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ON THE RANGES OF CERTAIN FRACTIONAL 
INTEGRALS 

P. G. ROONEY 

1. Introduction. Suppose 1 S P < °o, M is real, and denote by LM,P the 
collection of functions/, measurable on (0, oo ), and which satisfy 

(1.1) Il/IL> = [£x^\i{x)Ydx 
Vv 

< 00 . 

Also denote by [X] the collection of bounded operators from a Banach space X 
to itself. For v > 0, Re a > 0, Re & > 0, let 

(i.2) (/,.„.«/ )(x) = vx
T{a) J (*' - ty-H^fWt, 

and 

(i.3) (A,0.,/ ) (*) = f^ J (tv - xy-h-^^-'mdt, 

where £ and 77 are complex numbers. Iv,a,% and J^./g,, are generalizations of the 
Riemann-Liouville and Weyl fractional integrals respectively, and conse
quently we shall refer to them as fractional integrals. There is a vast literature 
of these fractional integrals, particularly for v = 1 and v = 2; see [6] for an 
excellent summary, and [2] for many applications. 

In particular, it is essentially known, and we shall prove below, that if 
fx/pv < Re £, Iv,a,s G [Ai,d, and that if p/pv > — Rerj, Jv,(3,r, G [A*.ÎJ- Hence 
if — Re 77 < n/pv < Reg, one can ask, for what values of the parameters 
appearing is it true that Jv./9,,(LMi3,) 3 !,,«,$(LMfJ,), or !„,«,£(LM)P) 3 Jy>^t,(LM,p). 
If it transpires that there are parameter values for which either or both of 
these inclusions are true, it is then natural to ask whether the operators 
{Jv,p,r))~~lIv,a,z and (Iv,a,s)~lJv,p,n belong to [LMtP], for these parameter values, 
and to investigate their general characters. 

The objective of this paper is to answer the questions posed in the previous 
paragraph. Kober has answered them in a number of special cases. Specifically 
in [6] he answered them for p = v = 1, p = 2, while in [7] he answered them 
for Ï> = 1,£ = 1,7? = 0, p = 1 and p = p — 1. Although his restrictions to 
v = 1 and a particular value of /x are inessential and can be removed by changes 
of variable, the other restrictions cannot be so removed. Further, our methods 
will be quite different from Kober's. 
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RANGES OF FRACTIONAL INTEGRALS 1199 

We shall apply our results, as Kober did in [6], to the study of the product 
of two Hankel transformations of different orders and considerably extend the 
known results. In particular, we obtain a substantial extension of certain of 
the results of Muckenhoupt and Stein in [8], and also an extension of the 
classical results on the boundedness of the Hilbert transformation of odd 
functions. Yet another application of the results is to the study of the range 
of the Hankel transformation. 

In section two we prove some lemmas which we will need later about the 
spaces LM>P, while in section three we prove a number of results outlining the 
basic properties of the fractional integrals, and in section four we give a defini
tion of the Mellin transformation and compute its effect on the fractional 
integrals. The results of sections three and four are essentially known; indeed 
almost all of them are in [6] for /x = v = 1. However we include them both for 
completeness and for later reference, and give very brief proofs. 

To answer the questions posed earlier we must introduce an auxiliary 
operator. This we do in section five, and using our main tool, multiplier 
operator theory, we find its boundedness and other properties. Section six 
yields the answers to our questions; for example, using the auxiliary operator 
defined in the previous section, we show that if 

- Re 77 < nlpv < Re £ and Re 0 S Re a, 

then 

In section seven we show that the range of validity of these results can be 
extended by extending the operators in question, and we find explicit formulas 
for the extended operators. Sections eight and nine are devoted to the applica
tions mentioned earlier, while in section ten we indicate some further problems 
to be studied. 

2. Properties of the spaces LM(P. In this section we find some properties 
of the spaces LM)P which will simplify a great deal of our later work. 

Definition 2.1. If/ £ iMfP, and -co < / < oo, let 

(2.1) « W ) ( 0 =*"*/(e')-

LEMMA 2.1. CM,P is an isometric isomorphism of LMiP onto LP(—oof oo ). 

Proof. Cw is obviously an algebraic isomorphism, and 

1 lc>j i !*= L . L ' {C"J} {t) l"dt\ = L . L e"t{f(et) \Vdt \ 

Uoo ~|1/P 

https://doi.org/10.4153/CJM-1972-130-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-130-9


1200 P. G. ROONEY 

Definition 2.2. Denote by C0 the collection of functions continuous on 
(0, oo ) and vanishing outside some closed interval [a, b] where 0 < a < b < oo . 

LEMMA 2.2. Co is dense in L^^for any y and any p satisfying 1 ^ p < oo. 

Proof. L e t / 6 £M>P and e > 0. Since the continuous functions with compact 
support are dense in Lp( —oo, oo), there is a continuous function G and a 
number P > 0 so that G(x) = 0 if \x\ > P , and ||CMfP/ — G||p < e. Let 
g = CM)P

_1G. Then g is clearly continuous, g vanishes outside (e~R, eR), and 

11/ - g\\v,v = \\C„,Pf — G|| < e. 

LEMMA 2.3. Suppose f 6 Lfllipi 

Ln2,P2i where 1 ^ ^ < oo, i = 1,2 an̂ Z 
e > 0. Then there is a g 6 Co s<? /&#/ 

11/ - g\U,vi < €, i = 1,2. 

Proof. Choose P > 1 so that 
[ / fR'1 /»oo\ ~\VV% 

IU . +JJ»"-'i/(x)r*J <|. * = 1,2. 

Let m = max(sup xM1_:L, sup x"2-1)* where the sup is taken over (P - 1 , P ) . We 
may suppose pi ^ £>2, and we choose g, continuous and vanishing outside 
(R~\R), so that 

U/P2 

[/: \f(X) - g(x)rdx <K 

where X = min(e/(2mv^), e/(2m1,1,l(R - R-I)<PI-PI)'PVI)). Then 

ii/ - giu.„ < \ + [ Ja_1*M_1i/(*) - gwrdx 

<f+«i/M [JI /(*)-g(*)iMd* 
1/P2 

< | + m1/MX 

< 
and using Holder's inequality if pi < p2, 

i\ r i/(*)-«(*)r^ 
f / ^ 1 i/P2 

£ + ™1/pi i/oo - g w r & (p - p-i)(p2-pi)/pip2 

l / -g |U.P 1<^ + w l M | 

< ^ + mVpiK(R - R-Y*-~VI)'PW* 
Li 

as was to be shown. 
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3. Properties of the fractional integrals. In this section we derive the 
basic boundedness properties of Iv,a,z and JVjpfV, and derive some of their other 
properties. The boundedness comes as a corollary to the following lemma. 

LEMMA 3.1. Suppose k is measurable on (0, oo ) and 

A = fj™ %{lllv)-l\k(x)\dx<oz. 

For f G LptV, let 

(Kf)(pc) = ^ k(x/t)f(t)dt/L 

Then (Kf )(x) exists for almost all x, K £ [L^tP], and \\K\\ ^ A. 

Proof. This follows by elementary changes of variable from a well-known 
theorem on convolutions; see [11; p. 97, Lemma ft]. 

COROLLARY 3.1. / / p/pv < Re J, IVta^ £ [£M,zJ- U v/pv > —Re 97, 

Proof. For Iv,a,b take 

(0, 0 < x < 1, 
k ^ \vXr'U+°-» (x" - l ) * " 1 / ! » , x > 1, 

= (vxvi>(i - xy)a"Vr(^), 0 < x < 1, 

and for J ,^ , , take 

Hx) to, *> i , 
in Lemma 3.1. 

Our next results establish the main elementary properties of the fractional 
integrals. 

LEMMA 3.2. / / / 6 L^, g(x) = /(x17"), A(*) = /(x"1) , tte» 

(3.1) (!,.«,*/ ) (x17') = (Ji,«,g) (x), # /x//>„ < Re £, 

(3.2) (/ , . , . , / ) (x1^) = ( J 1 A ^ ) (x), if fi/pv > - R e 77. 

Further, if n/pv < Re J, ^ew 

(3.3) (A.M/K*- 1) = (/*.«.«*)(*). 

Proof. The proof follows by elementary changes of variables. 

LEMMA 3.3. / / / G LM>2?, g G £/*,*'> a w ^ M / ^ < Re £, /Aew 

J»oo /»oo 

(I».atif)(
X)g(X)xl^ldx = I / ( * ) (^.«.Hg) (X)XM_1^X, 

0 «/o 
where 77 = J — MA-

https://doi.org/10.4153/CJM-1972-130-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-130-9


1202 P. G. ROONEY 

Proof. The result is clear by an elementary use of Fubini's theorem. 

LEMMA 3.4. Iv,a,z is one-to-one on L^^ if \x/pv < Re £ and Jv<ptV is one-to-one 
on L^^ if jji/pv > —Re 77. 

Proof. From (3.1), (3.2), and (3.3) it suffices to prove the result for Ii,«,£, 
and this follows from a well-known result on the Laplace transformation; 
see [12, Chapter 2, Theorems 12.1 and 6.2]. 

4. Mellin transformation. In this section we give a definition of the 
Mellin transformation, state a lemma giving its principal properties, and then 
we deduce the action of the Mellin Transformation on the fractional integrals. 

Definition 4.1. L e t / £ LM>P, where 1 ^ p ^ 2, and let 

(4.1) M ? )((/*/£) + U) = (CMAf T ( t ) . 

The transformation <Jt will be called the Mellin transformation. (Here F is 
the Fourier transform of F, defined by 

/»oo 

P(t) = eUuF(u)du if F € i i fl Lp, 
J - 0 0 

and by continuity on Lp( — 00, 00 ) when 1 ^ £ ^ 2.) 

The reason for denoting the variable of^f by (n/p) + /̂ is that often, for 
example if / 6 Co, the integral 

I xs~ f(x)dx, s = o" + it 

exists for a = n/p, and in that case it equals {^f ) (\x/p + it) a.e. Indeed 
the integral often exists for an interval of 0--values including a = n/p, and 
in that case the integral is a holomorphic function of 5 for Re 5 in the interior 
of the interval. The main properties of the Mellin transformation are summed 
up in the following lemma. 

LEMMA 4.1. If 1 ^ p ^ 2 ,^# is a bounded linear transformation of LMtP into 
Lv> ( — 00 , 00 ). If p = 2, ̂  is unitary if L2( — 00 , 00 ) has measure dt/2w. If k 
satisfies the hypotheses of k of Lemma 3.1, and K is as defined in that Lemma, 
then 

Jt(Kf) =JV(k)JV(f). 

Proof. The first two statements follow by elementary changes of variables 
from well-known results about the Fourier transformation, and the third by 
changes of variable in the result (F*G)" = FG; see [11, 2.1.9]. 

COROLLARY 4.1. (i) Iff e'L^, 1 S P S 2, ix/pv < Re | , then 

-*(/, ,«,*/)(*) = ( r ( f - (V")) / r (É + a - (s/v)))(^f)(s), Res = p/p; 
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(ii) Iff e Lw, 1 S P S 2, \xlpv > - R e 77, then 

^(Jv,^f)(s) = (rfo + (s/v))/T(n + fi + (s/v)))(^f)(s), Res = »/p. 

Proof. This follows from Lemma 4.1, using the k's of Corollary 3.1. 

5. An auxiliary operator. In this section we develop the theory of an 
auxiliary operator needed to prove our main results. For this we make use of 
the multiplier operator theory of Fourier transforms. We first introduce and 
study the function we will use as a multiplier. 

Definition 5.1. We define mv(a, b, c, d) (mv for short) by 

mM,b,c,d)(s) = {T(a+ (s/v))T(b - (s/v))}/{ T(c + (s/v))/T(d - (s/*))}, 

where s = a + it is a complex number. 

LEMMA 5.1. 

(5.1) \mv(a + it)\ ~ \t\w+*)-i*+*))9 

as \t\ —> oo , uniformly in a for a in any bounded interval, and 

(5.2) (d/dt)mv(a + it) = mv(a + it){(Re((a +b) - (c + d)))/t + 0(t~2)}/V, 

as \t\ —» oo. 

Proof. From [4, 1.18(6)] 

\T(x + iy)\ ~ (2<ir)1/2\y\x-1/2e-*W/2, as \y\ -> oo, 

uniformly in x for x in any bounded interval, and (5.1) follows. Also 

(d/dt)mv(<T + it) = imv(a + it){jp(a + (a + it)/v) - ^(6 - (a + it)/v) 

-*{c + (a + it)/v) + Hd - (a- + it)/v)}/v, 

where f(z) = T'{z)/T(z). But from [4, 1.18(7)], 

\l/(z) = logs — (2s)-1 + 0(\z\-2) as \z\ —» 00 in |argz| ^ TT — 5. 

Hence if x and 3/ are real 

\l/(x + fy) = log(x + 23/) — (2(x + iy))"1 + 0(|x + ^ |~ 2 ) 

= logiy — i(x — 1/2)/y + #(;y~2) as |y| —» 00, 

and thus (5.2) follows. 

THEOREM 5.1. / / Re(a + b) ^ Re(c + d), and neither Re a + (oyV) nor 
Re b — (07V) w zero or a negative integer, then for 1 < p < 00, m„(cr + i£) w a^ 
Lp multiplier. 
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Proof. Since mv is analytic and Re (a + b) ^ Re(c + d), it follows from 
(5.1) that mv(a + it) is bounded on —oo < t < co. Also from (5.2), 
(d/dt)mv(a + it) = 0(\t\~l) as |/| —> oo, and hence from [9, Chapter 4, 
Theorem 3], mv(a + it) is an Lv multiplier for 1 < p < GO . 

Definition 5.2. We denote the multiplier operator generated by mv(a + it) 
by Ta(a,b, c, d;v) (Ta for short), where a and b satisfy the hypotheses of 
Theorem 5.1. We define HIXjP(a, b, c, d;v) (i^M)P for short) by H^>p = 
\^H,p) J- H/p^H,P' 

LEMMA 5.2. If a, b, c, and d satisfy the hypotheses of Theorem 5.1, then 
(i) Ta G [ £ , ( - 0 0 , oo)], 1 < p < oo, and 

(ii) /or F £ Lp(-oo,co), 1 < p ^ 2, 

(5.3) (TffF)*(t) = mp(<r + it)F(t). 

If in addition, Re (a + 6) = Re(c + d), and neither Re c + (O-/J>) war 
Re d — (o"/z>) is zero or a negative integer, then Ta is a one-to-one mapping of 
Lp ( — oo , oo ) onto itself, and 

(5.4) (r„(a, fe, c, d; v))-i = (T^c, d, b, a; „)). 

Proof, (i) is immediate from the definition of Ta. (ii) is immediate for 
p = 2 from [9, Chapter IV, 3.1] and then follows immediately for 1 < p < 2 
from the fact that both sides represent a bounded transformation of 
Lp ( — oo , oo ) into Lv> ( — oo , oo ), coinciding on a dense subset of Lp ( — oo , oo ). 

From (5.3), we have for p = 2 that 

Ta(c, d, b, a; v)Ta(a, b, c, d\v) = I, 

and thus by continuity for 1 < p < oo, so that, under the hypotheses, To- is 
a one-to-one mapping of Lp( — oo , oo ) onto itself. 

COROLLARY 5.2. / / a, b, c, and d satisfy the hypotheses of Theorem 5.1 with 
a = n/p, then 

(i) H»>p G [L,,p], l<p <co, 
(ii) for fe L»,p, \<p S 2, 

(5.5) (JiH^vf){s) = mv{s)(Jtf){s), Res = v/p. 

If in addition Re (a + b) = Re(c + d), and neither Re c + (n/pv) nor 
Re <i — (v/pv) is zero or a negative integer, then H^^ is a one-to-one mapping of 
LMtP onto itself, and 

(5.6) (H^pia, b,c,d; v))-1 = iïMfp(c, d,a,b\v). 

Hpx depends explicitly on /x and p, but actually this dependence is not as 
essential as it appears, as the following theorem shows. 
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THEOREM 5.2. Suppose mv{s) has no poles in the strip a± < Re s < a2, and 
suppose f G L^^t, i = 1, 2, where 1 < pt < GO and ai < nt/pt < <r2. Then 

Proof. Suppose first t h a t / £ Co, and let 

Clearly F is entire. Now 

*^ PI,PI** PI,PI J = ^ Ml/pi^Ml.Pl/' 

Clearly CMliP1/ G L2( —oo, oo), and hence from (5.3) 

(TmPlCpUPlfY{t) = mv(n/p + iO(CMliP1/ )A(J). 

But CM1,P1/ is clearly also in Lx( —oo , oo ) and hence 

( C H . « / r ( ' ) = «""(CMllW/)(«)d«= e^'"i)+ttuf(eu)du 
+> — oo « / — OO 

J»oo 

*°'1/,,l)+"-1/(*)<fc = F(Wfi) + *0-
0 

Hence from [11, Theorem 48], 

( C « A , P I / ) W = lim —- e %utmv((p\lp\) +it)F((id1/p1) + it)dt, 

the limit being in the topology of L2( —oo, oo ). But then there is a sequence 
{i^J, with lim Rj = co, such that 

1 PBi 

(CMI , IAI . I> I / ) (« ) = « m — I * ™ V ( W £ i ) + it)F((jii/p!) + it)dt 

almost everywhere on ( — oo , oo ), or 

(Hn,tJ)(x) = l i m ^ - f Ï - * 1 * 1 1 - " » ^ , / ? ! ) + it)F(bi/Pi) + it)dt 

-i p(jii/Pi)+iBj 

= lim -—: I x~smv(s)F(s)ds, 
i^^ Zirî •/(u.iini^—i.-R.i 

-i Mm/pi)+iRj 

j^a> ATTl J(jii/pi)—iRj 

almost everywhere on (0, oo ). 
Similarly 

(C,2>P2H,2,P2f)(u) = lim ~ f e-iutm,(fa2/p2) + it)F(^2/p2) + **)* 

i2^oo ^7T • / —B 

Z1T *J — Ri 

= l im 2 
j _ ,oo ATT ^ - R j 
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the limits being in the topology of L2 ( — oo , co ). But then there is a subsequence 
{Sj} of {Rj} such that 

i rSj _ 

(C^^H^J)^) = Mm— I e lutmv{^2/p2) + it)F((ji2/p2) + it)dt 

almost everywhere on ( —oo , co ), or 
(H»2)P2f)(x) = l i m ^ - f ' x-{"2,V2)-umv{(^/p2) + it)F((ji2/p2) + it)dt 

= lim — : I x~smv(s)F(s)ds, 

almost everywhere on (0, oo ). 
Hence, since {Sj} is a subsequence of {Rj}, we have for almost all x, 

(5.7) (Hn„J)(x)- (H^pJ)(x) 
-*(V2/P2)+iSj -j T n(ni/pi)+iSj /»(/ 

= lim-U 
j ^ ^ ^ l L */(m/pl)-iSj J(n2/P2)-iSj 

x sm{s)ds. 

If m/pi = mlpî, the right hand side of this equation is zero, and 
(Hn,P1f)(x) = (Hp2tP2f)(x) a.e. If m/pi ^ ^2/^2, let 7 be the rectangle with 
vertices (MI/^I) ± iSj and {n2/p2) =b iSj. Then since 7 is contained in the 
strip ci < Re 5 < or2, mv(s) is holomorphic in this strip, and F is entire, 

t / 7 
x smv(s)F(s)ds = 0, 

from which (5.7) can be written 

(H^,pJ)(x) - (HlM2tP2f)(x) 

lim I -^j I x~a~lb]rnv(<T + iSj)F(a + iS,)^1 

PI 

r»M2/P2 

[ 1 f*MlV2 

-—: I x~a~l&dmv{(j + iSj)F(a + i S / 

x~a+l ]mv(a — iSj)F(a — iSj)da 
'Ml/Pi 

But these last two integrals tend to zero as j —> 00. For, from Lemma 5.1, 
w(c ± iSj) is uniformly bounded in a on the interval of integration, as 
obviously is x~a since x > 0, and F(a db iSj) —> 0 as 7 —» 00 by the Riemann 
Lebesgue lemma since/ G Co. Hence 

(HliliPJ){x) = (Hlt2tP2f)(x) a.e. 

Now if / G Aii.pi ^ A*2,:P2> then by Lemma 2.3, there is a sequence {gn} of 
functions in C0 such that | | / — gn|U,p» —» 0, i = 1, 2. Then ||ifMliP1f — 
Hn,pign\\in,p\ —> 0> a n d hence there is a subsequence {^} such that 
\imj^HlxUPlgnj = HntP1f a.e. But ||i?"M2il,,/ — # M 2 ,P2&JU t P i ~> °> a n d hence 
there is a subsequence {w/} of {tij} such that l im^œ H^^gnj' = Hp2tP2f a.e. 
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But since gW;> G Co, Hfilplgnj^ — ^M2,P2^w/ a.e. and hence 

6. Main results. In this section we answer, in the theorem below, the 
questions posed in the introduction. We first prove a preliminary lemma. 

L E M M A 6.1. Suppose — Re 77 < n/pv < Re £, where 1 < p < co. Then (i) 
if Re 13 ^ Re a, a w d / 6 LMJ, 

(6.1) Jyj^H^pir) + 0, £, 77, £ + a; ? ) / = ^ . « . i / , a.e., 

awd (ii) if Re a ^ Re jo, and f £ Ai,P, 

(6.2) I^a^H^^T], £ + a, 77 + j8, £; p) / = Jv,p,vf, a.e. 

Proof. I t suffices to prove (6.1) and (6.2) f o r / G Co. Choose /x0 so t h a t 
- R e 77 < Mo/2*> < Re f. Then if Re 0 ^ Re a, 

^(77 + 0 ,$ , 77,? + « ) ( , ) = r f e + { s / v ) ) T ^ + a _ {s/v)) , 

so t ha t mv(r) + (3, £j 7], £ + a)(s) is holomorphic in the strip — j> Re 77 < 
Re 5 < v Re £, indeed in the strip — ẑ  Re(77 + /3) < Re s < v Re £, and thus 
by Theorem 5.2, 

# M . * 0 ? + P> f» *?> £ + <*; " ) / = ^0,2(77 + 0, f, 77, £ + a; v)f a.e. 

Hence to prove (6.1), it suffices to show 

^ A A O , 2 ( I + P, £, V, £ + a; ? ) / = Ji'.a,*/ a.e. 

But from Corollaries 4.1 and 5.2, if Re s = ju0/2 

^(7 ,^ ,^0 ,2(77 + 0, J, 77, J + a ; v)/)(s) 

T(77+ (5 / . ) ) 

r(77 + 0 + (s/v)) 

rft - (*A)) M?)(s ) = (<J?Iv,aJ)(s), 
T(^ + a - (s/v)) 

and (6.1) follows. 
Similarly, if Re a ^ Re £, m ,,(77, £ + a, 77 + /3, £) (5) is holomorphic in the 

str ip — v Re 77 < Re s < v Re £, indeed in the strip — v Re 77 < Re s < 
v Re(£ + a ) , and thus by Theorem 5.2, 

H,,p(v, ? + «, 1? + 0, É; " ) / = ^0,2(^7, £ + a, 77 + 0, £; *)/, 
and (6.2) follows from this using the Mellin transformation and Corollaries 4.1 

and 5.2 as did (6.1). 

T H E O R E M 6.1. Suppose — Re 77 < n/pv < Re £, where 1 < p < 00. !TAew 
(i) if Re/3 S Rea, /„,£,„ (LMjP) 3 JFfat€(LMi3,) awd ( J , , ^ , ) - 1 / , , ^ 6 [£MfiJ; 

(ii) if Rea: g Re 0, /„,«,£ (LMtP) 3 /*,/*,* (A».*) awd ( ^ . « . t ) " 1 / , , ^ , G [ i M . J -
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In the respective cases (Jv,0,v)~~lIv,a,t and (Iv,a,z)~lJv,P,ri are one-to-one. If further 
Re a = Re/3, both (Jv^^)~lIv,a,^ and (Iv,a,ù~lJv,P,yi maP A*,? on^° itself; both 
are unitary on LM>2 if a = $ and £ = 77 + (p/v). 

Proof. Suppose Re/3 ^ Re a, and let / G LM>P. We must show that 
^.«,*/ £ Jvf,i(Lv,p)- B u t letting g = Hwiri + 0, £, 77, £ + a; ?)/, then from 
Lemma 6.1 and Corollary 5.2, g £ LMtP, and Iv,a,d = Jv,p,r,g £ Jv^^iL^). 
Further, from Lemmas 6.1 and 3.4 

Suppose next R e a ^ R e / 3 , and let / Ç LMiP. We must show that 
A M / € Iv,aAL»,v)' B u t letting A = #^(77, £ + a, 77 + 0, £; */)/, then from 
Lemma 6.1 and Corollary 5.2, A G LM>2,, and Jv,^,r,f = Iv,a,^h £ IVta,s(LVtP). 
Further, from Lemmas 6.1 and 3.4 

(Iv,a,Ù'~1Jv,fi,ri = H^virj, £ + a, y + fi, £', v) £ [L^p]. 

That (Jv,p,v)~
lIv,a,t and {Iv,a,i)~lJv,p,ii are one-to-one follows from Lemma 3.4; 

that they are onto follows from Corollary 5.2, for as shown above 

(Jv£,i)~lIv,a,z = Hn,P(a, b, c, d; v) 

with a = rj + 0, b = £, c = 77, d = £ + a, and Re(a + b) = Re(£ + 77 + 0) = 
Re(£ + 77 + a) = Re(c + d), and similarly 

(Iv,a,ù~lJv,fi,v = Hn,v(a'i b\ cf, d'\v) 
with 

a' = v,b' = £ + a, c' = y + P, d' = £, 
and 

Re (a' + bf) = Re(£ + 77 + a) = Re(£ + 77 + 0) = Re(c' + d')-

If a = )3 and £ = 77 + n/v, 

\m,(r, + P,£,ri,è + a)(ji/2) +it)\ 

T(y + p+ (Qi/2) + ^)A))r(77 + Qx/iQ - (fc/2) + it)/v)) 
Y{n + (Ox/2) + iOA))r(77 + | + (MA) - ((M/2) + it)/v)) 

= 1, 

so that from Lemmas 4.1 and 5.2, if / £ LM,2 

11 (J,t(>„Y%tarf I L.2 = I ^,2(77 + 0, £, 77, £ + a; 0 / I |M>2 

= L^J_œ I^^P^ + ^^^S + ^î^/î^ + i/) 

= [^£ \m,(v + 0, É, 17, É + «) ( | + **) M / ) ( | + i/) 

[ 1 A» I / \ I 2 "1 1/2 

è/J^Hf+'vM =11/iu 
and (Jv,p,v)~

lIv,a,z is unitary; similarly for ( /^a^)"1 / , ,^ , . 

* 
1/2 
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COROLLARY 6.1. Suppose — Re 77 < \x/pv < Re £, where 1 < p < 00. Then if 
f £ Lw and Re 0 ^ Re a, ( J^ , , ) - 1 / , , , , ,* / = #„.*(*? + & f, rç> ? + «; ") / / # 
R e « â Re/3, ( I , , ^ ) - 1 / , , * , , / = Jï„(i7, f + a, 17 + 0, £; *)/. 

7. Extensions and representations. In this section we will extend 
(Jv,a,n)~lIv,a,z and {Iv,a,ù~lJv,^,^ Since 

(Jv,fi,n)~
lIv,a,z = Hn,p(y + /?, £, 17, ? + «; J>) 

on LM2? for — Re /z < / z / ^ < Re J, it seems natural to extend the operator by 
this equation for all parameter values for which the right hand side makes 
sense. However, this might lead to inconsistent results; for if/ Ç LillyVl Pi 7,M2>JJ2, 
there is no guarantee that i7Mlfîn/ = H^^f. But mv(y\ + /?, £, 77, £ + «)(s) is 
holomorphic in the strip — v Re (77 + 0) < Re 5 < p Re £, and thus by Theorem 
5.2, if jLti/̂ f belong to this strip for i = 1, 2, HpltP1f = HM,V2f, and thus we can 
extend ( J ^ . T ? ) - 1 ^ , ^ consistently to LM)2? for —Re(?? + fi) < \x/pv < Re £. 
The following definition covers the case, as well as (Iv,a,{)~lJv,&,i-

Definition 7.1. If — Re(/3 + 7;) < M/^^ < Re £, we extend (7^,0,J"^,*,* to 
A*,* by {Jv,^yi)~lIv,a,^ = i7M,p(*? + 0, £, *7, £ + «Î *0 and if — Re 77 < p/pv < 
Re(£ + a)j we extend (/„,«.j) -1/*,^ to LM>2, by 

{Jv^,-n)~lIv,a,^ = H»,P(v, £ + «, 77 + 0, f ; y) . 

The properties of the extended operators are covered in the following 
theorem. 

THEOREM 7.1. (i) 7/ -Re(r7 + 0) < »/pv < Re J, ( J ^ . , ) " 1 / , , . ^ G [LM,J. 
7/ w one-to-one if 1 < p g 2, or if —Re y < y/pv < Re £; if —Rerj < ju /^ < 
Re £ a?z^ Re a = Re /? i/ is 0W/0. 7£ w unitary on L^^if — Re 77 < n/2v < Re £, 
a = /3 awd £ = 77 + (MA). 

(ii) 7/ —Re 77 < /*/£?/ < Re(£ + a) , (7„,a,s)
_1^/3,r? G [A*,P]- ^ ^ one-to-one if 

1 < p ^ 2 or if — Re 77 < fi/pv < Re £; if — Re 77 < /*/£*/ < Re £ and 
Re a = Re ft it is onto. It is unitary on LMj2 if —Re 77 < n/2v < Re £, a = JH 
and £ = 77 + (n/v). 

Proof. All the statements follow from Theorem 6.1 or Corollary 5.2 except 
the one-to-one-ness when 1 < p ^ 2. But from Corollary 5.2, if / 6 LMtP, 
where 1 < £ ^ 2 and -Re(77 + 0) < /*/£*/ < Re J, then 

and hence if (Jv,p,ri)~1Iv,a,zf = 0, since the zeros of rav are isolated, 
(o^f )(n/p) + ^) = 0 a.e. a n d / = 0 a.e.; similarly for {IVta^)~lJ^t1). 

We now give a theorem representing {Iv,a,z)~lJv,P,-n a n d {Jv^,yi)~lIv,a^ as 
integral operators. First we need a definition and preliminary lemma. 
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Definition 7.2. For Re a > 0, Re (3 > 0, v real, define &„(£, rj, a, /3), kv for 
short, by 

(7.1) MC,i,,a,0)(*) 

(r({ + , + a + /3)r(-|3)), 0 < x < l , 
*-'«F(£ + 1J + /S, l - a ; f + »»;*-')/ 

(r(f + u)r(a)), *> 1, 
where F {a, b;c;z) is the Gauss hypergeometric function. Also let 

(7.2) /,(£, i j ,a,0)(*) = ^ ( i j . f . / J . a ) ^ 1 ) . 

LEMMA 7.1. 7/ -»> Re(r; + /3) < Re 5 < v Re £, awJ 0 < Re /? < Re a ^ew 

(7.3) ( ^ *,)(«) 

= fr(„ + /3+ (*A))r({- (*/«0)}/{r(„ + (*A))r(£ + a - (V*))} 
while if -v Re 77 < Re s < v Re(£ + a) , 0 < Re a < Re /3, then 

(7.4) {Jtlv){s) 

= {r(„ + (s/„))r(s + a - (5/,)}/{r(, + /î+ (V»0)r(£- (*A))}. 
Proof. The existence o f ^ & „ follows since clearly &„(x) = 0(x"Re('7+^)) as 

x-*0+,kv(x) = 0(x-"Re^) a s x - > oo, while from [4,2.1.4(23) and 2.1.3(14)] 
£„(*) = 0( |1 - xlR e(«-^ )-1)asx->l, ifRe(a: - p) < l,kv(x) = 0(\log\l - x\\) 
as x -> 1 if Re(a - /3) = 1, and kv(x) = 0(1) as x -> 1, if Re(a - /3) > 1. 

Now if -v Re(77 + /3) < Re 5 < *> Re £, using [4, 2.4(5)] 

r â + r7 + a + /3)r(-/5) 

X f x ^ ^ " 1 ^ + 77 + ft, ft + 1;£ + 77 + c* + ft;x>x 

, ^r(g + *7 + ft) f°° ^ H p / v i 1 * 1 >- , -"w 

rf t+q+fl) 
r(? + ,7 + « + /î)r(-/3) 

X f x,+3+s-1
JF(g + V + p,p+l;t + r,+a + fi;x)dx 

Jo 

+ r l X l)+na) l!x^F^ + n + M - «;g + ,;*)<Zx 

= {r(„ + (s/„))r(5 + « - (s/l>))}/{r(, + js+ (*A))r(s - (*/„))}, 
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and (7.3) follows. (7.4) follows from (7.3) by change of variables. 

THEOREM 7.2. 7 / R e ^ ^ R e a and f G LMfPl where -Re(77 + 0) < p/pv < 
Re £, then for x > 0 

(7.5) „ f / " M - I ( ( / , , , , , ) " l A , . , £ f ) ( 0 * Jo 

= *'(f+a) J \ ( | , „,« + l, /s)(*/0/(0 f ; 
if Re 13 < Re a, 

(7-6) ( C W ' W X * ) = r * , t t , u , « , i 9 ) ( * / 0 / ( 0 7 , a . e . 

If Re a ^ Re 0, awd / G A*,?, where — Re 77 < n/pv < Re(£ + a), then for 
x > 0 

J"»co 

r ' ( W - , ) - 1 ( ( J . . a , î ) - 1 J r M.^)(0* 

= x-™ £ z,G, *, a, 0 + l) (*/*)/(*) f ; 
if Re a < Re 0 

(7.8) ( ( / , « ( ^ , M / ) W = J^ UZ,r,,a,p)(x/t)f(t)j,a.e. 

Proof. It suffices to prove (7.5) for/ G Co. For if (7.5) is divided by xv^+a\ 
the left hand side is just Iv,i,z+a{(Jv,&,-n)~

1Iv,a,z)f and by Theorem 6.1 and 
Corollary 3.1, Iv,i1n+a{{Jv^,jl)~

1Ivta,ù is a member of [LMtP], while the right 
hand side is a member of [LM>3J by Lemmas 3.1 and 7.1. But from Corollaries 
4.1 and 5.2, the Mellin transformation of the left hand side of (7.5), after 
division by xv^+a) is 

(r ( f + a - {s/v))/Y{k + a + 1 - (s/v))^aJ,j>.,)-1Ia.tf)(s) 

= (r(£ + a - (îA))/r({ + « + i - (V"))){(r(u + i8 
+ (*A))rtt- (sA)))/(r(,+ (*A))r(£ + a - (*A)))}My)(s) 

= {(r(„ + i8 + (s/v))r(z - (s/v)))/(T(n 
+ (s/v))T(S + a + l - {s/v))))(^f){s), 

where Re 5 = juo/2 for some MO, — Re (77 + i#) < Mo/2i> < Re J. But from 
Lemmas 4.1 and 7.1 the Mellin transformation of the right hand side of (7.5) 
is the same, so that (7.5) is true a.e. However the left hand side is clearly 
continuous and since, as is easy to prove, 

f°tip''"p)-1\kp(t)\
P'dt<°o, 

it follows from Holder's inequality that so is the right hand side, and (7.5) 
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follows. (7.6) follows from (7.5) for it is easy to show t h a t 

(d/dx)x^+a)kv(£, rj, a + 1, P) (x/t) = vxv^+a)-lkv(t, 7], a, (3) (x/t) a.e. 

from the formulas for the derivat ive of the hypergeometric function. 
Formulas (7.7) and (7.8) are proved similarly. 

COROLLARY 7.2. If Re 0 < Re a, and -Re(77 + p) < \x/v < Re £, then 

(Jv,0,7i)~1Iv1a,^ can be extended to LM,i, and (7.6) remains true. If Re a < Re /3, 
awd —Re 7] < n/v < Re(£ + a), (Iv,a,^)~1Jv,^,v can be extended to LM;i, and 
(7.8) remains true. 

Proof. I t follows from Lemmas 4.1 and 7.1 t h a t if \i/v is in the respective 
ranges above, then the right hand sides of (7.6) and (7.8) represent operators 
in [LMfi], and thus defining the respective extensions by (7.6) and (7.8), our 
corollary is proved. 

8. A p p l i c a t i o n to p r o d u c t s of H a n k e l t r a n s f o r m a t i o n s . T h e t rans
formation we shall call the Hankel transformation, J^ p , \ , is defined fo r / £ C0 by 

J*oo 

tpJx(xt)f(t)dt, 
0 

where X > — 1. For p = ^, this is the "Hanke l t ransformat ion" studied 
extensively in [11, Chapte r 8, §§ 4 and 5], and for p = X + 1, it is the "Hanke l 
t ransformat ion" t h a t plays an impor tan t role in the Fourier t ransformation 
of radial functions. From [11, Chapte r 8, §§ 4 and 5] it is easily established by 
simple changes of variables t h a t J ^ x can be extended to L2p,2, t h a t it is a 
uni ta ry transformation of t h a t space into itself, t h a t ^fPj\~

l = <&fPt\, and t h a t 
i f / e £ 2 p . 2 , 

(8.2) ^(jrP ) X /)(s) = - ^ l ^ ^ t y - ^ ( ^ f ) (2» - *)>Re * = p-
T h e transformation t h a t we are going to s tudy in this section, HPt\tyj is 

defined by 

(8.3) Hf>,\,y = <%?p,\+y'^L p , \ , 

where X > — 1 , X + 7 > — 1 . Clearly HPtx,o is the identi ty, bu t for 7 ^ 0 
it is non-trivial. A special case, namely 

# x + i , \ - | , i 

has been studied by Muckenhoupt and Stein [8, § 16], and they proved t h a t 
if X ̂  0, it belongs to [L2\+i,p] for 1 < p < GO , and our results can be con
sidered an extension of theirs, though the results we shall obtain, when 
specialized to this case, show much more. We first prove a lemma. 
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L E M M A 8.1. (i) If X > — 1, y > 0, then on L2p>2, 

(8-4) ^X,p,7 = (J 2,a,y)"112,a,& 

where 77 = | (X - p + 1), J = | (X + p + 1), a = \y. 
(ii) / / y < 0, X + 7 > — 1 , then on L2p>2, 

(8 .5) H\,P,y = (l2,a,t)~lJ2,a,r], 

where rj = | (X + 7 - p + 1), £ = i(X + 7 + P + 1), a = - J 7 . 

Proof. I t is clear t ha t HPt\t7 £ [ ^ , 2 ] , indeed t h a t it is uni tary. From (8.2) 
and (8.3) it follows t ha t if f £ L2p>2j X > - 1 , X + 7 > - 1 

(8.6) Jt{Hp,^f){s) 

_ r(Hx + T - P + i) + ^)r(|(x + P + D - ^) , ^ n M ~ c _ 
" r(i(x - P + i) + i*)r(i(x + T + P + i) - is) w Ksh Ke * ~ p' 

But from Definition 7.1 and Corollary 4.1, the right hand of (8.6) is 

with the values of £, rj and a given in (i) of the s ta tement of this theorem, if 
— (a + 77) < p /2 < £ and a > 0. The second inequality is obviously ful
filled since 7 > 0, and the first can be writ ten — (X + 7 — p + 1) < p < 
X + p + 1, which is fulfilled if X > — 1, 7 > 0. Hence f o r / £ L2p,2, X > - 1 , 
7 > 0 

H\,P,yf = {J2,a,i])~
ll2,a,tf, a .C 

where J, 17 and a are as given under (i), and (8.4) follows. 
T h e right hand side of (8.6) is, from Definition 7.1 and Corollary 4 .1 , 

^ ( ( / 2 , « , 5 ) - V 2 A , / ) ( s ) 

with the values of £,77, and a given in (ii) of the s ta tement of this Theorem, 
if — 7] < p /2 < £ + a, and a > 0. The second inequality is obviously fulfilled if 
7 < 0, and the first can be writ ten — (X + 7 — p + 1) < p < \ + p + 1, which 
is fulfilled if X > — 1, X + 7 > — 1, and (8.5) follows as in the case of (8.4). 

This result can be interpreted in two ways. T h e first of these is t h a t on 
^2P,2, (8.4) and (8.5) give representations of (J2,a,v)~

1h,a,^ and (l2,a,t)~lJ2,a,1] 

respectively as products of Hankel transformations. The second interpretat ion 
is t ha t (8.4) and (8.5) give us a method of extending HPt\ty to other LM>2? 

spaces, namely to define it to be the right hand side of these equations for all 
values of £, 77 and a for which the right hand side belongs to [LM,J. Such an 
extension is clearly unique since L2Pj2 r\ LM>2, is clearly dense in LMj2?. Of course 
H\,P,o can be extended to the same spaces by defining it to be the identi ty. 

I t is this second interpretat ion which we adopt here, and reading off the 
properties of the operators on the right hand side of (8.4) and (8.5) from 
Theorem 7.1, we obtain the following theorem. 
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THEOREM 8.1. If X > — 1, X + y > — 1 , HPf\t7 can be uniquely extended, 
using (8.4) and (8.5), to L^tPfor all p and p satisfying 

- (X + y - p + 1) < p/p < X + p + 1, 1 <p < oo, 

awd /fte extended operator, which we continue to denote by i?P,\, r, satisfies 
HPt\>y £ [A*,?]- ^ ^ operator is one-to-one if (s) I < p ^ 2 or (b) 7 > 0, and 
- (7 - p + 1) < p/p < y + p + 1, or (c) 7 < 0 and - (7 + X - p + 1) < 
/j/£ < (X + 7 + p + l ) . / w cases (b) awd (c) 2Ae mapping is onto. It is unitary 
on LMj2 if JJL = 2p. 

Specializing to the case considered by Muckenhoupt and Stein [8] we obtain 
the following results. 

COROLLARY 8.1.1. / / X > — J, ifx+i,\-è,i can oe extended to L^^for all p and p 
satisfying —p<ix< (2X + l)p. It is one-to-one ifl<p^2or0<p< 
(2X + l)p, and if 0 < p < (2X + l)p the mapping is onto. 

Two other cases can be noted. Let H+ denote the Hilbert transformation of 
even functions and H- the Hilbert transformation of odd functions. It is well-
known that H+ is the Fourier sine transformation of the Fourier cosine trans
formation, while H- is the Fourier cosine transformation of the Fourier sine 
transformation; that is, since 

J-\{x) = (2/wx)l/2 cos x, and J\(x) = (2/irx)1/2 sin x, 

H+ =^\,\^\,-\ = ^ i , - i , i , and # _ = $£\%-\#f\\ = ^ i , - i , 

and specializing Theorem 8.1 to these cases, the following corollary is obtained. 

COROLLARY 8.1.2. (i) If — p < p. < p, H+ <E [£M,J- H+ is one-to-one if 
1 < p < 2 or 0 < p < p. In the latter case H+ is onto. 

(ii) IfO<p<2p,H_£ [£MiJJ. H- is one-to-one ifl<p<2or0<p<p. 
In the latter case H_ is onto. 

That H+ £ [Ln,v\ for — p < p < p is a known result due to Hardy and 
Littlewood [5]. However that iJ_ £ [!>?#] for 0 < p < 2p seems new, the best 
previous result being that H_ £ [Ln,P] for 0 < p < p, due to Babenko [1]. 

9. The range of the Hankel transformation. In this section we shall 
apply the results of the previous section to the study of the range of the 
Hankel transformation. 

It is easy to show that i f | ^ p ^ X + l , then Jt?Pt\ is a bounded operator 
from L2pp to L2p v> for 1 ^ p ^ 2. Indeed from [10, Theorem 7.31.2] and 
[13, §3.31(1)] 

\J\{x)\ ^ Kx min(x-^, xx) ^ i^xx"-1, 

if \ ^ p ^ X + 1, and thus if / £ L2PlU 

\(jep,xf)(x)\ ^Kx£t2p-1\f(t)\dt = Kx\\f\\2ptl, 
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andJ^Pjx is of strong type (1, oo). As already remarked, it is also of strong 
type (2, 2), and thus by the Riesz-Thorin convexity theorem [14, Chapter 12, 
Theorem 1.11], it is of strong type (p, p') for 1 ^ p ^ 2. However, it is also 
well-known that the range of Jfp>\ on L2PjP, JÏ?P7\(L2pjP) is not all of L2PtP> if 
1 < p < 2. In fact an easy application of the Marcinkiewicz interpolation 
theorem [14, Chapter 12, Theorem 4.6] shows that if / £ L2p<p, where 
1 < P S 2, g =3iïP,xf, h ^ P ^ X + 1, then xl~^g{x) € L2p,p; 'but not 
every member of L2p>p> has this property. In this section we shall show 
that if è ^ P = X + 1, the range of JÏ?P,\ on L2p,p is independent of X. First 
we need a lemma. 

LEMMA 9.1. Suppose X > - 1 , X + 7 > - 1 , J ^ p ^ X + 1 , 1 < p ^ 2. 
Then i^P,x,7 £ [^2PlP], awd 

(9.1) JKPf\+yHPt\ty=J%?Pt\ 

Proof. Since 1 < p ^ 2, 

- ( X + 7 - p + l ) = p - ( X + 7 + l ) < P ^ 2p/p < 2p rg p + X + 1, 

and from Theorem 8.1, HPjx,y £ [L2PtP\. If / £ ^2P,2, J^p,x,+yHPtx,yf = 
J$fP!\+yj^Pt\+y$?Pf\f =^fP,\f, and thus (9.1) holds on a dense subset of L2PjP, 
and thus throughout I/2p>p. 

THEOREM 9.1. Suppose 1 < p < 2, | ^ p ^ min(X + 1, X + 7 + 1). Then 
^fp,*+y\L2P)P) = JtP,\(L2PtP). 

Proof. Clearly X > — 1 and X + 7 > — 1 , and hence by Lemma 9.1, 
#P,A + 7 £ [L2p,p]. Let / £ L2p,PJ g = HpXyf. Then by (9.1) jT P i 7 / = 
J^o^+yg £ Jf?

Pfx+7(^2p,p), and hence 

<%> p,\(L2PtP) ç^JvPj\+y(L2PjP). 

But the hypotheses of the theorem are symmetric in X and X + 7, and thus 
the reverse inclusion must hold, and the result follows. 

A particular case is of some interest. Denoting ffl\,\ byJf\, it follows, since 
ffl-\ is the Fourier cosine transformation, J ^ , and L\p = Lp(0, 00), that if 
1 < / > < 2 , ^ x ( I » ( 0 , o o ) ) =.T c(Z»(0>co)) . 

10. Further problems. There are several further problems connected with 
our fractional integrals that one can study. For example one can ask when 
Jn,e.i(Ln.p) 3 I»2,a,t(L»,p)i where vx ^ v2, and whether (JVi,p,v)~

1IV2,a,i is 
bounded. The methods used here answer these questions efficiently; for 
example, the above inclusion is true if 

-*>i Re 0 < fi/p < v2 Re £ and Re 0 ^ Re a. 

Alternatively, some authors have modified the kernels of the fractional 
integrals to obtain new fractional integrals with many of the same formal 
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properties, but bounded for different ranges of values of the parameters in 
question; see [3], for example. We shall study some of these in a later paper, 
and prove similar results for them. Applications to Hankel transformations 
whose kernels are "cut" Bessel functions will be made. 
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