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Coset Progressions and Bohr Sets

3.1 Introduction

We noted in Section 1.1 that finite subgroups and small sets were trivial

examples of sets of small doubling. In this chapter we present and de-

velop some more interesting examples of sets of small doubling in abelian

groups, starting with the following.

Definition 3.1.1 (coset progression) Given elements x1, . . . , xr of an

abelian group G, and positive integers L1, . . . , Lr, we call the set

P (x1, . . . , xr;L1, . . . , Lr) = {�1x1 + · · ·+ �rxr : −Li ≤ �i ≤ Li}
a generalised arithmetic progression, or simply a progression, with rank

r and side lengths L1, . . . , Lr. We define this progression to be proper

if the elements �1x1 + · · · + �rxr are distinct for distinct (�1, . . . , �r) ∈
[L1]

± × · · · × [Lr]
±. We sometimes abbreviate P (x1, . . . , xd;L1, . . . , Ld)

as P (x;L) or P (x;L1, . . . , Ld).

If, in addition, H is a finite subgroup of G we call the set H+P (x;L)

a coset progression of rank r. We define H +P (x;L) to be proper if the

elements h + �1x1 + · · · + �rxr are distinct for distinct (h, �1, . . . , �r) ∈
H × [L1]

± × · · · × [Lr]
±.

Note that a finite subgroup of an abelian group is a coset progression

of rank 0.

A useful way of thinking of progressions is as homomorphic images of

‘boxes’ in Zr. Indeed, given elements x1, . . . , xr of an abelian group G

and L1, . . . , Lr ∈ N, and writing B = [−L1, L1] × · · · × [−Lr, Lr] ⊂ Rr

and π : Zr → G for the unique homomorphism such that π(ei) = xi for

each i, we have P (x;L) = π(Zr ∩B). This is illustrated in Figure 3.1.
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36 Coset Progressions and Bohr Sets

π

−18 −9 −2 0 2 9 18

Figure 3.1 The progression P (9, 2; 2, 1) ⊂ Z can be viewed as π(Z2 ∩
([−2, 2]× [−1, 1])), with π : Z2 → Z defined via π(1, 0) = 9 and π(0, 1) = 2.

Lemma 3.1.2 (coset progressions are approximate groups) Let H +

P = H + P (x;L) be a coset progression of rank r in an abelian group

G. Let k ∈ N. Then there exists a set X ⊂ H + (k − 1)P of size at

most kr such that k(H + P ) ⊂ X + H + P . In particular, H + P is a

2r-approximate group, and |k(H + P )| ≤ kr|H + P | for every k ∈ N.

Proof Let e1, . . . , er be the standard basis of Zr. Note that there exists

a set X0 ⊂ (k − 1)P (e;L) of size at most kr such that kP (e;L) ⊂
X +P (e;L); Figure 3.2 illustrates this in the case r = 2, k = 4. Writing

π : Zr → G/H for the unique homomorphism such that π(ei) = H + xi,

the lemma then follows by picking, for each x ∈ X0, an element x′ ∈
π(x), and taking X to consist of these elements x′.

It turns out that another way of producing sets of small doubling is via

inverse images of boxes. To do this requires some notation. First, write

T = R/Z. Then, given (x1, . . . , xd) ∈ Td, define ‖(x1, . . . , xd)‖Td ≥ 0

by writing (x̂1, . . . , x̂d) for the unique representative of (x1, . . . , xd) in

(− 1
2 ,

1
2 ]

d, and setting ‖(x1, . . . , xd)‖Td = ‖(x̂1, . . . , x̂d)‖∞. Write Ĝ for

the space of homomorphisms G → T.

Definition 3.1.3 (Bohr set) Let G be a finite abelian group, let d ∈ N,
let γ ∈ Ĝd, and let ρ ∈ [0, 1

2 ]. Then we call the set

B(γ, ρ) = {x ∈ G : ‖γ(x)‖Td ≤ ρ}

a Bohr set of rank d. In Chapter 4 it will be useful to use some alternative

notation: given Γ ⊂ Ĝ we write

B(Γ, ρ) = {x ∈ G : ‖γ(x)‖T ≤ ρ for every γ ∈ Γ}.
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4P (e;L)

P (e;L)

Figure 3.2 The sum set 4P (e;L) covered by 42 translates of P (e, L) in the

r = 2 case of Lemma 3.1.2.

Note that these two definitions give the same set if γ = (γ1, . . . , γd) and

Γ = {γ1, . . . , γd}.

Note thatB(γ, ρ) is the inverse image under γ of the cube [−ρ, ρ]d ⊂ Td.

Proposition 3.1.4 (Bohr sets are approximate groups) Let G be an

abelian group, let d ∈ N, let γ ∈ Ĝd, and let ρ ≤ 1
2 . Then for every k ∈ N

the set kB(γ, ρ) is covered by (2k)d translates of B(γ, ρ). In particular,

B(γ, ρ) is a 4d-approximate group and |kB(γ, ρ)| ≤ (2k)d|B(γ, ρ)|.

In the proof of Proposition 3.1.4 it will be helpful to define a slight

variant of a Bohr set. Given γ ∈ Ĝr and ρ ≤ 1
2 , for every ξ ∈ Tr we define

the shifted Bohr set B(γ, ξ, ρ) via B(γ, ξ, ρ) = {x ∈ G : ‖γ(x)− ξ‖Tr ≤
ρ}. Thus B(γ, 0, ρ) = B(γ, ρ), for example.

Lemma 3.1.5 Let G be a finite abelian group, let d ∈ N, let γ ∈ Ĝd,

and let ρ ≤ 1
2 . Let ξ ∈ Td. Then there exists x0 ∈ G such that

B(γ, ξ, ρ
2 ) ⊂ B(γ, ρ) + x0.

In particular, |B(γ, ξ, ρ
2 )| ≤ |B(γ, ρ)|.
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38 Coset Progressions and Bohr Sets

Proof See [68, Lemma 4.20]. If B(γ, ξ, ρ
2 ) = ∅ then the lemma is trivial

with x0 = 0. If B(γ, ξ, ρ
2 ) �= ∅ then pick some x0 ∈ B(γ, ξ, ρ

2 ) and note

that B(γ, ξ, ρ
2 )− x0 ⊂ B(γ, ρ).

Proof of Proposition 3.1.4 Note that kB(γ, ρ) ⊂ B(γ, kρ). The propo-

sition therefore follows from Lemma 3.1.5 and the fact that B(γ, kρ) can

be covered by (2k)r sets of the form B(γ, ξ, ρ
2 ).

We have so far identified the following sets of small doubling in abelian

groups:

• sets of bounded size;

• coset progressions of bounded rank;

• Bohr sets of bounded rank.

Since these examples are all approximate groups, Lemma 2.7.4 shows

that Freiman-homomorphic images of any of them are also approximate

groups, and in particular sets of small doubling. Note also that, given a

set of small doubling, we can always obtain further sets of small doubling

simply by taking ‘dense’ subsets of the initial set. Indeed, given a finite

set B and a subset A ⊂ B, we define the density of A in B to be |A|/|B|.
Then, if |B2| ≤ K|B| and A ⊂ B with density 1/C, it is easy to see that

|A2| ≤ CK|A|. Thus dense subsets of any of the examples listed above

are themselves sets of small doubling. We must therefore add to the

above list:

• Freiman-homomorphic images of any of the above examples;

• dense subsets of any of the above examples.

The principal aim of this chapter is to prove various results expressing

the different examples in this list in terms of one another. In the next sec-

tion we show that both sets of bounded size and Freiman-homomorphic

images of coset progressions are dense subsets of coset progressions. In

the last two sections we prove the following theorem, which is the main

result of this chapter.

Theorem 3.1.6 Let G be an abelian group. Suppose that B0 is a Bohr

set of rank d in some finite abelian group and ϕ : 3B0 → G is a centred

Freiman 2-homomorphism, and write B = ϕ(B0). Then there exists a

coset progression H+P of rank at most d+(8d)2d such that B ⊂ H+P ⊂
(2 + (8d)2d)B. In particular, by Lemmas 3.1.4 and 2.7.4, B has density

at least 1/ exp(exp(O(dO(1)))) in H + P .
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3.2 Small Sets and Freiman Images of Coset Progressions 39

Thus, every example we have given so far of a set of small doubling in

an abelian group can be realised as a dense subset of a coset progression.

It turns out that this is a general phenomenon: in Chapter 4 we prove

the Freiman–Green–Ruzsa theorem, Theorem 4.1.2, which states that

every set of small doubling in an abelian group can be realised as a

dense subset of a coset progression.

Remark At first sight it is somewhat unsatisfactory to have the double-

exponential dependence on the rank d in the bound on the density in

Theorem 3.1.6. However, we should really compare the density to the

doubling constant of B, which by Lemma 3.1.4 is exponential in d. The

rank of the coset progression given by Theorem 3.1.6 is thus of com-

parable order to the doubling constant, and its density in B is just

a single exponential in the doubling constant. These bounds are com-

parable to the bounds that one would obtain using the more general

Freiman–Green–Ruzsa theorem from the next chapter (Theorem 4.1.2).

Remark The reader is invited to show in Exercise 3.1 that a coset pro-

gression can always be realised as a Freiman image of a Bohr set. This

can be seen as a strong converse to Theorem 3.1.6, and in conjunction

with that theorem shows that Bohr sets and coset progressions are es-

sentially equivalent notions.

3.2 Small Sets and Freiman Images of Coset
Progressions

We can make an immediate reduction to the list of examples we gave at

the end of the last section. Given a subset A ⊂ G of size at most K, say

A = {a1, . . . , ar} with r ≤ K, we have

A ⊂ P (a1, . . . , ar; 1, . . . , 1). (3.2.1)

Thus A is contained with density at most 3K in a progression of rank

at most K. We may therefore remove sets of bounded size from the list.

Remark 3.2.1 It is important to note that whilst (3.2.1) allows us to re-

duce the list of examples of sets of small doubling from a qualitative per-

spective, from a quantitative perspective we have lost something, since

the size and doubling constant of the progression given by (3.2.1) are

both exponential in the doubling constant of the set we started with.

If one is concerned with optimising bounds, it can therefore be useful
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40 Coset Progressions and Bohr Sets

to treat small sets as being separate from coset progressions; we give

further details in Remark 4.1.8.

We can also ignore Freiman-homomorphic images of coset progres-

sions, since they are themselves dense subsets of coset progressions, as

follows.

Lemma 3.2.2 Let G be an abelian group and let H + P be a coset

progression of rank r in some other abelian group. Suppose that ϕ : H +

P → G is a Freiman 2-homomorphism. Then ϕ(H +P )−ϕ(0) is also a

coset progression of rank r. In particular, ϕ(H+P )+{0,−ϕ(0),−2ϕ(0)}
is a coset progression of rank r + 1 containing ϕ(H + P ) as a subset of

density at least 1
3 .

Proof Writing P = P (x1, . . . , xr;L1, . . . , Lr), set yi = ϕ(xi)− ϕ(0) for

each i = 1, . . . , r. We claim that

ϕ(H + P ) = ϕ(H) + P (y1, . . . , yr;L1, . . . , Lr). (3.2.2)

Since Lemma 2.7.2 (iii) and Lemma 2.7.3 (iii) imply that ϕ(H) − ϕ(0)

is a subgroup of G, this is sufficient. In fact, we prove that

ϕ(h+ �1x1 + · · ·+ �rxr) = ϕ(h) + �1y1 + · · ·+ �ryr (3.2.3)

whenever h ∈ H and |�i| ≤ Li.

It follows from Lemma 2.7.2 (ii) that −yi = ϕ(−xi) − ϕ(0). We may

therefore, on replacing xi by −xi and yi by −yi where necessary, assume

that �i ≥ 0 for each i in (3.2.3). Moreover, (3.2.3) holds trivially when

�i = 0 for every i, so we may assume that �1 + · · ·+ �r > 0. This implies

in particular that there exists some �i > 0, and so by induction on

�1 + · · ·+ �r we may assume that

ϕ(h+ �1x1 + · · ·+ (�i − 1)xi + · · ·+ �rxr)

= ϕ(h) + �1y1 + · · ·+ (�i − 1)yi + · · ·+ �ryr.

It follows that

ϕ(h+ �1x1 + · · ·+ �rxr) + ϕ(0)

= ϕ(h+ �1x1 + · · ·+ (�i − 1)xi + · · ·+ �rxr) + ϕ(xi)

= ϕ(h) + �1y1 + · · ·+ �iyi + · · ·+ �ryr + ϕ(0),

which implies (3.2.3) and therefore the lemma.
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3.3 Lattices

We now come onto Theorem 3.1.6. Before proving it, we will need to

develop our understanding of the structure of Bohr sets. Given a finite

abelian group G and γ ∈ Ĝd, the image γ(G) is a discrete subgroup of

Td. Given ρ ∈ [0, 1
2 ], the Bohr set B(γ, ρ) is then the pullback under γ

of [−ρ, ρ]d ∩ γ(G).

To study such sets we use a field called the geometry of numbers. In

this section and the next we present a brief summary of those aspects of

the geometry of numbers that we need in order to prove Theorem 3.1.6.

Our treatment is based on Cassels [21], to which the reader may turn

for a far more detailed account of the field.

A significant part of the geometry of numbers is concerned with in-

teractions between lattices and symmetric convex bodies in Rd. In this

section we define lattices and introduce some of their properties; in the

next we deal with symmetric convex bodies.

Definition 3.3.1 (lattice) Let d ∈ N, and let V be a d-dimensional

real vector space. A lattice Λ ⊂ V is a group generated by a basis for V .

Equivalently, Λ is a lattice if there exists a basis x1, . . . , xd for V such

that

Λ = {ξ1x1 + · · ·+ ξdxd : ξi ∈ Z for each i}.
We call x1, . . . , xd a basis for Λ. If Γ ⊂ Λ is another lattice then we say

that Γ is a sublattice of Λ and write Γ < Λ.

It is easy to see that a lattice Λ ⊂ Rd is discrete, in the sense that

given an arbitrary element v ∈ Λ there exists an open neighbourhood

A of v such that Λ ∩ A = {v}. It is also useful to note the following

converse.

Lemma 3.3.2 Let d ∈ N, and suppose that Λ is a discrete subgroup of

a d-dimensional real vector space V such that span
R
(Λ) = V . Then Λ is

a lattice in V .

Proof If d = 1, assume without loss of generality that V = R, and note

that discreteness implies that there is a minimal positive element v ∈ Λ.

It follows that Λ = 〈v〉, which proves the lemma in the case d = 1.

If d > 1, let v0 ∈ Λ be arbitrary, and then note that discreteness

implies that there is a minimal λ > 0 such that λv0 ∈ Λ. Set v = λv0,

write W = span
R
(v), and note that

Λ ∩W = 〈v〉. (3.3.1)
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42 Coset Progressions and Bohr Sets

We claim that Λ/(Λ ∩ W ) is a discrete subgroup of V/W . Indeed, if

x, v1, v2, . . . ∈ Λ and w1, w2, . . . ∈ Λ ∩W are such that vn − wn → x as

n → ∞ then the discreteness of Λ implies that vn = x+wn for all large

enough n, and hence that vn is eventually constant modulo W . This

implies that Λ/(Λ ∩W ) is discrete in V/W . Since span
R
(Λ/(Λ ∩W )) =

V/W , by induction we may conclude that Λ/(Λ∩W ) is a lattice in V/W ,

which is to say generated by a basis for V/W . Adding v to this basis

gives a basis for V , which by (3.3.1) is also a generating set for Λ, which

completes the proof.

The relevance of lattices to Theorem 3.1.6 arises thanks to the follow-

ing lemma.

Lemma 3.3.3 Let G be a finite abelian group, let γ ∈ Ĝd, and set

Λ = γ(G) + Zd ⊂ Rd. Then Λ is a lattice in Rd.

Proof Set B = [0, 1)d, and note that B is a complete set of coset rep-

resentatives for Zd in Rd. In particular, Λ∩B is a complete set of coset

representatives for Zd in Λ. Since Zd has finite index (at most |G|) in

Λ, this implies that |Λ ∩ B| < ∞, from which it easily follows that Λ is

discrete. Since Λ contains Zd we have span
R
(Λ) = Rd, and so it follows

from Lemma 3.3.2 that Λ is a lattice, as required.

Let Λ be a lattice in Rd with basis x1, . . . , xd, and consider the paral-

lelopiped

P = {η1x1 + · · ·+ ηdxd : ηi ∈ [0, 1) for each i}.
We call P the fundamental parallelopiped for Λ with respect to the basis

x1, . . . , xd. Since x1, . . . , xd is by definition also a basis for Rd, there exist

unique functions x : Rd → Λ and p : Rd → P such that

v = x(v) + p(v) (3.3.2)

for each v ∈ Rd. In particular, Rd is the countable disjoint union of the

sets x+ P with x ∈ Λ.

Write vol for Lebesgue measure normalised with respect to the stan-

dard basis of Rd. Given elements x1, . . . , xd ∈ Rd, define the determinant

det(x1, . . . , xd) to be the determinant of the d×d matrix whose columns

are the elements x1, . . . , xd expressed as column vectors with respect to

the standard basis for Rd. Note that if P is a fundamental parallelopiped

for a lattice Λ with respect to a basis x1, . . . , xd then

vol(P ) = | det(x1, . . . , xd)|. (3.3.3)
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Proposition 3.3.4 Let Λ be a lattice in Rd with basis x1, . . . , xd, and

Γ a sublattice with basis y1, . . . , yd. Then

| det(y1, . . . , yd)|
| det(x1, . . . , xd)| = [Λ : Γ].

Note that Proposition 3.3.4 implies in particular that if x1, . . . , xd and

y1, . . . , yd are two bases of the same lattice Λ then | det(x1, . . . , xd)| =
| det(y1, . . . , yd)|. Once we have proved the proposition , we may there-

fore define the determinant det(Λ) of a lattice Λ by setting det(Λ) =

| det(x1, . . . , xd)| for an arbitrary basis x1, . . . , xd of Λ.

Proof Let P be a fundamental parallelopiped for Λ with respect to

x1, . . . , xd, and Q a fundamental parallelopiped for Γ with respect to

y1, . . . , yd. Let

x : Rd → Λ p : Rd → P

y : Rd → Γ q : Rd → Q

be the unique functions satisfying

v = x(v) + p(v) = y(v) + q(v) (3.3.4)

for each v ∈ Rd as in (3.3.2). We claim that

|p−1(u) ∩Q| = [Λ : Γ] (3.3.5)

for every u ∈ P . Since p is a translation on each set x+P with x ∈ Λ, it

is measure preserving on restriction to each such set, and so (3.3.5) will

then imply that p(Q) = P and vol(Q) = [Λ : Γ] vol(P ), which by (3.3.3)

gives the desired result.

To prove (3.3.5), first note that the uniqueness of y(v) and q(v) in

(3.3.4) implies that Q is a complete set of coset representatives for Γ in

Rd. It follows that for every u ∈ Rd the set Q− u is also a complete set

of coset representatives for Γ in Rd. This implies that for every u ∈ Rd

the set Λ ∩ (Q − u) is a complete set of coset representatives for Γ in

Λ. This in turn implies in particular that |Λ ∩ (Q − u)| = [Λ : Γ], and

hence that |(Λ + u) ∩Q| = [Λ : Γ]. However, if u ∈ P then (Λ + u) ∩Q

is precisely |p−1(u) ∩Q|, and so this gives (3.3.5), as claimed.
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A similar argument to the proof of Proposition 3.3.4 gives the follow-

ing.

Lemma 3.3.5 (Blichfeldt [7]) Let d ∈ N. Let Λ be a lattice in Rd, and

let A ⊂ Rd be a measurable set. Suppose that

(A−A) ∩ Λ = {0}. (3.3.6)

Then vol(A) ≤ det(Λ).

Proof Let x1, . . . , xd be a basis for Λ, write P for the corresponding

fundamental parallelopiped, and define maps x : Rd → Λ and p : Rd → P

as in (3.3.2). On restriction to each set of the form x+P with x ∈ Λ the

map p is a translation, and hence measure preserving. Moreover, (3.3.6)

implies that for every u ∈ P we have |p−1(u) ∩ A| ≤ 1. It follows that

vol(A) ≤ vol(p(A)) ≤ vol(P ) = | det(x1, . . . , xd)|, as required.

3.4 Convex Bodies

In studying the Bohr set B(γ, ρ) we essentially study the interaction of

the lattice coming from Lemma 3.3.3 with the cube [−ρ, ρ]. The only

property of [−ρ, ρ] that we will really need is that its interior, (−ρ, ρ),

is a so-called symmetric convex body. We now define this term, starting

with the adjective convex.

Definition 3.4.1 (convex set) Let V be a finite-dimensional real vector

space. A set A ⊂ V is said to be convex if whenever x, y ∈ A and

ρ ∈ (0, 1) the point ρx+ (1− ρ)y ∈ A as well.

Definition 3.4.2 (convex body) A convex body B ⊂ Rd is a non-

empty bounded open convex set; it is symmetric if for every x ∈ B we

also have −x ∈ B.

The purpose of this short section is to record some elementary prop-

erties of convex bodies. We start by introducing and clarifying some

notation. Throughout the rest of this chapter, whenever A ⊂ Rd and

λ ∈ R, we write λA for the dilate

λA = {λa : a ∈ A}.
Note that if λ ∈ Z then there is the potential for ambiguity here, since

in general we have defined λA to be the iterated sum set A + · · · + A.
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When there is the danger of this, we write instead

λ ·A = {λa : a ∈ A}
to distinguish the dilate from the iterated sum set.

The following lemma shows that in the setting of symmetric convex

bodies this potential ambiguity is harmless.

Lemma 3.4.3 Let d ∈ N and let B ⊂ Rd be a symmetric convex body.

Then for every k, � ∈ N we have

k ·B − � ·B = kB − �B = (k + �)B.

The proof of Lemma 3.4.3 is a straightforward exercise, and so we

omit it. The same goes for the following lemma.

Lemma 3.4.4 Let d, k ∈ N. Suppose B ⊂ Rd is a convex body and

π : Rd → Rk is a linear map. Then π(B) is also a convex body, and if

B is symmetric then so is π(B).

Lemma 3.4.5 Let d ∈ N. Suppose that U, V < Rd are complementary

subspaces, in the sense that Rd = U ⊕ V , and write π : Rd → V for the

projection taking (u, v) ∈ U ⊕ V = Rd to u ∈ U . Suppose B ⊂ Rd is a

convex body. Then there is a continuous map f : π(B) → B that is a

right inverse to π in the sense that π ◦ f is the identity on π(B).

Proof Set k = dimV . We first prove the lemma in the case where k = 1,

say V = span
R
(v0) for some v0 ∈ Rd. Define functions ϕ+, ϕ− : π(B) →

R by setting

ϕ+(u) = sup{λ ∈ R : u+ λv0 ∈ B},
ϕ−(u) = inf{λ ∈ R : u+ λv0 ∈ B}.

We claim first that ϕ+ and ϕ− are continuous. Let u ∈ π(B), noting that

by definition there exists ξ ∈ R such that u+ ξv0 ∈ B. The openness of

B therefore implies that there exists an open neighbourhood N of u in

U such that

u+N + ξv0 ⊂ B. (3.4.1)

It then follows from (3.4.1), convexity and the definition of ϕ+ that for

every ε ∈ (0, 1) and every x ∈ N we have

ϕ+(u+ εx) ∈ ϕ+(u) + [−ε(ϕ+(u)− ξ), ε(ϕ+(u)− ξ)],

and so ϕ+ is continuous at u, as claimed. The proof that ϕ− is continuous
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46 Coset Progressions and Bohr Sets

is essentially identical (alternatively, replacing v0 by −v0 puts −ϕ− in

the role of ϕ+).

Given u ∈ π(B), it follows from convexity and the definitions of ϕ+

and ϕ− that

v + 1
2 (ϕ

+(u) + ϕ−(u))v0 ∈ B.

This implies we may define a function f : π(B) → B by f(u) =
1
2 (ϕ

+(u)+ϕ−(u))v0. This is trivially a right inverse to π, and is contin-

uous by the continuity of ϕ+ and ϕ−, and so satisfies the requirements

of the lemma in the case k = 1.

If k > 1, let v1, . . . , vk be a basis for V . For each j = 1, . . . , k set

Vj = span
R
(vj) and Uj = span

R
(vj+1, . . . , vk) + U , and define πj :

Vj ⊕ Uj → Uj by setting

πj(λjvj + · · ·+ λkvk + u) = λj+1vj+1 + · · ·+ λkvk + u

for every λi ∈ R and u ∈ U . By repeated application of Lemma 3.4.4,

for each j the set πj ◦ · · · ◦ π1(B) is a convex body in Uj . By the case

k = 1 of the lemma, for each j we may therefore define a continuous

function

fj : πj ◦ · · · ◦ π1(B) → πj−1 ◦ · · · ◦ π1(B)

that is a right inverse to πj . Since

π = πk ◦ · · · ◦ π1,

the function

f1 ◦ · · · ◦ fk : π(B) → B

is therefore a continuous right inverse to π, and so satisfies the require-

ments of the lemma.

3.5 Successive Minima and Minkowski’s Second
Theorem

Given a symmetric convex body B ⊂ Rd, we define the successive min-

ima λ1, . . . , λd of B with respect to Λ via

λi = inf{λ > 0 : dim span
R
(λB ∩ Λ) ≥ i}.

Writing B for the closure of B, we may choose inductively a list

v1, . . . , vd ∈ Zd
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of linearly independent vectors such that v1, . . . , vi ∈ λiB for every i.

We call such a list a directional basis for Λ with respect to B; note that

for a given B and Λ, a directional basis may not be uniquely defined.

We also caution that a directional basis for Λ with respect to B need

not be a basis for Λ in the sense of Definition 3.3.1 (see Exercise 3.5).

The key result we will need from the geometry of numbers is the

following.

Theorem 3.5.1 (Minkowski’s second theorem) Let B ⊂ Rd be a sym-

metric convex body and let Λ be a lattice. Write λ1 ≤ · · · ≤ λd for

the successive minima of B with respect to Λ. Then λ1 . . . λd vol(B) ≤
2d det(Λ).

Minkowski’s second theorem actually also includes the lower bound

λ1 · · ·λd vol(B) ≥ 2n

n! det(Λ), but in this book we need only the upper

bound stated in Theorem 3.5.1. The reader interested in the lower bound

can consult [21, §VIII.4.3] for a proof.

We prove Theorem 3.5.1 following Tao and Vu [68, §3.5], starting with

a result they call the squeezing lemma.

Lemma 3.5.2 (squeezing lemma [68, Lemma 3.31]) Let d, k ∈ N,
let μ ∈ (0, 1], let B ⊂ Rd be a convex body, and let V < Rd be a k-

dimensional subspace. Suppose that A ⊂ B is an open set. Then there

exists an open subset A′ ⊂ B satisfying

vol(A′) = μk vol(A) (3.5.1)

and

(A′ −A′) ∩ V ⊂ (μ(A−A)) ∩ V. (3.5.2)

Proof Let U be a complementary subspace to V in Rd, so that Rd =

U ⊕ V . Define the projection π : Rd → U by setting π(u + v) = u for

every u ∈ U and v ∈ V .

Let f : π(B) → B be the continuous right inverse to π given by

Lemma 3.4.5, and note that by the convexity of B we may set

Φ : B → B

x �→ μx+ (1− μ)f(π(x)).

We claim that Φ is a homeomorphism from B to Φ(B). It is certainly

continuous by the continuity of f and π; we will show that it has a

continuous inverse Φ(B) → B. First note that, by definition of f , there

exists a continuous map ϕ : π(B) → V such that f(u) = u + ϕ(u) for
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48 Coset Progressions and Bohr Sets

every u ∈ π(B). For every u ∈ U and v ∈ V with u + v ∈ B, it follows

that

Φ(u+ v) = u+ ϕ(u) + μ(v − ϕ(u)). (3.5.3)

It follows that the map Φ(B) → B defined by u+v �→ u+ϕ(u)+μ−1(v−
ϕ(u)) is an inverse to Φ. The continuity of ϕ ensures that this inverse is

continuous, and so Φ is a homeomorphism, as required.

The set A′ = Φ(A) is therefore open. It is also a subset of B by

definition of Φ. The expression (3.5.3) for Φ shows that for each u ∈ U

the map Φ contracts the set A∩(u+V ) by a factor of μ in every direction

of V , so Fubini’s theorem (Theorem 1.5.4) gives (3.5.1).

Finally, suppose that y ∈ (A′ − A′) ∩ V . By definition there exist

x1, x2 ∈ A such that y = Φ(x1) − Φ(x2). Writing each xi in the form

xi = ui + vi for some ui ∈ U and vi ∈ V , we may conclude from (3.5.3)

that

y = u1 − u2 + ϕ(u1)− ϕ(u2) + μ(v1 − v2 − ϕ(u1) + ϕ(u2)). (3.5.4)

However, the assumption that y ∈ V then forces u1 = u2, which com-

bined with (3.5.4) implies that

y = μ(v1 − v2)

= μ(x1 − x2)

∈ μ(A−A),

giving (3.5.2), as required.

Proof of Theorem 3.5.1 We follow Tao and Vu [68, §3.5]. Fix a direc-

tional basis v1, . . . , vd for Λ with respect to B, and for each i = 0, 1, . . . , d

set Vi = span
R
(v1, . . . , vi) and Λi = Λ ∩ (Vi \ Vi−1), noting that

λjB ∩ Λj = {0} (3.5.5)

by definition of λj and Λj .

Set B0 = λd

2 B. Starting with A0 = B0, apply Lemma 3.5.2 iteratively

to obtain a sequence A0, A1, . . . , Ad−1 of open subsets of the convex

body B0 such that

vol(Ai) =

(
λi

λi+1

)j

vol(Ai−1) (3.5.6)

and

(Ai −Ai) ∩ Vi ⊂
(

λi

λi+1
(Ai−1 −Aj−1)

)
∩ V (3.5.7)
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for each i.

It is immediate from (3.5.6) and the definition of A0 that

vol(Ad−1) =
λ1 . . . λd vol(B)

2d
. (3.5.8)

For each j we have

(Ad−1 −Ad−1) ∩ Vj ⊂
(

λj

λd
(Aj−1 −Aj−1)

)
∩ Vj (by (3.5.7))

⊂
(

λj

λd
(B0 −B0)

)
∩ Vj (since Aj−1 ⊂ B0)

⊂
(

λj

λd

(
λd

2 B − λd

2 B
)) ∩ Vj (by definition of B0)

⊂ (λjB) ∩ Vj (by Lemma 3.4.3),

which by (3.5.5) and the definition of Λj implies that (Ad−1 − Ad−1) ∩
Λj = {0}. Since this holds for all j, we conclude that

(Ad−1 −Ad−1) ∩ Λ = {0}.
Lemma 3.3.5 therefore combines with (3.5.8) to prove the theorem.

3.6 Finding Dense Coset Progressions in Bohr Sets

In this section we prove Theorem 3.1.6. Slightly counterintuitively, the

main step is to show that a Bohr set contains a progression as a dense

subset, as follows.

Proposition 3.6.1 Let G be a finite abelian group, let d ∈ N, let γ ∈
Ĝd, and let ρ ∈ (0, 1

6 ). Then B(γ, ρ) contains a proper coset progression

H + P of rank at most d and size at least |B(γ, ρ)|/(4d)2d.
Once we have this, Ruzsa’s covering argument allows us to obtain the

desired containment in the opposite direction, as follows.

Proof of Theorem 3.1.6 It follows from Proposition 3.6.1 that B0 con-

tains a coset progression H0 + P0 of rank at most d and size at least

|B0|/(4d)2d. Proposition 3.1.4 implies that |B0+H0+P0| ≤ 4d|B0|, which
means in particular that |B0+H0+P0| ≤ (8d)2d|H0+P0|. Lemma 2.4.4

then implies that there exists a set X ⊂ B0 of size at most (8d)2d such

that B0 ⊂ X + (H0 + P0)− (H0 + P0), and hence

B ⊂ ϕ(X) + ϕ(H0 + P0)− ϕ(H0 + P0). (3.6.1)
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Since ϕ is centred, Lemma 3.2.2 implies that there exists a coset progres-

sion H + P ⊂ G of rank at most d such that ϕ(H0 + P0) = H + P , and

the inclusion (3.6.1) therefore becomes B ⊂ ϕ(X) +H + 2P . However,

writing ϕ(X) = {x1, . . . , xt}, and defining P ′ = P (x1, . . . , xt; 1, . . . , 1)

in a similar fashion to (3.2.1), we have ϕ(X) ⊂ P ′, and hence

B ⊂ H + 2P + P ′ ⊂ (2 + (8d)2d
)
B

by Lemma 2.7.2 (ii). Since H + 2P + P ′ is a coset progression of rank

at most d+ (8d)2d, the theorem is proved.

Proposition 3.6.1 is immediate from the following two propositions.

Proposition 3.6.2 Let G be a finite abelian group, let d ∈ N, let

γ ∈ Ĝd, and let ρ ∈ (0, 1
2 ). Let Λ be the pullback to Rd of the subgroup

γ(G) of Rd/Zd, and write λ1, . . . , λd for the successive minima of the

cube Q = (−1, 1)d with respect to Λ. Define r = dim span
R
(Λ ∩ ρQ).

Then B(γ, ρ) contains a proper coset progression H + P of rank r and

size at least (ρ/r)rλr+1 · · ·λd|G|. In particular, H +P has rank at most

d and size at least (ρ/d)d|G|.
Proposition 3.6.3 Let G be a finite abelian group, let d ∈ N, let

γ ∈ Ĝd, and let ρ ∈ (0, 1
6 ). Let Λ be the pullback to Rd of the subgroup

γ(G) of Rd/Zd, and write λ1, . . . , λd for the successive minima of the

cube Q = (−1, 1)d with respect to Λ. Define r = dim span
R
(Λ ∩ ρQ).

Then we have

|B(γ, ρ)| ≤ (12d)dρrλr+1 · · ·λd|G|.
Proof of Proposition 3.6.2 Let v1, . . . , vd be a directional basis for Λ

with respect to Q, and for i = 1, . . . , r write Li = ρ/(rλi). Note that

P (v1, . . . , vr;L1, . . . , Lr) ⊂ ρQ ∩ Λ. (3.6.2)

Set H = ker γ, pick an arbitrary xi ∈ G such that γ(xi) ≡ vi (modZd)

for each i ∈ [r], and set

P = P (x1, . . . , xr;L1, . . . , Lr),

noting that H + P ⊂ B(γ, ρ). We claim that H + P is proper. Indeed,

let �1, . . . , �r, �
′
1, . . . , �

′
r with |�i| ≤ Li be such that

�1x1 + · · ·+ �rxr ∈ �′1x1 + · · ·+ �′rxr +H.

By (3.6.2) we then have

(�1 − �′1)v1 + · · ·+ (�r − �′r)vr ∈ 2ρQ ∩ Zd,
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which by the linear independence of the vi and the fact that ρ < 1
2

implies that �i = �′i for every i, and so H + P is proper as claimed.

Now note that det(Λ) = |H|/|G| and vol(Q) = 2d, so that Minkowski’s

second theorem (Theorem 3.5.1) gives

λ1 · · ·λd ≤ |H|
|G| . (3.6.3)

We therefore have

|H + P | ≥ L1 · · ·Lr|H| (by properness)

=
ρr|H|

rrλ1 · · ·λr

≥ (ρ/r)rλr+1 · · ·λd|G| (by (3.6.3)),

and so H + P is of the required size and the proof is complete.

In proving Proposition 3.6.3 it will be convenient to define, for a given

symmetric convex body B ⊂ Rd, the norm ‖ · ‖B on Rd via ‖x‖B =

inf{ν ≥ 0 : x ∈ νB}. It turns out that ‖ · ‖B is indeed a norm. However,

as we will not need this fact we leave it to the reader to prove it in

Exercise 3.6, along with the converse statement that the unit ball of an

arbitrary norm on Rd is a symmetric convex body.

Lemma 3.6.4 Let B be a symmetric convex body in Rd and let Λ be a

lattice in Rd. Let λ1, . . . , λd be the successive minima of B with respect to

Λ, and define r = dim span
R
(Λ∩B). Then there exists a basis x1, . . . , xd

for Rd with xi ∈ Λ for each i such that 1 < ‖xi‖B ≤ 2 for i = 1, . . . , r

and ‖xi‖B = λi for i = r+1, . . . , d, and such that B∩〈x1, . . . , xd〉 = {0}.
Proof Let v1, . . . , vd be a directional basis for Λ with respect to B. For

i = d, . . . , 1 in turn, define

αi = min{α ∈ N : ‖ααi+1 · · ·αdvi‖B > 1},
noting that

αk · · ·αd > λ−1
k (3.6.4)

for every k. Set xi = αi · · ·αdvi for each i, noting that 1 < ‖xi‖B ≤ 2

for i = 1, . . . , r and ‖xi‖ = λi for i = r + 1, . . . , d, as required.

It remains to show that B ∩ 〈x1, . . . , xd〉 = {0}. To that end, let y ∈
B ∩ 〈x1, . . . , xd〉, and let k be minimal such that y ∈ span

R
(v1, . . . , vk).

This implies that y ∈ 〈x1, . . . , xk〉, and hence y ∈ αk · · ·αd〈v1, . . . , vk〉.
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It follows that

y

αk · · ·αd
∈
(

1

αk · · ·αd
B

)
∩ Λ,

and hence by (3.6.4) that

y

αk · · ·αd
∈ λkB ∩ Λ.

By the minimality of k and the definitions of λk and vk it follows that

y = 0. We therefore have B ∩ 〈x1, . . . , xd〉 = {0}, as required.
Proof of Proposition 3.6.3 Write H = ker γ, and note that

|ρQ ∩ Λ||H| = |B(γ, ρ)| (3.6.5)

and

| 12Q ∩ Λ||H| ≤ |G|. (3.6.6)

Let x1, . . . , xd ∈ Λ be the basis for Rd arising on applying Lemma 3.6.4

with B = 2ρQ, noting that the successive minima of 2ρQ with respect

to Λ are λi/2ρ. Note in particular that

2ρQ ∩ 〈x1, . . . , xd〉 = {0}. (3.6.7)

Since ‖ · ‖∞ = 2ρ‖ · ‖B , we have ‖xi‖∞ ≤ 4ρ for i = 1, . . . , r and

‖xi‖∞ = λi for i = r+1, . . . , d. Defining Li = �1/(12dρ)� for i = 1, . . . , r,

and Li = �1/(3dλi)� for i = r + 1, . . . , d, it follows that P (x;L) ⊂ 1
3Q,

and hence, since ρ < 1
6 , that

P (x;L) + ρQ ⊂ 1
2Q. (3.6.8)

Note that we have, slightly crudely,

|P (x;L)| ≥ 1

(12d)dρrλr+1 · · ·λd
. (3.6.9)

Now, given two distinct elements u, v ∈ P (x;L), we have (u + ρQ) ∩
(v + ρQ) = ∅, since if (u+ ρQ) ∩ (v + ρQ) �= ∅ for u, v ∈ P (x;L) then

u−v ∈ 2ρQ∩〈x1, . . . , xd〉 and then u = v by (3.6.7). It therefore follows

from (3.6.8) that | 12Q ∩ Λ| ≥ |P (x;L)||ρQ ∩ Λ|, and hence

|G| ≥ |P (x;L)||ρQ ∩ Λ||H| (by (3.6.6))

≥ 1

(12d)dρrλr+1 · · ·λd
|B(γ, ρ)| (by (3.6.5) and (3.6.9)),

and the proposition is proved.
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Exercises

3.1 Show that a coset progression of rank r in an arbitrary abelian

group is a Freiman-homomorphic image of a Bohr set of rank r in

some finite abelian group.

3.2 It follows from Proposition 3.6.2 that a Bohr set B(γ, ρ) of rank

d inside a finite abelian group G satisfies |B(γ, ρ)| ≥ (ρ/d)d|G|.
Prove directly that in fact |B(γ, ρ)| ≥ ρd|G|.

3.3 Let G be an abelian group, let π : Zd → G be a homomorphism,

and let B ⊂ Rd be a symmetric convex body. Show that the set

π(B ∩ Zd) is a K-approximate group for some K depending only

on d. Noting that a progression is a special case of such a set in

which B is a cuboid, formulate a similar generalisation of a Bohr

set of rank d, and prove that it is a K-approximate group with K

depending only on d.

3.4 Show that two bases x1, . . . , xd and y1, . . . , yd of Rd generate the

same lattice Λ if and only if there exists an n×n matrix A = (aij)

with integer entries and det(A) = ±1 such that yi =
∑n

j=1 aijxj

for every i. Use this to give an alternative proof of the fact that

det(Λ) is well defined.

3.5 Give an example, for some d, of a symmetric convex body B ⊂ Rd

and a lattice Λ ⊂ Rd such that whenever v1, . . . , vd is a directional

basis for Λ with respect to B we have 〈v1, . . . , vd〉 �= Λ. What is

the smallest d for which this is possible?

3.6 Show that if B ⊂ Rd is a symmetric convex body then ‖ · ‖B is a

norm. Conversely, show that if ‖·‖ is an arbitrary norm on Rd then

there exists a symmetric convex body B such that ‖ · ‖ = ‖ · ‖B .
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