ψ|· · ·|Ψ〉. However, the result (4.55) is
independent of its representation, and holds abstractly, as written here.
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that the oscillation |Ψ〉 ↔ |Ψ′〉 would be sufficiently fast to make the expectation value 〈Ψ|�pe·�S|Ψ〉
much smaller than was experimentally measured. Thus, [H, P] �= 0 remains as the only possibility,
i.e., that P is not a symmetry of Nature.

Once uncovered, P-violation was experimentally confirmed in more and more processes – and
exclusively in processes mediated by the weak nuclear interaction. Moreover, it was discovered that
all weak processes exhibit P-violation!

The most stunning consequence of P-violation is the fact that the “right-handed neutrinos” –
if they even exist – behave significantly differently than the “left-handed” ones. That is, for every
particle one may define its “helicity” [☞ Section 5.2.1 on p. 172] as the projection of the spin of the
particle along the direction of its motion. For particles with non-vanishing mass, helicity cannot be
Lorentz-invariant. A Lorentz boost can always transform into the particle’s own coordinate system,
wherein it does not move at all so the projection is undefined. It is, of course, also possible to “pass”
the particle into a coordinate system in which the particle now moves in the opposite direction. All
the while the spin remains unchanged, which then flips the sign of the helicity. However, a massless
particle cannot be “passed,” nor does there exist a coordinate system in which it is at rest, so that
the helicity of a massless particle is Lorentz-invariant.

Particles with positive helicity are called “right-handed” (their spin – fictively – rotates in
the direction of the fingers of the right hand when the thumb indicates the direction of mo-
tion), and the “left” particles have negative helicity. Experimental evidence to date shows that no
more than about 1/1010 of all detected neutrinos are right-handed, and the mass of the observed
(so almost entirely “left-handed”) neutrinos is close to zero [☞ Ref. [293] and Section 7.3.2].
This extremely convincing asymmetry in Nature is of crucial importance to the structure of weak
interactions [☞ Section 7.2].

For example, in the decay
π− → μ− + ν̄μ (4.57)

analyzed in the pion’s rest-frame, the muon and the antineutrino move in opposite directions.
[ ✎Why?] The relative angular momentum of the muon and the antineutrino must be orthogonal
to the motion of the muon and the antineutrino, and so does not affect the definition of their
helicities. The pion spin is zero, so the spin of the muon and the antineutrino must be antiparallel,
which means that the antineutrino helicity is the same as that of the muon. Experiments confirm
that all muons – and so also the antineutrinos – emerge with a right-handed helicity; the nearly
complete absence (less than 1-in-1010) of left-handed antineutrinos then provides for maximal
parity violation.

By the way, in 1929, soon after the publication of Dirac’s equation and the theory of the elec-
tron, Hermann Weyl gave a simpler equation suitable for spin- 1

2 particles with no mass, and which
uses the property that the helicity of such particles is Lorentz-invariant. Weyl’s theory was neglected
since the photon was the only known particle with no mass, and photons have spin 1. When Pauli,
a year later, proposed the neutrino to preserve the energy conservation law, he ironically did not
use Weyl’s equation: Although he knew that the mass of the neutrino is small or even zero, this
equation permits parity violation, which Pauli believed also to be a symmetry of Nature! Twenty-six
years later, experiments proved him right about energy conservation but wrong about parity. The
reason for such a convincing difference between left-handed and right-handed neutrinos remains
one of the significant unexplained characteristics in elementary particle physics☞ .

4.2.2 Charge conjugation and time reversal
Although the actions of the operations T and C clearly satisfy the relation (4.52), unlike P, these
two operations are anti-linear, for example,

C
(
c Ψ(�r, t)

)
= c∗ C

(
Ψ(�r, t)

)
, (4.58)
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so that the proof of Conclusion A.1 on p. 461, does not apply. This makes the precise analysis of
the C- and T-action nontrivial in quantum mechanics [29]; fortunately, we need not be concerned
with these details. Note instead that in many cases the invariance of the dynamics with respect to
the T- and/or C-operation simply implies a degeneracy, so pairs of states |Ψ〉 and T|Ψ〉, as well
as |Ψ〉 and C|Ψ〉 have the same energy and the same lifetime. For example, if |Ψ〉 is used for the
description of the electron, C|Ψ〉 must be assigned to the positron. The degeneracy of |Ψ〉 and
C|Ψ〉 then means that the electron mass equals the positron mass, which is indeed true.

Of course, only chargeless particles may be eigenstates of the C-operation: it follows from the
defining property (4.52) that, if |Ψ〉 is an eigenstate of the C-operation, then |Ψ〉 = C|Ψ〉 = ±|Ψ〉,
so |Ψ〉 and |Ψ〉 differ, at most, in the sign; one says that |Ψ〉 is its own anti-state, i.e., that the
particle is its own antiparticle.

It may be shown [422] that the bound state of the spin- 1
2 particle and its antiparticle is

an eigenstate of the operator C with the eigenvalue (−1)�+s, where � is the angular momentum
of the particle–antiparticle system, and s is their composite spin. For positronium, which at least
virtually may annihilate into a single photon, it follows that � + s = 1 since the photon spin is
1. Since C is conserved in strong and electromagnetic processes and the electron–positron pair
annihilation is evidently an electromagnetic process, it follows that the photon is a C-eigenstate,
with the eigenvalue −1. Similarly, in the electromagnetic decay of the pion,

π0 → γ+ γ, (4.59)

there can be only an even number of photons, and the C-eigenvalue of the π0-particle is +1.
According to the quark model,

|π0〉 = 1√
2

(|u, u〉 + |d, d 〉) (4.60)

is a linear combination of two particle–antiparticle bound states, so the formula (−1)�+s for the
C-eigenvalue holds. Also, an n-photon system has the C-eigenvalue equal to (−1)n.

On the other hand, the C conservation law is violated in weak interactions: The muons always
emerge from the process (4.57) with right-handed helicity. Then

C
(
π− → μ−R + ν̄μ

)
= π+ → μ+

R + νμ, (4.61)

and the anti-muons would have to emerge also with 100% right-handed helicity from the π+-
meson decay, since the C-operation has no effect on the coordinate system, direction of particle
motion and their spins. However, the same analysis as for the process (4.57) shows that the neu-
trino would have to have right-handed helicity – but such neutrinos may exist no more than
1-in-1010! The neutrinos as well as the muons in the process (4.61) emerge with left-handed
helicity. Thus, weak processes such as the π±-meson decays (4.57) and (4.61) indicate that weak
interactions maximally violate both P- and C-symmetry.

— ❦ —

Direct experimental verification of T-conservation or T-violation is much harder: No physical state
can be a T-eigenstate, [ ✎why?] so we cannot simply check the products of the eigenvalues on one
side and the other of a process. The most direct verification would involve detailed measurement of
parameters for a process A + B + · · · → C + D + · · · , as well as the reverse process, C + D + · · · →
A + B + · · · , and then – taking into account the kinematic differences – comparing the effective
cross-sections. That has indeed been done in a large number of electromagnetic and strong nuclear
processes, and no trace of T-violation was found. The resulting equality, up to kinematic factors,
between the “reversed” pairs of processes such as A + B + · · · → C + D + · · · and C + D + · · · →
A + B + · · · is called the “principle of detailed balance.”

On the other hand, the verification of the principle of detailed balance in weak nuclear pro-
cesses is very hard to carry through: For example, the reversal of the weak decay Λ0 → p+ + π−
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would require the fusion p+ +π− → Λ0. However, the collision p+ +π− and its outcomes are (by
far) so dominated by the strong nuclear interaction that the p+ +π− fusion into Λ0 simply cannot
be experimentally detected, among the sea of all the different results obtained via the strong nu-
clear interaction. The only type of weak processes where neither the original nor the reversed
process is swamped by strong and electromagnetic side-processes are the processes involving
neutrinos. However, experiments with neutrinos are already very hard. Unlike other particles, neu-
trinos are very difficult to control in the lab, in part owing to their electromagnetic neutrality, and
in part owing to the extremely small effective cross-section of their interaction with other matter.

4.2.3 The CPT-theorem and CP-violation
Note first that the operation P in 3-dimensional space is a mirror reflection of one of the Cartesian
coordinates, e.g., z → −z, so that the (x, y)-plane serves as the mirror. The Lorentz boost in the
z-direction then mixes the z-coordinates and time, t. There exists an analytical continuation of
this transformation that flips the sign of the z-coordinate and time t, and so turns the operation
P into a T-operation. Finally, following the Feynman–Stückelberg interpretation of antiparticles
as particles that travel backwards in time, T is equivalent to the C-operation (charge conjuga-
tion). The detailed treatment then shows that this connects the C-, P- and T-operations in any
local field theory that (1) is Lorentz-invariant, (2) has a Lorentz-invariant ground state (vacuum),
and (3) has a lower bound on the energy. Conversely, it follows that every non-invariance with
respect to the combined CPT-transformation implies a violation of Lorentz-symmetry and/or of
locality [350, 413, 300, 230, 102].

An alternative argument starts by noticing that

CPT(e±i(�k·�r−ωt)) = CP(e±i(�k·�r−ω(−t))) = C(e±i(�k·(−�r)+ωt)) = (e∓i(−�k·�r+ωt))

= e±i(�k·�r−ωt), (4.62)

and then using the fact that plane waves form a complete set and are Lorentz-invariant, to argue
that all spacetime-dependent Lorentz-invariant expressions (observables) are also CPT-invariant.
The difficulty in this latter, seemingly much simpler argument lies in proving that there is no loss
of generality and that the whole required linear combination of plane waves is also both CPT- and
Lorentz-invariant.

Standard (Lagrangian) quantum field theory texts [425, 554] prove that the handful of
typically used Lorentz-invariant Lagrangians are also CPT-invariant. Recently, however, a fully
rigorous proof has been presented within the familiar framework of Lagrangian quantum field
theories [220], applicable to all Lagrangians that depend polynomially on the fields and their
derivatives.

— ❦ —

On the other hand, once it was proven in 1956 that P is not a symmetry of Nature, in 1957, Lev
D. Landau suggested that the combined CP-transformation should be a symmetry of Nature. As we
have seen, weak processes such as the π±-meson decays (4.57) and (4.61) maximally violate both
the P- and the C-symmetry, so it was reasonable to suppose that perhaps the combined CP-operation
is a true symmetry of Nature. Thus, every naturally occurring process involving a collection of
particles would have to have a “mirror image” involving antiparticles instead of particles.

However, James Cronin and Val Fitch surprised the physics community in 1964 by publishing
their results showing unambiguously that, in neutral kaon decays, not even the combined CP-
transformation is a symmetry of Nature.

Ironically, the possibility of CP-violation follows from a work by Murray Gell-Mann and Abra-
ham Pais back in 1954, when they noticed that the K0-meson cannot be its own antiparticle as its
strangeness charge must equal +1; there then must exist a K 0-meson with a strangeness charge
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of −1, which is evident from the following scattering events (the parenthetical indices denote
strangeness):

π−
(0) + p+

(0) → Λ0
(−1) + K0

(+1) and π+
(0) + p+

(0) → p+
(0) + K 0

(−1) + K+
(+1). (4.63)

These processes occur mediated by the strong interaction (so identified owing to the speed of the
process), which one knows do preserve both the C- and the P-symmetry. Gell-Mann and Pais then
noticed the possibility of the K0–K 0 transmutation with an explanation that is, today, easier to
replace with the display of relevant Feynman diagrams shown in Figure 4.1.

We also know that the neutral kaons are pseudo-scalars, so:

CP|K0〉 = −C|K0〉 = −|K 0〉 CP|K 0〉 = −C|K 0〉 = −|K0〉, (4.64)

whereby the eigenstates of the CP-symmetry are

|K0
+〉 := 1√

2

(|K0〉 − |K 0〉) and |K0−〉 := 1√
2

(|K0〉 + |K 0〉), (4.65)

where
CP|K0±〉 = (±1)|K0±〉. (4.66)

K0

d s̄

W−

u u

W−

s d

K0

K0

d s̄

u

W− W+

u

s d

K0

Figure 4.1 The K0 → K 0 transmutation.

Now, neutral kaons decay (among other ways) into two or three pions, and we will neglect
all other decay modes. Pions are pseudo-scalars so their intrinsic parity is −1; the parity of a two-
pion system is then +1, and of a three-pion system, −1. Because of charge conservation, the total
charge of both the two- and the three-pion systems in the neutral kaon decays must be zero, so
their C-eigenvalue must be +1. It follows that CP(2π) = +1 but CP(3π) = −1, and it must be that

K0
+ → 2π, and K0− → 3π, (4.67)

if these (weak interaction) decays preserve the CP-symmetry. Since the two-pion decay has more
energy,8 one expects the K0

+-state lifetime to be shorter than the K0−-state lifetime. Indeed, the
result (3.124) states that ΓK0

+
∝

√
1 − (2mπ0 /mK0)2 in a decay into two particles of equal masses.

8 From the data (2.31) it follows that about (497.6 − 2×135.0) = 227.6 MeV remains in the two-pion decay, and only
about (497.6 − 3×135.0) = 92.6 MeV in the three-pion decay for the kinetic energy of the pions.
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Analogously, ΓK0−
∝

√
1 − (3mπ0 /mK0)2 in a decay into three particles of equal masses. Thus, one

expects ΓK0
+

> ΓK0−
, and then also τK0

+
< τK0−

. Although the ratio of these two lifetimes is not as
simple, the experiments nevertheless indicate a significant difference and in the same direction as
in this simplified estimate:

τ+ := τK0
+

= 0.895 8×10−10 s and τ− := τK0−
= 5.114×10−8 s. (4.68)

Because of this difference, K0
+ is called the “short” kaon (K0

S := K0
+), and K0− the “long” kaon

(K0
L := K0−).

Since K0− “lives” about 570 times longer than K0
+, within a beam of neutral kaons (created by

strong interactions, and so with a 50–50% K0
+–K0− distribution) the “short” kaons quickly decay,

leaving the beam as a “pure” K0−-beam. Recall that the number of undecayed kaons diminishes
exponentially, so that

N(K0
+)

N(K0−)
=

e−t/τ+

e−t/τ− = exp
{
− t
τ+ +

t
τ−

}
≈ exp

{
− 569.9

t
τ−

}
, (4.69)

which drops to 1.447×10−5 after just 1 ns.
Ten years after Gell-Mann and Pais’s paper, Cronin and Fitch made use of this extraordinary

property, and simply looked for two-pion decays in this decay-purified K0−-beam. Although they
only found about 1 two-pion decay to about 500 three-pion decays, this was a sufficient (≈ 138-
fold) discrepancy to prove that K0− nevertheless can also have a two-pion decay and so indicate
the violation of CP-symmetry.

In addition, the K0−-meson may also decay as

(4.70)

where the a-type decay is the CP-image of the b-type decay. If the CP-transformation were a true
symmetry of Nature, the probability of these decays would have to be precisely equal. Experiments,
however, show a relative difference of about 3.3×10−3, which also indicates a small but significant
CP-violation.

Unlike the P- and the C-violation, the CP-violation is small: in the so-called Cabibbo–Koba-
yashi–Maskawa matrix (2.53)–(2.55) there exists precisely one parameter, δ13, which parametrizes
the CP-violation. The values of the parameter δ13 = (1.20 ± 0.08)◦ (as compared to max(δ13) =
180◦) and its indirect appearance in computations result in the smallness of CP-violation, such as
the ∼ 1

500 two-pion decays of what should be a � 1
69 000 -pure K0− = K0

L beam. This smallness is hard
to explain theoretically and remains one of the unsolved problems of elementary particle theory☞ .

— ❦ —

There also exists the so-called “strong CP-problem”: to wit, it is theoretically possible also for
the strong nuclear interaction to violate CP-symmetry, but this is not the case. The theory of
quantum chromodynamics has a parameter, ϑ,9 which parametrizes possible strong CP-violation,
whereupon it is a puzzle that ϑ ≈ 0, in all known experiments and to a high degree of
precision [☞ Section 6.3.1].

Finally, the violation of CP-symmetry in the first seconds of the Big Bang is one of the three
necessary requirements (as shown by Andrei Saharov) for an explanation of the fact that the

9 This parameter indeed is an angle, but has no relation with the spherical coordinate of the same name.
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universe that we observe today consists of matter, and not also of antimatter. This gives an unam-
biguous definition of the positive electric charge as that of the lepton emerging in the (somewhat
but notably) more frequent “semi-leptonic” decay of the long-living neutral kaon (4.70). Thus, the
existence of CP-violation is in fact a boon for us: If the CP-transformation were an exact symmetry
of Nature, there could be no difference in the universe between matter and antimatter, the two
would have annihilated in the first few seconds of the universe’s existence, and we would not be
here to notice this.

— ❦ —

It is worth noting that the C-, P-, T-, CP-, PT- and CT-symmetries are violated only in experiments
that involve the weak interaction, and that these indeed are exact symmetries in all electromagnetic
and strong nuclear processes.

4.2.4 Exercises for Section 4.2

✎ 4.2.1 Suppose that the parity operation acts as P : |a〉 → |b〉 and P : |b〉 → |a〉 upon some
two orthonormalized states, |a〉, |b〉. From these, try to construct the eigenfunctions of the
P-operator and normalize them. Discuss the physical meaning of these eigenfunctions if
they exist, or explain why an eigenstate of the P-operator cannot make sense physically.

✎ 4.2.2 Suppose that the time reversal operation acts as T : |α〉 → |β〉 and T : |β〉 → |α〉 upon
some two orthonormalized states, |α〉, |β〉. From these, try to construct the eigenfunctions
of the T-operator and normalize them. Discuss the physical meaning of these eigenfunctions
if they exist, or explain why an eigenstate of the T-operator cannot make sense physically.

✎ 4.2.3 Assuming that the CPT-transformation is an exact order-2 symmetry, prove that the
eigenfunctions of the CP-operation are also T-eigenfunctions.

4.3 Isospin
In 1932, Werner Heisenberg noticed that, for the purposes of describing atomic nuclei, it is possible
to neglect the minute difference between the neutron mass and the proton mass:

mn − mp

mp
=

939.566 − 938.272
938.272

= 0.001 379 13. (4.71)

It is even possible to ignore the fact that the proton is charged and the neutron is not: the strong
nuclear interaction, which keeps the nucleus as a bound state, must be many times stronger than
the electromagnetic repulsion of the protons in the nucleus. Thus, the proton and the neutron are
regarded as two states of one particle, a nucleon (denoted N), just as the spin-(± 1

2 ) electrons are
both regarded as two polarizations of the same particle. In analogy with spin, Heisenberg then
introduced a conserved quantity that Eugene Wigner named isospin in 1937 and for which he
employed the corresponding mathematical formalism:

�I :
[

I j , Ik
]

= iε jk
m Im, (4.72)

just like the �J in Appendix A.3. Following the digressions A.2 on p. 465 and A.3 on p. 467, we know
that there exist eigenstates

|I, I3〉 : I 2|I, I3〉 = I(I+1)|I, I3〉, I3|I, I3〉 = I3|I, I3〉, |I3| � I, (4.73a)

I±|I, I3〉 =
√

I(I+1) − I3(I3±1)|I, I3±1〉, 2I, �I ∈ Z. (4.73b)
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4.3.1 Isospin, nucleons and pions
Heisenberg and Wigner introduced the isospin formalism for the purposes of nuclear physics, and
here we identify

|p+〉 = | 1
2 , + 1

2 〉, |n0〉 = | 1
2 ,− 1

2 〉. (4.74)

Moreover, if the isospin “rotations” are a symmetry of strong interactions, then it follows that
isospin is a conserved quantity in all strong nuclear processes, following Conclusion A.1 on p. 461.
In 1932, the proposition of introducing such an ad-hoc and abstract symmetry as a further ex-
act symmetry of strong interactions was an unusually bold move. However, such reliance on
symmetries and the quantum version of Noether’s theorem [☞ Conclusion A.1 on p. 461] has
become one of the basic principles of fundamental physics in the twentieth century, and even
grew into the gauge principle, which is the basis of contemporary understanding of interactions in
general [☞ Chapters 5 and 6].

A few other (then known) hadrons are identified as

|π+〉 = |1, +1〉, |π0〉 = |1, 0〉, |π−〉 = |1,−1〉, (4.75)

|Δ++〉 = | 3
2 , + 3

2 〉, |Δ+〉 = | 3
2 , + 1

2 〉, |Δ0〉 = | 3
2 ,− 1

2 〉, |Δ−〉 = | 3
2 ,− 3

2 〉, etc. (4.76)

The relationship between the electric charge Q, the isospin “charge” I3, the baryon number B
and strangeness S for all hadrons was found before 1974 to be in agreement with the GNN for-
mula (2.30). Thus, isospin symmetry, soon extended into the SU(3) f approximate symmetry, offers
an excellent classification tool.

— ❦ —

However, isospin is also useful in dynamics: We know from quantum mechanics that addition of
spins 1

2 and 1
2 produces the following possibilities, here applied to isospin:

|1, +1〉S = | 1
2 , + 1

2 〉| 1
2 , + 1

2 〉 = |p+, p+〉, (4.77a)
⎧⎪⎪⎨⎪⎪⎩ |1, 0〉S = 1√

2

(
| 1

2 , + 1
2 〉| 1

2 ,− 1
2 〉 + | 1

2 ,− 1
2 〉| 1

2 , + 1
2 〉
)

= 1√
2

(|p+, n0〉 + |n0, p+〉), (4.77b)

|1,−1〉S = | 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉 = |n0, n0〉; (4.77c)

|0, 0〉A = 1√
2

(
| 1

2 , + 1
2 〉| 1

2 ,− 1
2 〉 − | 1

2 ,− 1
2 〉| 1

2 , + 1
2 〉
)

= 1√
2

(|p+, n0〉 − |n0, p+〉), (4.77d)

where the subscript “S” denotes that the state is symmetric with respect to swapping the two
nucleons, and “A” that it is antisymmetric. However, there exists only one two-nucleon bound
state: the deuteron, the deuterium nucleus, which consists of a proton and a neutron. This implies
that the isospin factor in the wave-function of the deuteron must be antisymmetric with respect to
swapping the two nucleons. Were this factor symmetric, isospin “rotations” would guarantee the
existence of all three symmetric states (4.77a)–(4.77c) – and it is well known that the bound state
of neither two protons nor two neutrons exists in Nature.

This identifies the deuteron as the isospin |0, 0〉 state. Also, since |0, 0〉 is antisymmetric with
respect to swapping the two nucleons and since the whole wave-function must be antisymmetric
with respect to the swapping of any two (otherwise identical) fermions, it follows that the product
of the remaining “spatial” and “spin” factors in the wave-function of the deuteron bound state must
be symmetric. So, if the proton and neutron spins are parallel (evidently symmetric) or antiparallel
and symmetrized, then the spatial factor in the wave-function also must be symmetric with respect
to the exchange of two nucleons. If the spins are antiparallel and antisymmetrized, the spatial
factor in the wave-function must also be antisymmetric.
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Without the isospin formalism, which permits treating the proton and the neutron as two
polarizations of the same particle, this indirect correlation of spins and spatial factors in the wave-
function could not have been derived.

— ❦ —

Finally, isospin also easily produces relative effective cross-sections of various processes mostly by
way of the Wigner–Eckart theorem A.3 on p. 475. Consider, e.g., the three two-nucleon collisions:

N1 N2 d π

a : p+ + p+ → d + π+ ↔ | 1
2 , + 1

2 〉| 1
2 , + 1

2 〉 → |0, 0〉|1, +1〉 = |1, +1〉, (4.78a)

b : p+ + n0 → d + π0 ↔ | 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉 → |0, 0〉|1, 0〉 = |1, 0〉, (4.78b)

c : n0 + n0 → d + π0 ↔ | 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉 → |0, 0〉|1,−1〉 = |1,−1〉, (4.78c)

where d denotes the deuteron, the deuterium nucleus. On the other hand, combining (4.77a)–
(4.77d), we have

|p+, p+〉 = | 1
2 , + 1

2 〉| 1
2 , + 1

2 〉 = |1, +1〉, (4.79a)

|p+, n0〉 = | 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉 = 1√
2

(|1, 0〉 + |0, 0〉), (4.79b)

|n0, n0〉 = | 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉 = |1,−1〉. (4.79c)

Then it follows that, up to factors independent of isospin and which are equal [ ✎why?] ,

Ma ∝ 〈d,π+|p+, p+〉 = 〈1, +1|| 1
2 , + 1

2 〉| 1
2 , + 1

2 〉 = 1, (4.80a)

Mb ∝ 〈d,π0|p+, n0〉 = 〈1, 0|| 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉 = 〈1, 0|
(

1√
2

(|1, 0〉 + |0, 0〉)) = 1√
2

, (4.80b)

Mc ∝ 〈d,π−|n0, n0〉 = 〈1,−1|| 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉 = 1. (4.80c)

Since σ ∝ |M|2, it follows that
σa : σb : σc = 2 : 1 : 2. (4.81)

That is, it is twice as probable for a deuteron (and a pion) to emerge from the collision of two
protons than from the collision of a proton and a neutron! (The collision of two neutrons is hard
to arrange experimentally.)

Even more dramatic is the situation with pion–nucleon scattering. Listing all the possibilities
consistent with charge conservation, we find six elastic pion–nucleon collisions:

(a) π++p+ → π++p+, (b) π0+p+ → π0+p+, (c) π−+p+ → π−+p+, (4.82a)

(d) π++n0 → π++n0, (e) π0+n0 → π0+n0, ( f ) π−+n0 → π−+n0, (4.82b)

and four inelastic collisions resulting in a pion and a nucleon:

(g) π+ + n0 → π0 + p+, (h) π0 + p+ → π+ + n0, (4.82c)

(i) π0 + n0 → π− + p+, (j) π− + p+ → π0 + n0. (4.82d)

Since I(π) = 1 and I(N) = 1
2 , the isospin of the incoming (initial) and of the outgoing (final)

system may be either 3
2 or 1

2 , and let M3/2 and M1/2 denote the corresponding so-called “reduced”
amplitudes.10 Using tables of Clebsch–Gordan coefficients we compute:

π+ + p+ : |1, 1〉| 1
2 , + 1

2 〉 = | 3
2 , + 3

2 〉, (4.83a)

10 By the Wigner–Eckart theorem, every amplitude may be factorized as a product of a reduced amplitude and a Clebsch–
Gordan coefficient [☞ Section A.3.4 and Theorem A.3 on p. 475, as well as the textbooks [362, 363, 328, 471, 480,
134, 391, 407, 472, 360, 29, 242, 3, 110, for example] and the handbook [294]].

https://doi.org/10.1017/9781009291507.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.007


148 The quark model: combinatorics and groups

π0 + p+ : |1, 0〉| 1
2 , + 1

2 〉 =
√

2
3 | 3

2 , + 1
2 〉 − 1√

3
| 1

2 , + 1
2 〉, (4.83b)

π− + p+ : |1,−1〉| 1
2 , + 1

2 〉 = 1√
3
| 3

2 ,− 1
2 〉 −

√
2
3 | 1

2 ,− 1
2 〉, (4.83c)

π+ + n0 : |1, 1〉| 1
2 ,− 1

2 〉 = 1√
3
| 3

2 , + 1
2 〉 +

√
2
3 | 1

2 , + 1
2 〉, (4.83d)

π0 + n0 : |1, 0〉| 1
2 ,− 1

2 〉 =
√

2
3 | 3

2 ,− 1
2 〉 + 1√

3
| 1

2 ,− 1
2 〉, (4.83e)

π− + n0 : |1,−1〉| 1
2 ,− 1

2 〉 = | 3
2 ,− 3

2 〉. (4.83f)

For example, the processes (a) and ( f ) both have I = 3
2 and the Clebsch–Gordan coefficients

are 1:

(a) π+ + p+ → π+ + p+ ↔ Ma = 〈 3
2 , + 3

2 || 3
2 , + 3

2 〉×M3/2 = M3/2, (4.84)

( f ) π− + n0 → π− + n0 ↔ M f = 〈 3
2 ,− 3

2 || 3
2 ,− 3

2 〉×M3/2 = M3/2, (4.85)

and so we have that Ma = M f = M3/2. The remaining processes are a mixture of M3/2 and M1/2,
such as

(c) π− + p+ → π− + p+ (4.86)

�→ Mc =
(

1√
3
〈 3

2 ,− 1
2 ; a3| −

√
2
3 〈 1

2 ,− 1
2 ; a1|

)(
1√
3
| 3

2 ,− 1
2 ; a3〉 −

√
2
3 | 1

2 ,− 1
2 ; a1〉

)
= 1

3 〈 3
2 ,− 1

2 ; a3|| 3
2 ,− 1

2 ; a3〉 + 2
3 〈 1

2 ,− 1
2 ; a1|| 1

2 ,− 1
2 ; a1〉 = 1

3M3/2 + 2
3M1/2 (4.87)

(j) π− + p+ → π0 + n0 (4.88)

�→ Mj =
(

1√
3
〈 3

2 ,− 1
2 ; a3| −

√
2
3 〈 1

2 ,− 1
2 ; a1|

)(√
2
3 | 3

2 ,− 1
2 ; a3〉 + 1√

3
| 1

2 ,− 1
2 ; a1〉

)
=

√
2

3 〈 3
2 ,− 1

2 ; a3|| 3
2 ,− 1

2 ; a3〉 −
√

2
3 〈 1

2 ,− 1
2 ; a1|| 1

2 ,− 1
2 ; a1〉

=
√

2
3 M3/2 −

√
2

3 M1/2. (4.89)

The labels “a3” and “a1” are arrays of all other quantifiers of the isospin- 3
2 and isospin- 1

2 states,
respectively. The effective cross-sections of these processes are then related as

σa : σc : σf : σj = 9|M3/2|2 : |M3/2 + 2M1/2|2 : 9|M3/2|2 : 2|M3/2 −M1/2|2. (4.90)

In a collision regime where either M3/2  M1/2 or M3/2 � M1/2, this relationship simplifies:

M3/2  M1/2 ⇒ σa : σc : σf : σj ≈ 9 : 1 : 9 : 2, (4.91)

M3/2 � M1/2 ⇒ σa : σc : σf : σj ≈ 0 : 4 : 0 : 2. (4.92)

4.3.2 Isospin in the quark model
In processes where it suffices to track only the u and d quarks, the application of the isospin
formalism is very similar within the quark model. Writing only isospin factors,

|u〉 = | 1
2 , + 1

2 〉, |d〉 = | 1
2 ,− 1

2 〉 (4.93)

and so we have the three-quark bound states:

|Δ++〉 = |u〉⊗|u〉⊗|u〉 = | 1
2 , + 1

2 〉| 1
2 , + 1

2 〉| 1
2 , + 1

2 〉 = | 3
2 , + 3

2 〉, (4.94a)

|Δ+〉 = |u〉⊗|u〉⊗|d〉 = | 1
2 , + 1

2 〉| 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉 = | 3
2 , + 1

2 〉, |p+〉 = | 1
2 , + 1

2 〉, (4.94b)
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|Δ0〉 = |u〉⊗|d〉⊗|d〉 = | 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉 = | 3
2 ,− 1

2 〉, |n0〉 = | 1
2 ,− 1

2 〉, (4.94c)

|Δ−〉 = |d〉⊗|d〉⊗|d〉 = | 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉 = | 3
2 ,− 3

2 〉. (4.94d)

The Δ+ particle is not identical with the proton: The isospin factors differ in the value of I, but
the full wave-functions also differ in the spin factors: Δ+ has spin 3

2 h̄ and the proton spin is 1
2 h̄.

Similarly, Δ0 and n0 have similar isospin factors – which is identified as the “bookkeeping” notation
of the u-d content. So, for example, there exists the decay11

u d

d

u

p+

W −

u
d

π π−

Δ0Δ0

u d

d

u
p+

g

u

d

−
Δ0 → p+ + π −

Although Δ0 and n0

contain the same
quarks, n0 does not
have a sufficient mass
for such a decay.

(4.95)

From these Feynman diagrams we estimate that the right-hand contribution to the process ampli-
tude is proportional to the square of the strong charge (because of the two gluon vertices) and
the left-hand contribution is proportional to the square of the weak charge (because of the two
W−-vertices). Owing to the immense difference in the strength of these interactions, the weak
contribution is negligible and is not calculated. The right-hand diagram may be cut by any curve
into the “initial” and “final” states, and the total isospin factor for the so-defined “initial” and “final”
state vector computed. Across each such cut of the diagram, isospin is conserved.

The ease of application of this combination of Feynman diagrams, isospin factors in state
vectors and of quick estimates of relative strengths of the contributions to the amplitude of the
process is the basic reason for the Feynman diagrams’ popularity. Owing to the relative simplicity
of the SU(2) group, isospin factors here do not give much more information than the u-d content of
the diagrams, but it is clear that they are nevertheless useful in estimates using the Wigner–Eckart
theorem, just as in the results (4.78)–(4.90).

4.3.3 Exercises for Section 4.3

✎ 4.3.1 Using equation (4.83) and following the derivation of equation (4.90), find the ratios
between the probabilities for all ten pion–nucleon scattering processes (4.82).

✎ 4.3.2 Evaluate the result (4.90) in the limit when M3/2 = M1/2.

✎ 4.3.3 Evaluate your solution to the problem 4.3.1 in the limit when M3/2  M1/2.

✎ 4.3.4 Evaluate your solution to the problem 4.3.1 in the limit when M3/2 = M1/2.

✎ 4.3.5 Evaluate your solution to the problem 4.3.1 in the limit when M3/2 � M1/2.

11 Section 4.4.2 will discuss the isospin details of π− as a bound state of a d- and an anti-u-quark.
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4.4 The eightfold way, the SU(3) f group and the u, d, s quarks
Some two decades after Heisenberg and Wigner introduced the isospin formalism and the SU(2)
group of symmetries, several elementary particle physics researchers realized that similar benefits
might be derived from grouping the eight baryons in the plot (2.32). They all have spin 1

2 , and
their masses are “layered” in isospin multiplets [293]:

S I3 Particles δm

0 − 1
2 , + 1

2 n0, p+ mn−mp
mp

= 1.38 × 10−3

−1 0 Λ0 —

−1, 0, +1 Σ−, Σ0, Σ+ �mΣ
mΣ+

= 4.49 × 10−3

−2 − 1
2 , + 1

2 Ξ−, Ξ0 mΞ−−mΞ0
mΞ0

= 5.32 × 10−3

(4.96)

where �mΣ denotes the average difference between the masses of the Σ+-, Σ0- and Σ−-baryons.
The “layering” is similar for the spin- 3

2 decuplet of baryons (2.35):

S I3 Particles δm

0 − 3
2 ,− 1

2 , + 1
2 , + 3

2 Δ−, Δ0, Δ+, Δ++ max(�mΔ)
mΔ

= 8.117 × 10−4

−1 −1, 0, +1 Σ∗−, Σ∗0, Σ∗+ max(�mΣ∗ )
mΣ∗

= 3.117 × 10−3

−2 − 1
2 , + 1

2 Ξ∗−, Ξ∗0 mΞ∗−−mΞ∗0
mΞ∗

= 2.087 × 10−3

−3 0 Ω− —

(4.97)

The relative difference between the average masses in any one layer is some 2 orders of magnitude
bigger than the in-layer relative mass differences. For the octet (4.96):

mΛ,Σ − mN

mN
= 0.2223,

mΞ − mΛ,Σ

mΛ,Σ
= 0.1162; (4.98)

and for the decuplet (4.97):

mΣ∗ − mΔ

mΔ
= 0.1238,

mΞ∗ − mΣ∗

mΣ∗
= 0.1075,

mΩ − mΞ∗

mΞ∗
= 0.0907. (4.99)

Thus, the approximate isospin SU(2) symmetry (which in the tabulations (4.96) and (4.97) mixes
the baryons horizontally) is about a hundred times better than the SU(3) f symmetry that also
includes strangeness (varying vertically in these tables). This agrees with the fact that the mass of
the s-quark (as measured by deep inelastic scattering) is 2 orders of magnitude bigger than that of
the u- and d-quarks; see Table 4.1 on p. 152, below.

However, not only was group theory practically unknown amongst physicists in the 1950s
and 1960s, but there also existed an open animosity towards group theory as representative of
“abstract mathematics.” Wolfgang Pauli supposedly [577] even called group theory Gruppenpest
(group pestilence, in German). Many results of angular momentum and isospin symmetry were
obtained not using the abstract methods of group theory, but by direct computations.12 Following

12 Even today, the Clebsch–Gordan coefficients and the Wigner–Eckart theorem with concrete applications – the main tool
in using SU(2) symmetry in the past three-quarters of a century – are very rarely even mentioned in mathematical
group theory textbooks. The computational methods developed mainly by physicists [565, 258, 581, 105] still have
not penetrated the “mathematicians’ circles.” On the other hand, the “abstract mathematics” does slowly seep into
fundamental physics, especially in superstring theory, and here often finds unexpected uses.
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the same practice, Gell-Mann derived most results in the same, “pedestrian” way, and only later
discovered the elegant arguments and derivations in the then known group theory. The “eight
baryon problem,” i.e., the problem of finding the right generalization of the isospin SU(2) sym-
metry that would encompass these eight baryons, thus had a thorny path. Murray Gell-Mann’s
“eightfold way” is in fact a collection of results that were obtained by such pedestrian meth-
ods, mostly using isospin SU(2)-results, as well as several phenomenological relations between
strangeness, the baryon number, charge, and other properties of particles that were observed in
experiments.13

Today, of course, we know that the relevant group is SU(3) f , which indeed has the isospin
SU(2) as a subgroup. In hindsight, the identification of the group was obstructed by the fact
that there are no three baryons that would span the fundamental 3-dimensional representation
of the SU(3) f group. The early proposal by Shoichi Sakata, whereby the Λ0-baryon extends the
isospin doublet p+, n0 into the SU(3) triplet, could not replicate the success of the isospin SU(2)
classification, and was soon abandoned.

Digression 4.2 In some version of Sakata’s proposal, the three baryons (p+, n0, Λ0) – so-
called “sakatons” – were supposed to “form” all other baryons and mesons: The mesons
would be obtained resulting from sakaton–antisakaton combinations, and baryons re-
sulting from a combination of three sakatons, in all possible combinations. Formally,
that indeed does produce a reasonable list of hadronic states identified by their charges,
isospin, strangeness, etc. However, it was not at all clear in what sense such “products” of
baryons and antibaryons could represent much lighter mesons, or – even more puzzling –
how the baryon states with the quantum numbers of the sakaton triplet, (p+, n0, Λ0),
could also be found within the list obtained by combining three sakatons. That would
imply that any one of these three baryons could be represented as a system of three
copies of these very same baryons – which clearly leads to an infinite regression and ob-
structs the identification of this scheme as a model in which hadrons are “really” bound
states of “real” particles. Many of the supporters of the so-called “S-matrix approach”
to strong interactions even openly accepted this infinitely regressive interpretation of
Sakata’s classification scheme.

Recall that in the 1960s – especially in the southwestern parts of the USA – vari-
ants of eastern philosophies became very popular and mixed with science [☞ e.g.,
Refs. [91, 487, 591]]. This additionally contributed to the prejudices against group
theory and to the mystique of hadron classification. As one of the most prominent
advocates of SU(3) f classification, Gell-Mann contributed to this confusion both by
nomenclature (“eightfold way”) and by avoiding to categorically decide for or against
the infinitely regressive interpretation. In sharp contrast, Richard Feynman openly ad-
vocated the “real” particle-physicist approach, whereby hadrons are really bound states
of more elementary particles, which he called partons, avoiding Gell-Mann’s “quarks.”
During the 1960s, Gell-Mann gradually accepted Feynman’s intuitive image – they were
both at CalTech (California Institute of Technology, Pasadena) – which ultimately led to
the final formulation and application of the quark model.

13 Gell-Mann spent the 1959/60 academic year in Collège de France, looking for the right generalization of SU(2), and
never thought of asking the resident mathematicians – amongst whom was the world-famous Jean-Pierre Serre – for
help. Only late in 1960, back at CalTech, did Gell-Mann get the help of a mathematician (Richard Block) in realizing
that this generalization, the SU(3) group, was already very well known amongst mathematicians [119, 577].
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Gell-Mann’s successful prediction of the Ω−-baryon’s existence [☞ Section 4.4.3], complete
with its quantum numbers and its mass approximately given by the relation (2.37), was essential
for accepting his “eightfold way,” i.e., the classifying application of the SU(3) f group of “flavors.”
The original idea for the eightfold way stemmed from “finding a home” for the isospin dou-
blet p+–n0 not in the direct generalization – such as Sakata’s triplet – but in the octet of spin- 1

2
baryons (2.32). In comparison, it was clear that the nine spin- 3

2 baryons (4Δ, 3Σ∗ and 2Ξ∗) had to
form a bigger multiplet (2.35), so that the classification scheme also had to contain in a natural
way multiplets bigger than the octet, but to not contain multiplets such as 4-plets, 5-plets, etc.

Besides, the classification of hadrons turned out much simpler upon accepting the quark
model, where the u-, d- and s-quarks span the fundamental 3-dimensional representation [☞ Sec-
tion A.1.4], and mesons and baryons are bound states of quarks. Using the SU(3) f group, it is fairly
easy to show that the meson and baryon multiplets must have 8, 10, 27, 28, 35, . . . particles, and
not some other numbers – although the SU(3) group also has representations of dimensions 3, 6,
15, 21, 24, . . .

To wit, representations of the SU(3) group also have the so-called “triality,” which is additive
modulo 3 [☞ Section A.4]. The elements of the fundamental, 3-dimensional representation – i.e.,
the u-, d- and s-quarks – have triality 1, antiquarks triality −1 ∼= 2, and states with n quarks and n
antiquarks then have triality (n−n) (mod 3). So, if both mesons and baryons must have triality of
0, this immediately rules out the SU(3) representations of dimensions 3, 6, 15, 21, 24, . . . , which
were indeed never observed. The “triality-0” condition selects the representations of dimensions 1,
8, 10, 27, 28, 35, etc., of which, however, only the first three groupings have ever been observed.

In turn, using that mesons are quark–antiquark (3-3∗) bound states and since 3 ⊗ 3∗ = 1 ⊕ 8,
mesons may only form singlets and octets of the SU(3) f classification group. Similarly, using that
baryons are three-quark (3-3-3) bound states and since 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10, baryons
may only form singlets, octets and decuplets; see example A.6. Consequently, the triality-0 rep-
resentations 27, 28, 35, etc., may only appear as metastable multi-baryon and multi-meson
states [☞ Appendix A.4.2].

Of course, just like the isospin SU(2) symmetry, the SU(3) f -transformations are only approx-
imate symmetries, and with a bigger tolerance.14 With the discovery of the J/ψ-particle and the
c-quark, the SU(3) f -symmetry was extended into the SU(4) f -symmetry, which implies even bigger
tolerance, etc. This progressively growing tolerance – i.e., measure of imprecision – of the clas-
sifying SU(n) f -symmetry is reflected in the effective masses of quarks:15 see Table 4.1 The basic

Table 4.1 Quark masses in MeV/c2 [☞ Figure 2.1 on p. 76]

Effective masses in
Quark Mass Mesons Baryons

Light
u 4.2 310 363
d 7.5
s 150 483 538

Heavy
c 1,100 1,500
b 4,200 4,700
t 174,200 � 174,200

14 In this context, the tolerance of an approximate symmetry is the margin of permitted difference between the masses of
the particles linked by the purported symmetry.

15 By its definition, mass is the measure of the object’s inertia. Since quarks cannot be isolated, neither can their inertia
be measured as for free particles. Their effective mass is the measure of their inertia within the bound state (meson or
baryon), and so is always affected by the interactions with the “rest” of that bound state, i.e., with the other quarks and
gluons and depends on the specific bound state. For the “effective mass,” one then always cites average values.
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idea in applications of such a phenomenologically defined SU(n) f -symmetry is simple: Let G be the
group of approximate symmetries with a given tolerance, and H ⊂ G a subgroup of approximate
symmetries with a finer tolerance. The contributions to the Hamiltonian that are H-invariant but
not G-invariant are treated as “corrections” to the initial Hamiltonian that is G-invariant. A larger
tolerance level implies a larger group of approximate symmetries, and a smaller (finer) tolerance
level reduces the group of operations that are accepted as approximate symmetries.

The best known example for this idea is the so-called Zeeman effect: non-relativistic treat-
ment of the hydrogen atom with neglected spins (4.1)–(4.8e) is subjected to an external magnetic
field �B, which adds to the Hamiltonian the “correction”

HZ = −�μ · �B = μB
�B · (g�L + gsS

)
, g� = 1, gs = 2

(
1 + α

2π + · · · ). (4.100)

The basic Hamiltonian, without this correction, has Spin(4) symmetry [☞ Section 4.1.1], whereas
the Hamiltonian with the Zeeman addition only has Spin(2) ⊂ Spin(4) symmetry. In particle-
physicist parlance, one says that the Zeeman interaction with the external magnetic field – and so
that external magnetic field itself – explicitly breaks the Spin(4) symmetry of the hydrogen atom.
By analogy, and because of the quark mass-hierarchy given in Table 4.1 on p. 152, the Hamiltonian
terms, i.e., the mass contributions for mesons and baryons may be organized as:

1. the SU(6) f -symmetric, original Hamiltonian;
2. the SU(5) f -symmetric “corrections,” where the t-quark is separated by contributions of

order mt ≈ 174.2 GeV/c2;
3. the SU(4) f -symmetric “corrections,” where also the b-quark is separated by contributions

of order mb ≈ 4.7 GeV/c2;
4. the SU(3) f -symmetric “corrections,” where also the c-quark is separated by contributions of

order mc ≈ 1.5 GeV/c2;
5. the SU(2)I-symmetric “corrections,” where also the s-quark is separated by contributions of

order ms ≈ 0.5 GeV/c2;
6. the final “corrections” also break the isospin SU(2)I-symmetry, and finally separate the

u- and d-quarks.

In practice, this approach is used in combination with other, more directly physics-inspired ideas.
The next few sections will peek into some of those estimates.

4.4.1 Quarkonium
Mesons are bound states of a quark and an antiquark, so their analysis should follow the analysis
of two-body bound states, akin to the hydrogen atom and positronium [☞ Section 4.1]. There
is, however, a huge difference! In the hydrogen atom, the ratio of the binding energy and the rest
energy of (either of) the bound particles is 13.6 eV/510.999 keV ≈ 2.66× 10−5. In contradistinction,
the binding energy of the quarks in mesons and baryons is in fact infinitely large, since the quarks
cannot be extracted from these bound states. This involves the fact that in attempting to extract a
quark one must invest amounts of energy that are at least comparable with the rest energy of the
quarks themselves, whereby it is energetically more favorable to convert the invested energy into
new–quark antiquark pairs

Meson

q

q′

E
q

q′

E q

q′
q′′ q′′′

E q

q′
q′′ q′′′

Two mesons

(4.101)
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rather than further deforming the original bound state. Because of this possibility of creating
quark–antiquark pairs, the process is essentially relativistic and definitely within the domain
of field theory, where the number of particles is not conserved, as it is in standard quantum
mechanics.

Besides, in the case of the hydrogen atom and exotic “atoms” such as muonium and positro-
nium, the basic – Coulomb – potential is well known. In the case of strong interactions, however,
there is no well-defined potential in the same sense: Recall that the Coulomb potential is a field
that extends around the given electrically charged particle. In all points of space, it gives the infor-
mation as to how the electrostatic force at that point would act upon a probing electric charge –
if and when such a probing electric charge is placed at that point. In the case of electrodynamics,
this mental construction has an excellent physical meaning, since it is physically possible to test
the Coulomb field of a given particle with probing electric charges, which we really can move and
place at will. Upon quarks, which are forever confined within mesons and baryons, we exert far
less control.

In the case of mesons built of “heavy” quarks: c, b and t, it is possible to apply the analysis fol-
lowing the positronium template. Just before the discovery of the J/ψ-particle, Hugh David Politzer
and Thomas Appelquist concluded that the c-quark – were it to exist following the logic of the
so-called Glashow–Iliopoulos–Maiani (GIM) mechanism – would have to have non-relativistic (c c̄)
bound states akin to positronium, and which they called “charmonium.” When the J/ψ-particle was
experimentally discovered, it was immediately identified as the 1 3S2-state of charmonium,16 and
soon the other n = 1, 2 states (except 2 1P1, the detection of which poses exceptional experimental
difficulties) were found.

The charmonium states are very well approximated following the positronium template, if
the potential is modeled as

Vc = −4
3
αs h̄c

r
+ F0 r, (4.102)

where F0 is a coefficient of about 16 tons, and αs is the strong interaction analogue of the fine
structure constant; the coefficient 4

3 will be computed in equation (6.68). This potential, of course,
grows infinitely and so gives infinitely many bound states, the energy En of which asymptotically
grows as n3/2. [ ✎Why?] However, the masses of the bound states with n � 3 are bigger than the
“DD -threshold” (the masses of the lightest D–D meson pair), so that such (c c̄)-states very quickly
decay and are regarded as quasi-bound states. Table 4.2 lists a few lightest mesons that contain
the c-quark.

— ❦ —

The story was repeated a few years later: in 1976, E. Eichten and K. Gottfried predicted that
“bottomonium” would have to have even more true bound states than charmonium. When the
first Υ-particle was detected in 1977, it was identified as the 1 3S1 state of the (b b̄) system and
during the next few years the existence of the (b b̄)-bound states with n � 4 was experimentally
confirmed.

Finally, the (t t̄) system was only recently detected owing to the much larger t-quark mass,
and the “toponium” states are still relatively unexplored. Also, the “mixed” (cb̄)-, (ct̄)-, (bt̄)-states
and their conjugates may be analyzed akin to the muonium (μ+ e−). The first of these particles,
B+

c = (c b̄) and B−
c = (b c̄) are experimentally confirmed, with a mass of 6.276 GeV/c2.

16 The spectroscopic notation “n 2S+1LJ” gives the quantum numbers n, �, s, j, where the letter gives the orbital angular
momentum via the identification of S, P, D, F, G, H, I, J, . . . as � = 0, 1, 2, 3, 4, 5, 6, 7, . . .
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Table 4.2 Lightest mesons containing the c-quark; masses in MeV/c2

Name n 2S+1LJ JPC Mass

ηc 1 1S0 0−+ 2, 980.3
J/ψ 1 3S1 1−− 3, 096.9

χc0 1 3P0 0++ 3, 414.8
χc1 1 3P1 0++ 3, 510.7
χc2 1 3P2 0++ 3, 556.2

ηc 2 1S0 0−+ 3, 637
J/ψ 2 3S1 1−− 3, 686.1

Charmonium: (c c̄) states

Name (q q) JP Mass

D+ (c d) 0− 1,869.6
D− (d c̄)

D0 (c u) 0− 1,864.8
D 0 (u c̄)

D∗0 (c u) 1− 2,007.0
D ∗0 (u c̄)

D∗+ (c d) 1− 2,010.3
D∗− (d c̄)

4.4.2 Light mesons
Mesons that contain a light quark or antiquark automatically must be analyzed as relativistic bound
states – for which there is no complete theoretical description☞ .17 Therefore, we remain content
herein with classification.

The first fact worth noting is that although there are three quarks at our disposal, and so
nine possible (q q) bound states (fully neglecting spins, orbital angular momentum and dynamical
details), mesons appear in groups of eight [☞ plot (2.31) as well as the result (A.76c)].

The reason for this is similar to the fact that with only two quarks, u and d, there exist not
four but only three pions, π±,π0. The SU(2)I symmetry solves this puzzle by the method of isospin
“addition.” But, before that, the isospin of u and d must be established. In tensor notation, we
have

{t1, t2} = {u, d} ⇒ {t1, t2} = {u, d}. (4.103)

However, since εαβ is SU(2)-invariant [ ✎why?] , we may identify (tα)† = tα = εαβtβ, so that
(regarding isospin properties only!)

t1 = ε12t2 = t2 ⇒ |u〉 = |d〉 = | 1
2 ,− 1

2 〉, (4.104a)

and t2 = ε21t1= −t1 ⇒ |d〉 = −|u〉= −| 1
2 , + 1

2 〉. (4.104b)

Thus, {|u〉, |d〉}⊗ {|u〉, |d〉} =
{| 1

2 ,− 1
2 〉,−| 1

2 , + 1
2 〉
}⊗ {| 1

2 , + 1
2 〉, | 1

2 ,− 1
2 〉
}

(4.105)

=
{|1,±1〉, |1, 0〉}⊕ {|0, 0〉} =

{|π±〉, |π0〉}⊕ {|η〉}, (4.106)

where

|1, +1〉 = | 1
2 , + 1

2 〉| 1
2 , + 1

2 〉 = −|d〉|u〉,
|1, 0〉 = 1√

2

(| 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉 + | 1
2 ,− 1

2 〉| 1
2 , + 1

2 〉
)

= 1√
2

(−|d〉|d〉 + |u〉|u〉),
|1,−1〉 = | 1

2 ,− 1
2 〉| 1

2 ,− 1
2 〉 = |u〉|d〉,

|0, 0〉 = 1√
2

(| 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉 − | 1
2 ,− 1

2 〉| 1
2 , + 1

2 〉
)

= 1√
2

(−|d〉|d〉 − |u〉|u〉).

(4.107)

17 N.B. One of the approaches is the so-called (MIT) “bag model”: One approximates that quarks are free particles while
within the meson, where they are confined by outside “pressure,” which produces an impenetrable “bag.” This “bag”
is a 3-dimensional infinitely deep potential, the walls of which have a time-variable shape. Although the model is
phenomenologically successful, it is clear that this is an ad hoc fiction where one needs to explain the dynamical origin
of that “pressure.” Another approach uses the so-called Gribov version of gauge theory of strong interactions and quark
confinement [388].
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Then18 ⎧⎪⎨⎪⎩
|π+〉 = −|d u〉,
|π0〉 = 1√

2

(|u u〉 − |d d〉),
|π−〉 = |u d〉,

and |η〉 = − 1√
2

(|u u〉 + |d d〉). (4.108)

Note the signs that stem from the SU(2)I-identification |d〉 = −| 1
2 , + 1

2 〉, whereby |π0〉 looks like an
antisymmetric combination, but is not: a quark and an antiquark cannot be thought of as particles
that are “identical up to some ‘polarization’ (or other selectable property),” so as to define the
exchange (anti)symmetry. Instead, if we use u, d as the basis and u, d as its conjugate basis, the
three pion states (4.108) form a Hermitian matrix with no trace, whereas the η-state represents
the trace of a Hermitian matrix.

So, define qα so that q1 = u and q2 = d, and

π+ = (qβ (σσσσ+)αβ qα) = (du), (4.109a)

π0 = 1√
2
(qβ (σσσσ3)αβ qα) = 1√

2
(uu − dd), (4.109b)

π− = (qβ (σσσσ−)αβ qα) = (ud), (4.109c)

where σσσσ± := 1
2 [σσσσ1 ± iσσσσ2] and σσσσ1,σσσσ2,σσσσ3 are Pauli matrices:

σ1 =
[

0 1
1 0

]
, σ2 =

[ 0 −i
i 0

]
, σ3 =

[ 1 0
0 −1

]
, (4.109d)

the halves of which satisfy the defining relations (A.38a) of the SU(2) algebra.
However, comparison with experiments does not single out an unambiguous candidate for

|η〉: in fact, there exist two spin-0 (pseudo-scalar, JPC = 0−+) particles with isospin |0, 0〉:

η : 547.853 MeV/c2, η′ : 957.66 MeV/c2, (4.110)

as well as two spin-1 (vectorial, JPC = 1−−) excitations:

ω : 782.65 MeV/c2, φ : 1019.455 MeV/c2. (4.111)

Since the masses of the η- and ω-mesons are larger than the kaon masses (2.31), it is clear
that the classification must also include the mesons that contain the s-quark, and also that η and
η′ (and similarly ω and φ) are linear combinations that also contain (s-s̄)-contributions.

Generalizing the identification (4.109), by means of including the third quark, q3 = s, and
using Gell-Mann’s matrices (A.71), we have

π+ = (du), π− = (ud), π0 = 1√
2
(uu − dd), η = 1√

6
(uu + dd − 2s̄s), (4.112a)

K+ = (s̄u), K0 = (s̄d), K 0− = (ds), K− = (us), (4.112b)

and
η′ = 1√

3
(uu + dd + s̄s). (4.112c)

These 8 + 1 states with antiparallel (S = 0) quark spins and orbital angular momentum � = 0 then
have their total angular momentum j = 0.

18 In fact, the real η0 particle is a linear combination of not only |u〉⊗|u〉 and |d〉⊗|d〉, but also of |s〉⊗|s̄〉; see
equations (4.112).
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Combining the antiquark triplet {qα, α = 1, 2, 3} and quark triplet {qα, α = 1, 2, 3} into 8+1
mesons (4.112) then precisely follows the SU(3) decomposition (A.76c):

3∗ ⊗ 3 = 8 ⊕ 1. (4.113)

Of course, this SU(3) f -symmetry is approximate: in reality, kaons are heavier than the pions, as
they contain the heavier s-quark instead of the lighter d-quark. Besides, the η-meson is an inte-
gral part of the SU(3) f octet and its mass is just barely larger than the kaon mass, reflecting the
approximate nature of the SU(3) f -symmetry. On the other hand, the η′-meson does not belong in
the SU(3) f octet, but is a “singlet” – i.e., an SU(3) f -invariant.

Excitation of these states where the sum of quark spins and orbital angular momentum equals
1 then produces the “vector” (spin-1) ρ±-, ρ0-, K∗±-, K∗0-, K ∗0- and φ-mesons. The total angular
momentum of the bound state – with all contributions, orbital and spin – is the spin of the bound
state as a particle. While the masses of the charged vector-mesons follow those of the charged
pseudo-scalar mesons, φ- and ω-mesons mix “maximally.” Experiments indicate that

ω �= 1√
6
(uu + dd − 2s̄s), but ω ≈ 1√

2
(uu + dd); (4.114a)

φ �= 1√
3
(uu + dd + s̄s), but φ ≈ (s̄s). (4.114b)

The vector and pseudo-scalar mesons turn out to differ predominantly in the relative orientation
of quark spins and both are well described as S-states, with no relative angular momentum. The
difference in their masses should then stem from the spin–spin interaction, akin to the Se–Sp
contribution (4.27c) to hyperfine structure in the spectrum of the hydrogen atom. Thus, the meson
mass is parametrized as

M(meson) ≈ mq + mq +
A

mqmq

〈
Sq·Sq

〉
, (4.115)

where the coefficient A is some multiple of |Ψ(�0, t)|2 that cannot be computed reliably for a rela-
tivistic system, and so is determined by comparing with experimental data. Using the well-known
“trick”:

�S := �Sq + �Sq ⇒ �Sq·�Sq = 1
2

(
S2 − S2

q − S2
q
)
, (4.116)

the difference between the observed average masses of pseudo-scalar and vector mesons is rather
well explained:

�Sq·�Sq =
{ 1

4 h̄2, for S = 1 (vector mesons),

− 3
4 h̄2, for S = 0 (pseudo-scalar mesons).

(4.117)

Using the effective (so-called “constituent”) masses of quarks inside mesons from Table 4.1 on
p. 152, and the best value of the parameter A ≈ 4m2

u
h̄2 160 MeV/c2, the masses of pseudo-scalar and

vector mesons are obtained to within 1% from the experimental value [☞ Table 4.3] – except for
the η′-meson, the mass of which poses an exceptional problem for the quark model [☞ commentary
in Ref. [445]].

In this way the quark model with the SU(3) f -symmetry predicts an infinitely growing
ladder of meson (8 + 1) nonets, in good agreement with experiments up to the indicated
discrepancies (4.114); Table 4.4 lists the first few nonets.

4.4.3 Baryons
The number of experimentally detected baryons composed of the u-, d- and s-quarks grows
faster with mass than is the case with mesons. Foremost, this happens because of the fact that
baryons are three-particle bound states, so that there exist combinatorially more different in-
teractive contributions to the mass – such as (4.16) and (4.27a)–(4.27c), as well as (4.46a)
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Table 4.3 Average masses of pseudo-scalar and vector mesons, in MeV/c2. The η′-meson mass poses an
exceptional problem for the quark model; see commentary in Ref. [445].

Meson Computed Measured

π 140 138
K 485 496
η 559 549
η′ 303 958

Meson Computed Measured

ρ 780 776
ω 780 783
K∗ 896 892
φ 1, 032 1, 020

Table 4.4 Lightest meson nonets in the SU(3) f quark model

Nonet content Mass∗
� S JPC I = 1 I = 1

2 I = 0 (MeV/c2)

0 0 0−+ π K η, η′ 500
1 1−− ρ K∗ ω, φ 800

1 0 1+− B Q2 H, ? 1,250

1 0++ δ κ ε, S∗ 1,150
1++ A1 Q1 D, E 1,300
2++ A2 K∗ f , f ′ 1,400

∗ Rough averages; see plot (2.31) and Ref. [293]

and (4.47) [☞ plots (2.32) and (2.35)]. These significantly complicate the computations and
even just the estimates, hindering the experimental identification as to which baryon belongs to
which multiplet.

Classification
As three-particle systems, baryons have two orbital angular momenta: the orbital angular mo-
mentum of any two of the three quarks about their center of mass, and then the orbital angular
momentum of that two-quark system and the third quark about their joint center of mass. We will
consider only states with n = 1 and � = 0 = �′, the masses of which are easily shown to be the
lowest.19 In this case, the baryon spin stems exclusively from the sum of the quark spins, for which
the addition of three spins of magnitude 1

2 we have{| 3
2 ,± 3

2 〉, | 3
2 ,± 1

2 〉
}

S
,

{| 1
2 ,± 1

2 〉[12]

}
,

{| 1
2 ,± 1

2 〉[23]

}
. (4.118)

The subscript S denotes total symmetry and, following Ref. [243], we use the basis

| 1
2 , + 1

2 〉[12] = 1√
2

(|↑↓↑〉 − |↓↑↑〉), | 1
2 ,− 1

2 〉[12] = 1√
2

(|↑↓↓〉 − |↓↑↓〉); (4.119)

| 1
2 , + 1

2 〉[23] = 1√
2

(| ↑↑↓〉 − |↑↓↑〉), | 1
2 ,− 1

2 〉[23] = 1√
2

(| ↓↑↓〉 − |↓↓↑〉), (4.120)

which are antisymmetric with respect to the exchange of the particles indicated in the subscript. It
is not hard to show that

| 1
2 , + 1

2 〉[13] = 1√
2

(|↑↑↓〉 − |↓↑↑〉) = | 1
2 , + 1

2 〉[12] + | 1
2 , + 1

2 〉[23], (4.121)

19 The mass of a baryon as a bound state of three quarks equals the sum of the masses of the constituent quarks, minus
the mass equivalent of the binding energy. Then, the strongest-bound baryons are also the lightest amongst the possible
bound states of the given quarks.
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and similarly for | 1
2 ,− 1

2 〉[13]. We introduced the abbreviations:

| ↑〉 := | 1
2 , + 1

2 〉, | ↓〉 := | 1
2 ,− 1

2 〉, | ↑↓↑〉 := | 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉| 1
2 , + 1

2 〉, etc. (4.122)

Using the approximate SU(3) f -symmetry, u-, d- and s-quarks are treated as if they were
different polarizations of the same fermion, so that Pauli’s exclusion principle must be applied.
That is, the entire wave-function of the bound state of three quarks must be antisymmetric with
respect to the exchange of any two of the three quarks. The wave-function for the baryon then
factorizes:

Ψ(baryon) = Ψ(�r, t) χ(spin) χ(flavor) χ(color). (4.123)

For states with � = 0 = �′, Ψ(�r, t) must be a totally symmetric function since it cannot depend
on angles, and so neither on the quarks’ relative positions. On the other hand, the color factor
depends on the additional degree of freedom: each quark has a linear combination of the three
primary colors [☞ Section 2.3.13]. That is, every quark is in fact a triple of quarks that span the
3-dimensional representation of the SU(3)c-symmetry,20 and a bound state of three quarks must
be SU(3)c-invariant. Group theory applies to the SU(3)c-symmetry as well as for SU(3) f , and the
decomposition (A.76f) provides for the fact that the SU(3)c-invariant factor χ(color) is totally
antisymmetric.

Since the entire product (4.123) must be totally antisymmetric by Pauli’s exclusion principle,
and Ψ(�r, t) is totally symmetric while χ(color) is totally antisymmetric, it follows that the product
χ(spin)χ(flavor) must be totally symmetric.

Since the χ(flavor) factor for the decuplet of the SU(3) f -symmetry is totally symmetric [☞ de-
composition (A.76f)], it follows that the χ(spin) factor must also be totally symmetric. Writing out
the first two of the kets (4.118):

| 3
2 , + 3

2 〉 = | ↑↑↑〉, | 3
2 , + 1

2 〉 = 1√
3

(| ↑↑↓〉+ | ↑↓↑〉+ | ↓↑↑〉), (4.124a)

| 3
2 ,− 3

2 〉 = | ↓↓↓〉, | 3
2 ,− 1

2 〉 = 1√
3

(| ↑↓↓〉+ | ↓↑↓〉+ | ↓↓↑〉), (4.124b)

we know that these four spin states | 3
2 , ms〉 are totally symmetric, so that these ten baryons

must have spin- 3
2 . That is Gell-Mann’s decuplet (4Δ, 3Σ∗, 2Ξ∗, Ω−), where the fast experimental

confirmation of the predicted Ω− baryon induced most researchers to finally accept the quark
model.

The construction of the octet is a little more complicated, as we must find a totally symmetric
(linear combination) of products of χ(spin) and χ(flavor) that, separately, have a mixed symmetry.
Notice first that the product χ[12](spin)χ[12](flavor) is symmetric with respect to the exchange of the
first two particles, since each of the two factors is antisymmetric. Then, it follows that the linear
combination

χ[12](spin) χ[12](flavor) + χ[13](spin) χ[13](flavor) + χ[23](spin) χ[23](flavor) (4.125)

is totally symmetric and provides the spin-flavor factor in the wave-function (4.123) for the octet
of spin- 1

2 baryons. In spite of the relationship (4.121) – whereby | 1
2 , ms〉[13] is linearly dependent on

| 1
2 , ms〉[12] and | 1

2 , ms〉[23], the bilinear terms in the expression (4.125) are linearly independent, and
the full expression does not simplify.

— ❦ —

Without the additional color degree of freedom for quarks, i.e., without the totally antisymmet-
ric χ(spin) factor in the product (4.123), the product Ψ(�r, t) χ(spin) χ(flavor) would have to be

20 Unlike the approximate SU(3) f -symmetry, the SU(3)c-symmetry is exact.
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totally antisymmetric. For the state with smallest mass where n = 1 and � = 0 = �′, the product
χ(spin) χ(flavor) would have to be totally antisymmetric. For spin- 1

2 octets, one could construct
such a state, but the spin- 3

2 baryons would have to have a totally antisymmetric χ(flavor) factor,
which would have to be the SU(3) f -invariant – and so a single spin- 3

2 baryon, instead of the ten
experimentally detected ones (2.35).

This is the core of the problem noticed by Oscar W. Greenberg in 1964. As a resolution, he
proposed [229] that the quark annihilation and creation operators should satisfy para-fermionic
rules (2.41c)–(2.41d). This turns out to effectively introduce an additional degree of freedom –
the same as the one called “color” in the 1965 independent proposal by Han and Nambu, where
quarks had integral electric charges, with values that depend on the color [☞ Digression 5.14
on p. 214]. Their model also predicted particles (that would soon be called gluons) that mediate
transformations of the color charge in quarks, where these transformations have the structure of
the exact SU(3)c symmetry group and are the source of the strong interaction [☞ Section 6.1].
The current version of this model with fractionally (and color-independently) charged quarks was
proposed by Harald Fritzsch and Murray Gell-Mann in 1971, and was finalized in collaboration
with William A. Bardeen in 1973 [32].

Masses
By the reasoning used so far that led to the approximation (4.115), for baryons we have

M(baryon) ≈ m1 + m2 + m3 + A′ ∑
i �=j

1
mimj

〈
Si·S j

〉
, (4.126)

where the spin–spin contributions (leading to the hyperfine structure in the hydrogen atom spec-
trum) must be computed separately for baryons in isospin groups. Indeed, in the general case, the
three masses are different and every spin–spin pair – which stems from the dipole–dipole magnetic
interaction – must be considered separately.

In the decuplet case, the situation is simpler, as the χ(flavor) factor and therefore also the
χ(spin) factor are both totally symmetric. Thus, the spins of any two quarks are parallel, and the
well-known “trick”

�S1 · �S2 = 1
2

(
(�S1 + �S2)2 − S2

1 − S2
2

)
(4.127)

provides for each pair of quarks in the baryon decuplet:〈
�Si·�S j

〉
= 1

2

(
2 − 1

2 ( 1
2 +1) − 1

2 ( 1
2 +1)

)
h̄2 = 1

4 h̄2, for the decuplet. (4.128)

The cases

M(Δ) ≈ 3mu +
3A′ h̄2

4m2
u

and M(Ω−) ≈ 3ms +
3A′ h̄2

4m2
s

(4.129)

are particularly simple, where the first estimate applies to Δ++, Δ+, Δ0 and Δ− since mu ≈
md [☞ Table 4.1 on p. 152]. The results

M(Σ∗) ≈ 2mu + ms +
A′ h̄2

4

( 1
m2

u
+

2
mums

)
, (4.130a)

M(Ξ∗) ≈ mu + 2ms +
A′ h̄2

4

( 2
mums

+
1

m2
s

)
(4.130b)

are just a little more involved.
For the baryon octet, we first must look at the isospin sub-multiplets. For example, we know

the Λ0-baryon, a (u, d, s) bound state, has the isospin |0, 0〉-factor antisymmetric with respect to
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the u ↔ d exchange. For the χ(spin) χ(flavor) product to be symmetric, it must be that the spin
factor is also antisymmetric, and it then follows that the u- and d-quark spins in the Λ0-baryon are
antiparallel. Similarly, we know that the Σ±- and Σ0-baryons, also (u, d, s) bound states, form an
isospin triplet, {|1,±1〉, |1, 0〉}, so that the u- and d-quark spins in the Σ-baryons must be parallel.
Thus, 〈

�Su·�Sd

〉
=

{ 1
4 h̄2 in the Λ0-baryon,

− 3
4 h̄2 in the Σ-baryons.

(4.131)

Also the generalization of the relation (4.127) gives

�S1 · �S2 + �S1 · �S3 + �S2 · �S3 = 1
2

(
(�S1 + �S2 + �S3)2 − S2

1 − S2
2 − S2

3

)
, (4.132)

and 〈
�S1 · �S2 + �S1 · �S3 + �S2 · �S3

〉
=

{
3
4 h̄2 for the spin- 3

2 decuplet,
− 3

4 h̄2 for the spin- 1
2 octet.

(4.133)

Adding the corresponding terms and using that md ≈ mu, we have

M(p+, n0) ≈ 3mu − 3A′ h̄2

4m2
u

, (4.134)

M(Λ) ≈ 2mu + ms − 3A′ h̄2

4m2
u

, (4.135)

M(Σ) ≈ 2mu + ms +
A′ h̄2

4

( 1
m2

u
− 4

mums

)
, (4.136)

M(Ξ) ≈ 2mu + ms +
A′ h̄2

4

( 1
m2

s
− 4

mums

)
. (4.137)

With the effective quark masses taken from Table 4.1 on p. 152, and choosing the constant
A′ = (2mu/h̄)2 · 50 MeV/c2, one obtains excellent approximations for the measured masses [☞ Ta-
ble 4.5].

Table 4.5 The lightest baryon masses in MeV/c2

Baryon Computed Measured

p+, n0 939 939
Λ 1,116 1,114
Σ 1,179 1,193
Ξ 1,327 1,318

Baryon Computed Measured

Δ 1,239 1,232
Σ∗ 1,381 1,384
Ξ∗ 1,529 1,533
Ω 1,682 1,672

Magnetic moments
In the absence of orbital angular momenta, � = 0 = �′, the baryon magnetic moment is – up to
corrections of the type (4.24b) – simply the sum of the constituent quarks’ magnetic moments:

�μ(baryon) = �μ(1) +�μ(2) +�μ(3). (4.138)

For a spin- 1
2 particle, with charge q and mass m, we have

〈Iu3〉 =
〈

q
mec

S3

〉
= ± qh̄

2mec
, (4.139)
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and so

μu := 〈Iu(u)
3 〉 = ± eh̄

3muc
, μd := 〈Iu(d)

3 〉 = ∓ eh̄
6mdc

, μs := 〈Iu(s)
3 〉 = ∓ eh̄

6msc
, (4.140)

and

〈Iu3(baryon)〉 =
2
h̄

3

∑
i=1

〈
baryon|μi S(i)

3 |baryon
〉

. (4.141)

So, to compute the baryon magnetic moment, one must compute the right-hand side contribution
to the relation (4.141) for each baryon separately, by

1. writing out the baryon state explicitly as a linear combination (4.125),
using the results (4.124) and (4.118),

2. substituting this in the right-hand side sum (4.141),
term by term and for both the ket and the bra,

3. evaluating each term in the so-expanded sum,
4. and finally adding the partial results.

There are clearly many contributions, but the so-obtained values are in very good agreement with
the experimental measurements, as shown in Table 4.6 [243].

Table 4.6 The baryon magnetic dipole magnitudes in the first octet, expressed in units of nuclear
magneton, eh̄

2mp c = 3.152 × 10−13 MeV/c2/T

Baryon 〈Iu3〉 Computed Measured

p+ 1
3

(
4μu − μd

)
2.79 2.793

n0 1
3

(
4μd − μu

) −1.86 −1.913

Ξ0 1
3

(
4μs − μu

) −1.40 −1.253

Ξ− 1
3

(
4μu − μs

) −0.47 −0.69

Λ0 μs −0.58 −0.61

Σ+ 1
3

(
4μu − μs

)
2.68 2.33

Σ0 1
3

(
2μu + μd − μs

)
0.82 —

Σ− 1
3

(
4μd − μs

) −1.05 −1.41

As a final note on hadron spectroscopy, the Reader should recall that most hadrons decay
within ∼10−23 s of their creation within clusters of hundreds and thousands of simultaneous colli-
sion processes. The fact that such measurements on individual particles are in fact being performed
is an impressive feat of resourcefulness, ingenuity and hard work.

4.4.4 Exercises for Section 4.4

✎ 4.4.1 Estimate the relative magnitudes of the contributions analogous to (4.8b), (4.22),
(4.28), (4.32), (4.33), (4.34), (4.35), (4.40), (4.46a) and (4.47), as functions of αs, the
strong interaction constant, for (cc̄), (bb̄) and (tt̄) systems.
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✎ 4.4.2 Estimate the relative magnitudes of the contributions analogous to (4.8b), (4.22),
(4.28), (4.32), (4.33), (4.34), (4.35), (4.40), (4.46a) and (4.47), as functions of αs, the
strong interaction constant, for (cb̄), (ct̄) and (bt̄) systems.21

✎ 4.4.3 From the fact that the lifetime of charmonium states above the D–D threshold is
∼10−23 s and by comparing with the positronium lifetime (4.51), estimate αs and show that
αs ∼ O( 1

10 ) − O(1).

✎ 4.4.4 Write out all collisions of the π + π → π + π type.

✎ 4.4.5 Find the relation between the probabilities of the four collisions:

π+ + π+ → π+ + π+, π+ + π0 → π+ + π0, (4.142a)

π+ + π− → π+ + π− and π+ + π− → π0 + π0. (4.142b)

✎ 4.4.6 Use the Wenzel–Brillouin–Kramers (WKB) approximation to prove that, for the
potential (4.102), the bound-state energies En ≈ E1n3/2 for large enough n.

✎ 4.4.7 Determine the degeneracy of the states predicted by the non-relativistic treatment of
the potential (4.102). (Hint: try verifying the maximal symmetry of this non-relativistic Hamiltonian using
the relations (4.13) and explicit computation.)

✎ 4.4.8 Upon fully expanding the expression (4.125) and by explicitly tracing the action
of swapping quarks, show that the complete expression is symmetric with respect to the
exchange of any two of the three quarks.

✎ 4.4.9 Derive the relations (4.130).

21 N.B. The details of these systems are subject to contemporary research.
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