ON THE SPECTRUM OF AN INTEGRAL OPERATOR

by P. G. ROONEY

(Received 3 August, 1984)

1. Introduction. The integral operator which we will consider in this paper is the operator T defined for suitably restricted functions f on $(0, \infty)$ by

$$
\begin{equation*}
(T f)(x)=\pi^{-1} \int_{0}^{\infty}(x-t)^{-1} f(t) d t \tag{1.1}
\end{equation*}
$$

where $x>0$ and the integral is taken in the Cauchy principal value sense at $t=x$. This operator plays a considerable role in Wiener-Hopf theory; see [2; Chapter 5].

Since T is clearly the restriction to $(0, \infty)$ of minus the Hilbert transformation applied to functions which vanish on $(-\infty, 0)$, it follows easily from the theory of the Hilbert transformation, as given in say [6; Theorem 101], that T is a bounded operator from $L_{p}(0, \infty)$ to itself for $1<p<\infty$.

The spectrum of T on $L_{2}(0, \infty)$ was found, first by Koppelman and Pincus [3] and more recently, using the Mellin transformation, by Del Pace and Venturi [1] to be the closed segment of the imaginary axis from $-i$ to i, while its spectrum on $L_{p}(0, \infty)$ was found by Widom [7] to be the circular arc with endpoints $\pm i$ passing through the point $-\cot \pi / p$.

In this paper we shall use the Mellin multiplier technique that we developed in [5] to study the spectrum of T on the spaces $\mathscr{L}_{\mu, p}$ and $\mathscr{L}_{\omega, \mu, p}$ defined in that paper. Our notation will be that of [5]; other particular notations from [5] that we shall use are $\mathfrak{N}_{p}, \mathscr{A}, \mathcal{M}$ and [X]. We shall show that the spectrum of T on $\mathscr{L}_{\mu, p}$, where $1<p<\infty, 0<\mu<1$, is the circular arc with endpoints $\pm i$ passing through the point $-\cot \pi \mu$, and that on $\mathscr{L}_{\omega, \mu, p}$, where $\omega \in \mathfrak{N}_{p}$, the spectrum is a subset of this arc. This is achieved in section three, and is consistent with Widom's result since $L_{p}(0, \infty)=\mathscr{L}_{1 / p, p}$. Naturally we must first study the boundedness of T on $\mathscr{L}_{\mu, p}$ and $\mathscr{L}_{\omega, \mu, p}$ and this is done in section two.

The operator T can be transformed by elementary changes of variable into the finite Hilbert transformation, or Tricomi operator, $T_{a, b}$ where for $-\infty<a<b<\infty$ and suitably restricted f.

$$
\begin{equation*}
\left(T_{a, b} f\right)(x)=\pi^{-1} \int_{a}^{b}(x-t)^{-1} f(t) d t, \quad x \in(a, b) \tag{1.2}
\end{equation*}
$$

the integral again being a Cauchy principal value at $t=x$, and in section four we exploit this fact to determine the spectrum of $T_{a, b}$ on a class of spaces.

In section five we make some concluding remarks, trying to put our technique in its general setting.
2. Boundedness of \boldsymbol{T}. In this section we show that if $1<p<\infty, \omega \in \mathfrak{N}_{p}$ and $0<\mu<1$, then T is a bounded operator on $\mathscr{L}_{\omega, \mu, p}$ to itself. However, first we need a Lemma.

Glasgow Math. J. 28 (1986) 5-9.

Lemma. If $1<p<\infty, 0<\mu<1, T \in\left[\mathscr{L}_{\mu, p}\right]$. If $\in \mathscr{L}_{\mu, p}$ where $1<p \leqq 2$ and $0<\mu<1$, then

$$
\begin{equation*}
(\mathcal{M T f})(s)=-\cot \pi s(\mathcal{M f})(s), \operatorname{Re} s=\mu . \tag{2.1}
\end{equation*}
$$

Proof. From [6; Theorem 90], it follows that if $f \in L_{2}(0, \infty)$, then for $x>0$.

$$
(T f)(x)=\frac{d}{d x} \pi^{-1} \int_{0}^{\infty} f(t) \log |1-x / t| d t
$$

But then

$$
(T f)(x)=(2 \pi)^{-1} \frac{d}{d x}\left\{\int_{0}^{\infty} f(t) \log \left|1-x^{2} / t^{2}\right| d t+\int_{0}^{\infty} f(t) \log |(t-x) /(t+x)| d t\right\},
$$

and hence from [4; (3.5) and (3.6)]

$$
T f=-\frac{1}{2}\left(H_{+} f+H_{-} f\right),
$$

or, on $L_{2}(0, \infty)$,

$$
\begin{equation*}
T=-\frac{1}{2}\left(H_{+}+H_{-}\right) \tag{2.2}
\end{equation*}
$$

But from [4, Theorem 3.1], if $1<p<\infty, H_{+} \in\left[\mathscr{L}_{\mu, p}\right]$ for $-1<\mu<1$ and $H_{-} \in\left[\mathscr{L}_{\mu, p}\right]$ for $0<\mu<2$. Thus from (2.2) if $1<p<\infty, 0<\mu<1, T \in\left[\mathscr{L}_{\mu, p}\right]$.

Also, from [4; Theorem 3.1 and (3.7) and (3.8)], if $f \in\left[\mathscr{L}_{\mu, p}\right]$ where $1<p \leqq 2$, $0<\mu<1$,

$$
\left.(\mathcal{M T f})(s)=-\frac{1}{2}(-\tan (\pi s / 2)+\cot (\pi s / 2))(\mathcal{M} f)(s)\right)=-\cot \pi s(\mathcal{M} f)(s),
$$

$\operatorname{Re} s=\mu$, and (2.1) follows, so that the Lemma is proved.
Theorem 2.1. Suppose $1<p<\infty, \omega \in \mathfrak{A}_{p}$ and $0<\mu<1$. Then $T \in\left[\mathscr{L}_{\omega, \mu, p}\right]$.
Proof. If $m(s)=-\cot \pi s$, then m is holomorphic in the strip $0<\operatorname{Re} s<1$. It is well known and elementary that if small circles of equal positive radius are drawn about the poles of $\cot \pi s$, then in the closure of the exterior of those circles $|\cot \pi s|$ is bounded and thus if $0<\sigma_{1} \leqq \sigma_{2}<1$, then in $\sigma_{1} \leqq \operatorname{Re} s \leqq \sigma_{2},|m(s)|$ is bounded. Further, if $0<\mu<1$, $\left|m^{\prime}(\mu+i t)\right|=\left|\pi \csc ^{2} \pi(\mu+i t)\right|=O\left(e^{-2 \pi|t|}\right)=O\left(|t|^{-1}\right)$ as $|t| \rightarrow \infty$.
Hence $m \in \mathscr{A}$ with $\alpha(m)=0, \beta(m)=1$, and thus by [5; Theorem 1], there is a transformation $H_{m} \in\left[\mathscr{L}_{\omega, \mu, p}\right]$ for $1<p<\infty, \omega \in \mathfrak{A}_{p}$ and $0<\mu<1$, such that if $f \in \mathscr{L}_{\mu, p}$, $1<p \leqq 2,0<\mu<1$, then

$$
\left(\mathcal{M} H_{m} f\right)(s)=m(s)(\mathcal{M f})(s)=-\cot \pi s(\mathcal{M f})(s), \quad \operatorname{Re} s=\mu
$$

But then, from (2.1) on $\mathscr{L}_{\mu, p}$ for $1<p \leqq 2,0<\mu<1, H_{m}=T$, and thus extending T to $\mathscr{L}_{\omega, \mu, p}$ by defining it to be $H_{m}, T \in\left[\mathscr{L}_{\omega, \mu, p}\right]$ for $1<p<\infty, \omega \in \mathfrak{I}_{p}, 0<\mu<1$.
3. The spectrum of \boldsymbol{T}. Let us denote the circular arc with end points $\pm i$ passing through the point $-\cot \pi u$ by $\sigma(\mu)$. Clearly $\lambda \in \sigma(\mu)$ if and only if $\lambda= \pm i$ or $\arg ((\lambda-i) /(\lambda+i))=2 \pi \mu$, so that $\sigma(\mu)$ is clearly an arc of the Steiner circle of the second kind with poles $\pm i$. The Theorem below shows how the spectrum of T in $\mathscr{L}_{\omega, \mu, p}$ is related to $\sigma(\mu)$.

Theorem 3.1. Suppose $1<p<\infty, \omega \in \mathfrak{V}_{p}$ and $0<\mu<1$. Then on $\mathscr{L}_{\omega, \mu, p}$ the spectrum of T is a subset of $\sigma(\mu)$, while on $\lambda_{\mu, p}$ the spectrum of T is equal to $\sigma(\mu)$.

Proof. Suppose $\lambda \notin \sigma(\mu)$. Then there is a $\gamma, 0 \leqq \gamma<1, \gamma \neq \mu$, so that $\arg ((\lambda-i) /(\lambda+i))=2 \pi \gamma$. We show first that if $m_{\lambda}(s)=\lambda+\cot \pi s$, then $1 / m_{\lambda} \in \mathscr{A}$, with $\alpha\left(1 / m_{\lambda}\right)=\gamma, \beta\left(1 / m_{\lambda}\right)=\gamma+1$ if $\gamma<\mu$ and with $\alpha\left(1 / m_{\lambda}\right)=\gamma-1, \beta\left(1 / m_{\lambda}\right)=\gamma$ if $\gamma>\mu$.

Suppose that $0 \leqq \gamma<\mu$. Then $m_{\lambda}(s)$ has no zeros in the strip $\gamma<\operatorname{Re} s<\gamma+1$. For $m_{\lambda}(s)$ has a zero on the line $\operatorname{Re} s=\gamma$, namely at the point

$$
s=(2 \pi i)^{-1} \log ((\lambda-i) /(\lambda+i))=\gamma+(2 \pi i)^{-1} \log |(\lambda-i) /(\lambda+i)|
$$

and it is easy to see that cot πs takes on a value only once in a strip of the form $\eta<$ $\operatorname{Re} s \leqq \eta+1$. Thus (i) $1 / m_{\lambda}(s)$ is holomorphic in the strip $\gamma<\operatorname{Re} s<\gamma+1$. Suppose $\gamma<\sigma_{1} \leqq \sigma_{2}<\gamma+1$. Then $-\cot \pi\left(\sigma_{2}+i t\right)=\left(i \cot \pi \sigma_{2} \operatorname{coth} \pi t+1\right) /\left(\cot \pi \sigma_{2}-i \operatorname{coth} \pi t\right)=$ $\left(\tanh \pi t+\cot \pi \sigma_{2}\right) /\left(\cot \pi \sigma_{2} \tanh \pi t-i\right)$, and thus as t increases from $-\infty$ to ∞, $w=-\cot \pi\left(\sigma_{2}+i t\right)$ describes the arc $\left.\arg (w-i) /(w+i)\right)=2 \pi \sigma_{2}$ from $-i$ to i. Similarly, as t runs from ∞ to $-\infty, w=-\cot \pi\left(\sigma_{1}+i t\right)$ describes the $\operatorname{arc} \arg ((w-i) /(w+i))=2 \pi \sigma_{1}$ from i to $-i$. Thus since $-\cot \pi(\sigma+i t) \rightarrow \pm i$ as $t \rightarrow \pm \infty$ uniformly in σ for $\sigma_{1} \leqq \sigma \leqq \sigma_{2}$, the values taken on by $-\cot \pi s$ in the strip $\sigma_{1} \leqq \operatorname{Re} s \leqq \sigma_{2}$ lie in the set

$$
W=\left\{w \mid 2 \pi \sigma_{1} \leqq \arg ((w-i) /(w+i)) \leqq 2 \pi \sigma_{2}\right\}
$$

and thus since $\arg ((\lambda-i) /(\lambda+i))=2 \pi \gamma$ and $\gamma<\sigma_{1}<\sigma_{2}<\gamma+1, \lambda$ is at a positive distance from W so that $|\lambda+\cot \pi s|$ is bounded away from zero in $\sigma_{1} \leqq \operatorname{Re} s \leqq \sigma_{2}$. Hence (ii) $\mid\left(1 / m_{\lambda}(s) \mid\right.$ is bounded in $\sigma_{1} \leqq \operatorname{Re} s \leqq \sigma_{2}$. Finally (iii) if $\gamma<\sigma<\gamma+1$ and $\operatorname{Re} s=$ $\sigma, \frac{d}{d s}\left(m_{\lambda}(s)\right)^{-1}=\pi\left(m_{\lambda}(s)\right)^{-2} \csc ^{2} \pi s$ and $\left|m_{\lambda}(\sigma+i t)\right|^{-2}$ is bounded and $\left|\csc ^{2} \pi(\sigma+i t)\right|=$ $O\left(|t|^{-1}\right)$ as $|t| \rightarrow \infty$. Thus, if $0 \leqq \gamma<\mu, 1 / m_{\lambda}(s) \mathscr{A}$ with $\alpha\left(1 / m_{\lambda}\right)=\gamma, \beta\left(1 / m_{\lambda}\right)=\gamma+1$.

Similarly if $\mu<\gamma<1,1 / m_{\lambda}(s) \in \mathscr{A}$ with $\alpha\left(1 / m_{\lambda}\right)=\gamma-1$ and $\beta\left(1 / m_{\lambda}\right)=\gamma$.
But obviously $m_{\lambda}(s)$ is the multiplier of $\lambda I-T$, and hence by [5; Theorem 1] since $\alpha\left(1 / m_{\lambda}\right)<\mu<\beta\left(1 / m_{\lambda}\right),(\lambda I-T)^{-1}$ exists and is in $\left[\mathscr{L}_{\omega, \mu, p}\right.$]. Thus if $\lambda \notin \sigma(\mu), \lambda$ is in the resolvent set of T and hence the spectrum of T is a subset of $\sigma(\mu)$.

To show that on $\mathscr{L}_{\mu . p}, \sigma(\mu)$ equals the spectrum of T, suppose first that $1<p \leqq 2$, $0<\mu<1$ and that $\lambda \in \sigma(\mu), \lambda \neq \pm i$. Then if λ is in the resolvent set of T, for any $g \in \mathscr{L} \mu, p$ the equation $(\lambda I-T) f=g$ has a solution $f \in \mathscr{L}_{\mu, p}$. Taking Mellin transforms it follows that $(\mathcal{M f})(s)=(\mathcal{M g})(s) /(\lambda-\cot \pi s)$, $\operatorname{Re} s=\mu$. Since $\mathcal{M}^{\operatorname{maps}} \mathscr{L}_{\mu, p}$ into $L_{p^{\prime}}(-\infty, \infty)$, where $p^{\prime}=p /(p-1)$, it follows that for any $g \in \mathscr{L}_{\mu, p}, \quad(\mathcal{M g})(\mu+i t) /(\lambda+\cot \pi(\mu+i t)) \in$ $L_{p},(-\infty, \infty)$.

However since $\arg ((\lambda-i) /(\lambda+i))=2 \pi \mu, \quad \lambda+\cot \pi s$ has a simple zero at $s=$ $\mu+(2 \pi i)^{-1} \log |(\lambda-i) /(\lambda+i)|=\mu+i t_{0}$. Choose real numbers a and b so that $a<t_{0}<b$ and let

$$
g(x)=\pi^{-1} x^{-\mu_{e}-\frac{1}{2} i(a+b) \log x} \sin \left(\frac{1}{2}(b-a) \log x\right) / \log x
$$

Then $g \in \mathscr{L}_{\mu, p}$ since

$$
\begin{aligned}
\int_{0}^{\infty}\left|x^{\mu} g(x)\right|^{p} d x & =\pi^{-p} \int_{0}^{\infty}\left|\sin \left(\frac{1}{2}(b-a) \log x\right) / \log x\right|^{p} d x / x \\
& =\pi^{-p} \int_{-\infty}^{\infty}\left|\sin \left(\frac{1}{2}(b-a) t\right) / t\right|^{p} d t<\infty
\end{aligned}
$$

Also

$$
\begin{aligned}
& \lim _{R \rightarrow \infty} \int_{1 / R}^{R} x^{\mu+i t-1} g(x) d x=\pi^{-1} \lim _{R \rightarrow \infty} \int_{-\log R}^{\log R} \cos \left(t-\frac{1}{2}(a+b) u \sin \frac{1}{2}(b-a) u d u / u\right. \\
& \quad=(2 \pi)^{-1} \lim _{R \rightarrow \infty} \int_{-\log R}^{\log R}(\sin (t-a) u-\sin (t-b) u) d u / u=\frac{1}{2}(\operatorname{sgn}(t-a)-\operatorname{sgn}(t-b)) \\
& \quad=\left\{\begin{array}{l}
0, t<a \\
1, a<t<b \\
0, t>b
\end{array}\right.
\end{aligned}
$$

Thus $(\mathscr{M g})(\mu+i t)$ equals the characteristic function of (a, b) a.e., and hence since, as noted, $(\mathscr{M} g)(\mu+i t) /(\lambda+\cot \pi(\mu+i t))$ is in $L_{p^{\prime}}(-\infty, \infty)$, we must have

$$
\int_{a}^{b}|\lambda+\cot \pi(\mu+i t)|^{-p^{\prime}} d t<\infty
$$

a contradiction.
Hence λ cannot be in the resolvent set of T and must then be in the spectrum of T, and since the spectrum is closed $\sigma(\mu)$ must be in the spectrum of T, and consequently that spectrum is $\sigma(\mu)$.

If $p>2$, then the same result follows since T and its adjoint have the same spectrum,

One might remark that it is easy to see that on $\mathscr{L}_{\mu, p}, 1<p<\infty, 0<\mu<1$, the spectrum of T consists entirely of continuous spectrum. Also, it is easy to show that if $f(x)=x^{-\frac{1}{2}}$, then $T f=0$. Hence since $0 \notin \sigma(T)$ on $L_{\omega, \mu, p}, 1<p<\infty, 0<\mu<1$, unless $\mu=\frac{1}{2}$, it follows that $f \notin L_{\omega, \mu, p}, 1<p<\infty, 0<\mu<1$ unless $\mu=\frac{1}{2}$, and thus if $v>-\frac{3}{2}, v \neq-1$ and $\omega \in \mathfrak{O}_{p}$ where $1<p<\infty$, then

$$
\int_{0}^{\infty} \omega(x) x^{v} d x=\infty
$$

4. The spectrum and boundedness of $T_{a, b}$. If f is suitably restricted and $g=T_{a, b} f$ and if we let $F(x)=(x+1)^{-1} f((b x+a) /(x+1))$, and $G(x)=(x+1)^{-1} g((b x+a) /(x+$ $1)$), then $G=T F$. The following theorem follows immediately.

Theorem 4.1. Suppose $1<p<\infty, \omega \in \mathfrak{N}_{p}$ and $0<\mu<1$. Then on the space of functions f, measurable on (a, b), and normed by the norm

$$
\|f\|_{\omega, \mu, p}=\left\{\int_{a}^{b} \omega((x-a) /(b-x))\left|(x-a)^{\mu}(b-x)^{1-\mu} f(x)\right|^{p} d x /((b-x)(x-a))\right\}^{1 / p}
$$

to itself, $T_{a, b}$ is a bounded operator and its spectrum is a subset of $\sigma(\mu)$; if $\omega(x) \equiv 1$, the spectrum of $T_{a, b}$ is $\sigma(\mu)$.
5. Concluding remarks. The technique that we have used here to analyze the spectrum of T seems to be of considerably more general applicability. Indeed if $m \in \mathscr{A}$
and T_{m} is the transformation associated with m by [5; Theorem 1], and if $m_{\lambda}=\lambda-m$, where $\lambda \in \mathbf{C}$, then clearly $\lambda I-T_{m}$ is associated with m_{λ} and $m_{\lambda} \in \mathscr{A}$, so that if $1 / m_{\lambda} \in \mathscr{A}$ and $\max \left(u(m), \alpha\left(1 / m_{\lambda}\right)\right)<\mu<\min \left(\alpha(m), \alpha\left(1 / m_{\lambda}\right)\right)$, then if $1<p<\infty$ and $\omega \in \mathfrak{A}_{p}$, $\left(\lambda I-T_{m}\right)^{-1} \in\left[\mathscr{L}_{\omega, v, p}\right]$, so that λ is in the resolvent set of T_{m}.

The only barrier to this method seems to be showing that $\alpha\left(1 / m_{\lambda}\right)<\mu<\beta\left(1 / m_{\lambda}\right)$. which requires that the range of $m(\mu+i t),-\infty<t<\infty$, be known. In the case of the T of sections one to three, it was possible to find this because of the simplicity of the corresponding m, but for a more complicated m this could be very difficult.

REFERENCES

1. C. Del Pace and A. Venturi, A Wiener-Hopf equation with singular kernel, Matematiche (Catania) 33 (1978), no. 2, 333-347 (1981).
2. Harry Hochstadt, Integral equations, (Wiley, 1973).
3. W. Koppelman and J. D. Pincus, Spectral representations for finite Hilbert transformations, Math. Z. 71 (1959), 399-407.
4. P. G. Rooney, On the \mathscr{G}_{v} and \mathscr{H}_{v} transformations, Canad. J. Math. 32 (1980), 1021-1044.
5. P. G Rooney, Multipliers for the Mellin transformation, Canad. Math. Bull. 25 (1982), 257-262.
6. E. C. Titchmarsh, Theory of Fourier integrals, (Oxford, 1948).
7. Harold Widom, Singular integrals in L_{p}, Trans. Amer. Math. Soc. 97 (1960), 939-960.

University of Toronto

Toronto
Ontario
Canada M5S 1A1

