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Abstract

A simple model for a problem in combustion theory has multiple steady state solutions
when a parameter is in a certain range. This note deals with the initial value problem
when the initial temperature takes the form of a hot spot. Estimates on the extent and
temperature of the spot for the steady state solution to be super-critical are obtained.

1. Introduction

A simple model for a problem in combustion theory is (see [3])

i | I = V 2 r + Sexp(aT/(a + T)) in D X {t: t > 0}, (1)

T(x, 0) = h(\) and 7 = 0 on 3£>, (2)

.where T, x and / are respectively the dimensionless temperature, spatial and
time variables, 8 a parameter and a is a constant with magnitude greater than 4
(see [7]). This problem has been considered by a number of authors, [3], [4] and
[5] among others. It is known that when 8 is within a certain range, say
0 < 8e < 8 < Scr, equation (1) has two stable steady state solutions: a sub-criti-
cal solution in which the temperature is of order one, and a super-critical
solution in which the temperature is exponentially large. Estimates of 8e and 8cr,
as well as the influence of the initial data on the attainment of super-critical
state were considered in [6], where T was assumed to depend only on the radial
distance r and time /, when D is a sphere or a cylinder.
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In this note, we extend the results in [6] for the case where the domain D is a
sphere, and investigate the response of equation (1) to a hot spot when Se < S <
SCT. In particular, we want to estimate the extent and temperature of the hot spot
for equation (1) to reach a super-critical state.

2. The initial value problem

Let (r, 9, \p) be spherical coordinates, and the domain described by 0 < r < 1,
0 < 9 < 77-, 0 < yp < 2n. At t = 0, let there be a hot spot with extent described
by

A for r0 - fie < r < r0 < 1, 0 < 9 < ve, 0 < ^ < lit,
T(x, 0) = TQ(r, 9)

0 elsewhere,
(3)

where /3, v are constants, and e = exp(-a). Because of the choice of the location
of the hot spot, we can assume the temperature T to be independent of the angle

We rewrite equation (1) as an integral equation

T(P, t)= f G(P, Q, T)T0(Q) dVQ
J D

, Q. . - r)exp( af%£T) ) 4V^, (4)
where G is the Green's function for the operator ((3/90 — V2), with homoge-
neous initial and boundary conditions and P, Q denote the field point and
source point with coordinates (r, 9, ^) and (/•', 9',«//), respectively. We have

- o . [ • / • ( * ) ] '

where k^, are the positive zeros of Jn+\n(k). We label the right side of equation
(4) as F(T) and define the iteration scheme

Since the non-linear term exp(aT/(a + T)) is bounded, an upper solution Tcan
be constructed such that T < T for all /. Hence the operator F(T) is compact.
The sequence {F(Tj)\j > 0} therefore has a convergent subsequence converging
to a unique limit. Further, since the derivative of exp(a7'/(a + T)) with respect
to T is bounded, the initial value problem (1) and (2), and hence (4), has a
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unique solution (see [2]). To estimate the steady state solution of (1), or (4), we
carry out the following asymptotic analysis for t large. In what follows, we write
<£(/•, 9, t) = 0(x()) if there exists a constant A such that |<p| < A\x\ for all values
r, 9 within the sphere and t > 0. We write x ( ) t o emphasize that x is a function
of its argument only. If x is a numerical constant, we shall write <p(r, 9, i) =
0(1). If we compare two numerical constants, A = O(B) means that A and B
are of comparable magnitude.

Let Z be sufficiently large so that for / - T > Z, we have

G(P, Q,t-r)

[Jl/iVtoi')]

= Gol(P, Q, t - T).

Here, we note that A:01 is the smallest number in the set
Then, for t — r > Z, we have

, and kOi = w

f f G(P, Q, t - r)exp
t-ZJD

, T)

GOi(P, Q, t - T)exp

8 f f[ G(P, Q,t-r)- G0l(P, Q, t - T ) ]
Jt-ZJD

aTj(Q, T)
Xexp a + Tj(Q, T)

8f [ G0l(P,Q,t-
JZJ D

ccT/Q, T)

« + ?}(G.

f G0l(P,Q, / -T)exp

Xexp

« + Tj{Q, T )

,Q,t-r)- G0l(P, Q,t-r)]

aTj(Q, T)

« + 3}(G,
(6)
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For / » Z, the second term on the right is <?(exp(-w2(/ - z))). The third term
on the right is equal to

where the prime after the summation sign means that the particular term with
subscript n = 0, p = 1 is to be omitted, and / — Z < T < t. To estimate the
above, we observe that for / » Z and Z and j sufficiently large, Tj(Q, f) will be
close to the steady state. In the steady state, T is governed by the equation

v2r = -s exP((«r/ (« + r»), (8)
with T = 0 at r = 1. Since the Laplacian is an intrinsic quantity not dependent
on the coordinate system used, and since the function exp((aT/(a + T))) does
not depend explicitly on the spatial coordinates, rotation of the axes leaves
equation (8) invariant. In spherical polar coordinates, we must have dT/W = 0
on the axis. This condition, together with the freedom to rotate axes, implies that
T(r, 0, t) is a function of r alone, as t tends to infinity. If we then examine T in
terms of its eigenfunction expansion, we can deduce that the leading term is
dominant (see Tam [6]). Thus, we have T(Q, f) ~ (A//(2r)x/2)Jx/2(irr') for some
positive constant M. Because of its sole radial dependence, the asymptotic
analysis of TJ+1 for the present case is the same as that for the case when T is
assumed to depend only on the radial distance for all t > 0, as in [6]. The
following results are therefore included only for the sake of completeness. For
their derivation, the readers are referred to [6]. In approximating TJ+X, it was
shown that we can use

Xexp
<*Tj(Q, T)

j(Q, T)
dVQdr.

Now suppose, for t > Z, we have
(irr1)Vw r J\/2{'n>

~2~JD yfp exp
«Tj(Q, T)

a + Tj(Q, T)
K,

for somey, where Kj is independent of T. Then there exists Zj > Z such that, for
/ » Zj, we have
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Using the above representation for 7}+1, we can proceed to consider the next
iteration. Suppose we have

2 V2 JD V?
then we will have

exp
« +WG.T)

dVQ > Kj+X; (9)

Jl/2(irr).

In this way, we generate a sequence of numbers {Kt), i = j,j + 1, . . . . If, for a
given 8, we have KJ+X > KJt then the sequence {K^ is monotone increasing.
Since we know the solution for T is bounded, {A,} tends to a limit. If the limit
Kx = O(e"), the solution of the initial value problem is super-critical.

To render the integral in (9) tractable, a number of approximations were
made, and we obtained

^ 2 ( A -2)eA + {A +2)},

where A = av/{airVlm + v) and c = Kj8. In Figure 1 we have plotted KJ+l

against v for a = 20. It is clear that a comparison of Kj with KJ+l becomes a
comparison of the straight line v/8 with KJ+l. Similar figures can be obtained
for other values of a.

FIGURE 1.

Graph of Ka+, against v for a sphere.
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3. The threshold phenomena

[ 6 ]

We observe from Figure 1 that, when 5 is sufficiently small, the straight line
intersects KJ+X at one point, where KJ+l = 0(1). When 8 is increased beyond a
certain value, say 8, the straight line intersects KJ+l at three points. When 5 is
further increased to be greater than 8, say, the number of intersections is
reduced to one, where KJ+, = O(ea). We derive the following information from
Figure 1. When 8 > 8, the iteration scheme will settle to a steady state solution
which is super-critical, regardless of the initial data. Thus 8 is a threshold value
for the parameter 8. When 5 is less than 8, the steady state solution is
sub-critical. For 8 between 8 and 8, the initial data plays the deciding role. If we
denote the coordinate of the middle intersection point of v/8 with KJ+l by
(u*, K*), then, for a given 8, if there is a Kp for somey, such that 8Kj > v*, the
steady state solution will be super-critical. As an illustration, we have obtained a
few numbers graphically for a = 20: 8 = 1.5"1 X 10"3, 8 = 3.53.

8

V*

1/3

99

1/2

87

2 /3

77

1

64

3/2

51

2

44

With the information obtained in the above, we are now in a position to
answer the question set out in the Introduction. For fixed a and 8 < 8 < 8, to
see whether a given initial T0(r, 0) leads to a super-critical steady state solution,
we calculate the inner product

Vw r J\n^r) [ aT0(r, 9)
exp

V?

If the number so obtained is not less than v*/8, the super-critical state will
result. The inner product is readily calculated if T0(r, 9) is as given in (3). We
have

KQ = f' Cr sin -nr sin 9 exp( " ^ ^ ) drdB
Jo Jo \a + T0(r, U) )

2TT I I r sin vr sin 9 drd9
Jo Jo

+ V2TT I r sin w sin 0 expl I
Jro-fieJo r\a + A)

0 , fl~ , VITT I aA \ „ .
= 2\I— + -— exp 1(1 — cos ve)

drd.9

X [sin irrQ - <nr0 cos nr0 — sin ir(rQ - /8e)cos w(r0 —
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If we use the fact tha t /fe a n d vt a re b o t h small , we have

X < m2r0 sin 77r0 — /J2e — sin wrQ + ——- cos irr0 \.

Now, for a = 20, 8 = \, v* = 64. Thus, if Ko > 64, the steady state solution will
be super-critical. It is perhaps worth noting that if v and /? are kept sufficient
small, then Ko cannot be made to be creater than v*/S, no matter how large A
is. Indeed, for A -> oo, we have

Ko ~ 2 y - + — y y "2/8e2| ^% s i n wo ~ 02e "y sin wro + - y 5 c°s ^o •

Since Ko depends on r0, we make the following calculations to demonstrate this
dependence. To have Ko > 64, we need to have

K 2 0 V > 4 7 . 6 if r0 = ^e

and

c2j83£3 > 31.70 if r o = 1.

Thus, no matter how hot the hot spot is, its extent must be sufficiently large for
the super-critical state to result.

Another point of interest concerns the threshold values of 8. For a = 20, the
steady state solution is super-critical if 8 > 8 = 3.53, and subcritical if 8 < 8 =
1.5"1 X 10"3. Parks [5] has obtained 8cr = 3.52, so that 5 agrees well with 8a. To
assess 8, we note that in [7] Tarn showed that, if 8 < 1.28 X 10"5 (= 8,), then,
regardless of the initial temperature, the steady state upper solution is sub-criti-
cal, and if 8 < 3.59 X 10"3 (= 82), the lower solution of the form c(l - r2)1 ' is
sub-critical. Thus the value of 8 lies between 8, and 82, as we would expect. Now
the parameter 8 is an extinction parameter. Unfortunately, the authors are not
aware of published calculations on its magnitude, so that no comparison can be
made. However, it must be said that the smallness of 8 has rather serious
implications. A system with a parameter 8 much less than the critical value
(~ 3) can become super-critical if it is subjected to heating by a sufficiently
strong hot spot.

We conclude with the following remarks: (a) For different values of a, the
critical parameters for 8 can be obtained from the graphs of K/+i against v, and
the specification of the hot spot which determines sub- or super-criticality
obtained from Ko. (b) Since our analysis leading to the expression Ko hinges only
on the assumption of rotational symmetry, that is T = T(r, 0, t), the result
obtained can also be used for arbitrary T0(r, 9).
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