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i. Introduction

As is well-known, in the early 6o's a Swedish committee set to
work at the numerical calculation of the distribution function of the
total amount of claims and of the related stop loss premiums in the
Poisson and Polya cases (Bohman and Esscher [6]). Since the
characteristic function for the said distribution function was
easily available in terms of the characteristic function for the
distribution function of an individual claim, the committee chose to
base the numerical calculations on the C-method by H. Bohman
(Bohman [5]). The calculation of the ruin probability for a finite or
infinite period was not considered by the committee.

The last-mentioned problem has now been taken up by a new
committee formed by the Swedish Council for Actuarial Science and
Insurance Statistics. The committee—consisting of H. Bohman,
J. Jung, N. Wikstad and the present author—has to consider
several aspects of the practical applicability of the collective risk
theory. However, without possibilities of calculating—at least ap-
proximately—the ruin probability for a finite period the applicabili-
ty of the existing ruin theories seems to be rather limited, so the
committee has looked around for such possibilities. At the present
stage the committee is considering the classical Poisson theory and
Sparre Andersen's generalization of this theory [2]. It is the hope of
the committee that, at a later stage, also the Polya theory and the
theory recently presented by Segerdahl [11] combining the Sparre
Andersen theory and the Polya theory may be treated.

* A paper presented to the 9th Astin Colloquium (Randers 1970) appearing
in this issue for strictly technical reasons.
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GENERALIZATION OF CLASSICAL RUIN THEORY 55

As one of its first steps the committee has entrusted to me to
bring together the analytical results which seem feasible for the
above purpose in the case with only positive risk sums (claims).
Since at the present time some of the analytical results in view are
still unpublished it is supposed that it may be of interest to give a
short survey including also these results.

In section 2 the results will be reviewed which concern the case
with a general distribution of the individual claims. In section 3 simpli-
fications are pointed out in the case when the characteristic function
of the said distribution is a rational function (including the case when
the tail of the claim distribution is an exponential polynomial).

2. The formulas for the ruin probability in case the risk sums are positive

The following formulas are essentially taken from Cramer's
book [8] as far as the classical Poisson type process is concerned *).
However, some results obtained by the present author [12] are also
used. The formulas pertaining to the Sparre Andersen generalization
are taken from the author's report to the ASTIN Colloquium at
Sopot [13] completed with two unpublished papers ([14], [15])-

Let <\>(u, T) denote the probability of ruin within the time interval
(0, T] when the initial risk reserve is u > o. It is assumed that the
distribution function of the independent individual claims, P(y), is
such that P(o) = P(o-\-) = 0. The times between successive
claims are supposed to be independent and identically distributed
with the distribution function K(t), t > 0, K(o) = K(o + ) = o. In
the Poisson theory we have K(t) = 1 — e~K In the Sparre Andersen
generalization K(t) is arbitrary. However, in the following treat-
ment we assume that k(s) = J est dK(t) is a rational function of s,

or in other words that K(t) is a general Erlangian distribution.
That k(s) is a rational function means that k(s) may be written as the
quotient of two polynomials. As a consequence of the condition
K(o) = K(o-\-) = o the degree of the numerator must be lower
than that of the denominator. Note that in the Sparre Andersen

*) In Cramer's book there are also complete historical references up to
1954. More recently Beekman has given an alternative approach in [4]. The
analytical connections between Cramer's and Beekman's approaches have
been investigated in [12].
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56 GENERALIZATION OF CLASSICAL RUIN THEORY

theory we consider the process as beginning immediately after a
claim. In the Poisson theory this assumption is not needed.

In order to illustrate our assumption concerning K(t) we point out
some simple well-known distributions for which k(s) is a rational
function.

a. K(t) = i — e ~ u i.e. the Poisson case,

b. K{t) = i — V W — b2 e~M, o < [ii < p.,, b1 + b2 = i,

b, b2

This distribution was considered by Sparre Andersen himself when
P2 — PJ

»! > o, b2 > o. When &x = — b2 = — we get the convo-
P2 Pi P2 Pi

lution of i — e"Pl* with i — e" w .
c. K(t) = i — (i + p^)e~wi.e.theconvolution of I — e ln with itself,

k(s) = ^~^f •

This is a limiting case of b.

d. K(t) = i — bx e'M — b2e'M cos [y(t + to)'\,
o < pt < p2, b1 -\- b2 cos Ŷ O = i, &i > o and
£>iPi -|- inf Ibze'^"'^1^ {y sin (y(t -\- t0)] + p2 cos [y(l -\- tu)\}\ > o

^1 (P2 ~l~ y2) cos yt0 — S(Y sin Ŷ O 4" Pa cos Y O

{E.g.: b, = 4/5, b2 = 1/2/5, Pi = 1, p2 = 2, T = 2, <0 = TU/8.}
n

e. K(t) = 1 — S bv e~^^,
V = 1

0 < Pi < P2 < <Pn,b1 + bi+ ... +bn = i,

S 6 ^ p w > o , [i = 1 , 2 , . . . , « ,

This is a simple generalization of b.
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= Re([i3

2 6 j , = 1 , 6 1 > o , b-m = b 2 i L + 1 , y . = i , 2 , . . . , « ,

2n I 1

and X 6Bpve-p.( > o for all t > o,
v - 1

2 re I- 1

k(S) = y bv .
Z_J I — s/fiv
V 1

Apart from limiting cases with multiplicities in the (3's (gener-
alizations of c.) f. is the most general form of a general Erlangian
distribution. (Cf. Feller [9] p. 438.)

In the usual sense of weak convergence of probability laws the
class 0. is dense in the class of all probability laws concentrated on
the positive half-axis (cf. Cox-Miller [7] pp. 257-258). A fortiori, the
same is true of the class f. However, such statements are of less prac-
tical value. More interesting would it be if experience were in
favour of the conjecture that most practical distributions of interoc-
currence times can be well approximated by distributions of the type
e. or f. with only a very limited number of terms. As to the corres-
ponding problem concerning the function P(y) it seems that such
experience is available (see Aimer [1]).

After this digression about the function K(t) we return to the
formulas giving the probability of ruin within a finite period
(o, T], i.e. <\i(u, T). We denote the probability of ruin at any time in

1 / T\
Wttlf 1 )

the future by <h(u) = <hlu, 00). Then, for fixed u > 0, —ry~.—

with ']>(u, 0) = o is a distribution function in T (giving the proba-
bility that—if ruin occurs—the epoch of ruin is < T). Therefore, it
is natural to consider its characteristic function. More generally

(Cramer [8] p. y^) consider i\>(u, z) = J ezT dx ^(u, T), Re(z) < 0.

The characteristic function of —,, , is then , , ,— If we can
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58 GENERALIZATION OF CLASSICAL RUIN THEORY

deduce a tractable formula for ty(u, z) we may thus get ty(u, T) by
the Levy inversion formula. Numerically this might be done e.g.
by Bohman's C-method.

However, in order to obtain a formula for §(u, z) it is, generally
speaking, necessary to considei a "characteristic function" ac-
cording to u of ty(u, z). In fact, we consider <p(s, z) = i —

— J esu du tp(w, z) where we have defined ty(u, z) = o for u < o.
0 -

Here Re(s) < R where R is the least positive root, assumed to exist,
of the equation k(— cs) p(s) = i. The function k(s) has been defined

above. By analogy p(s) = J esv dP(y) = J esv dP(y) since we
— ao 0

have assumed P(o) = P{o-\-) = o. Furthermore we denote by ct
the gross risk premium for a period of length t. Of course, we as-

pi
sume that c > — where pi and ki denote the mean of P(y) and the

Kl

mean of K(t) respectively i.e. we assume what we call a positive
safety loading. (Note that ty(u, T) < e~Ru.)

Then we have [13]
A(s,z)

where A(s, z) in a simple way depends on the function

H(s, z)=— log (1 — k(z — cs) p(s)).

In fact, it may be shown that there exist a function M(x, z) such
that for o < Re(s) < R

H{s, z) = J esx dxM{x, z) = log A(s, z) — log B(s, z)

where

log A(s, z) = J esx dxM(x, z), Re(s) < R,
(I

0

log B(s, z) = — J esx dxM(x, z), Re{s) > o

Thus
B(s, z)

1 — k(z — cs) p(s) = -rj—- , o < Re(s)< R.
A{s, z)
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In the paper [12] the present author has pointed out that in the
Poisson case, K(t) = 1 — e ' t , there is another formula connecting
A, B and H namely

1 } His\z) ( log A(s, z), Re{s) < o )

2™ J S' — s / log B(s, z), Re{s) > o \

a formula, which the author i.a. used to deduce simple expressions
for A and B when P(o) =-= P(o-\-) = 0. However, this formula is
also valid in the situation when K(t) has a more general form (see
["15]). If we assume that k(s) is a rational function the proof can be
repeated almost word for word. The expressions for A and B
become, however, a little more complicated.

In order to avoid trivial complications we give the formulas for

A and B when K{t) = 1 — 2 bv e~{i'1, 2 bv = 1 where {}„ are

distinct and such that i?e(pw) > o and together with bv are so chosen
that K(t) is a distribution function. (The formulas are derived by
use of the Cauchy theorem applied to a contour in the left halfplane
enclosing the logarithmic singularities and, in the case of A, a
simple pole.) We get

A(s,z) =

II (CS — CS1}{Z))
, Re(s) < R

II {[iv + cs — z)— p{s) 2 bv% II {fo + cs—z)
v - I v- 1 j - 1

(2.1)

Here sij(z),j — 1, 2, . . ., n denote the n roots in the left halfplane
Re(s) < o of the equation

k(z — cs) p(s) = 1, Re(z) < o.

(By the Rouche theorem it is found that the number of the sij(z)
must be the same as the number of poles of k(z — cs) in the same
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2 P»
halfplane. These poles are in the points , v = i, 2, . . . , » . )

By continuity the formulas are true not only for Re(z) < o but
also for Re(z) < 0.

We thus have obtained tractable formulas for

A (s, z)
TV ' A(o, z)

as far as we can find the roots sij(z),j = 1, 2, . . . , n.

In order to obtain <J>(M, T) we must first invert the formula

(2.2)

/ A(o,

obtaining ty(u, z) and second we have to invert the formula

If we only had in mind to get ty(u) the first inversion with z = o
would be sufficient since ~§{u, 0) = <\>(u). However, with the aim to
compute <\/(u, T) for a set of finite values of T we are facing the task
of two successive numerical inversions. In principle this could be
done by use of a numerical inversion method, say Bohman's
C-method. However, the first inversion must be done for a large
number of 2-values in order to get a sufficient basis for the second
inversion. Furthermore, a high precision in this first inversion
seems to be required. Of course, this might be done but perhaps this
way would be too expensive, at least as a standard method. There-
fore, in the next section we try to get around the first inversion.
Needless to say, this cannot be done without paying a certain price.

3. Simplifications in the case when the risk sums obey a law expressible
by a finite number of exponential terms

It is natural to try to specialize P(y), P{o) = P(o+) = 0, in
such a way that p(s) by analytic continuation can be extended to a
rational function of s expressible as a quotient of two polynomials
without common factors, the degree of the numerator being lower than
that of the denominator. In order to avoid trivial complications we
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GENERALIZATION OF CLASSICAL RUIN THEORY 6 l

assume that the zeros of the denominator are simple. Let us denote

them by ai, 1x2, ...,ctm implying that P(y) = i — 2 ave~x<>v,

2 av = i, Re(a.v) > o. ({av} and {â } cannot be chosen completely
» - 1

arbitrarily since P(y) must be a distribution function.) It is easy to
see that the poles oip(s) must be located in the halfplane Re(s) > R.
As a consequence of this and of our assumption that k(s) also is a
rational function we see that the crucial function i — k(z — cs) p(s)
for fixed z also is rational in s. At least if Re(z) < o there are no
poles in o < Re(s) < R. The poles for Re(s) > R are determined by
p(s) and are located in <*„, v = i, 2, . . ., m. However, still more
interesting than the poles are the zeros of i—k(z — cs) ft(s) for
Re(s) > R since these zeros are the poles of A(s, z) as is seen from
the formula (2.1) in the previous section and from A(s, z) we can
derive <\>(u, z) by inverting (2.2). The number of these zeros is m, i.e.
equal to the number of poles of p(s), as follows from the same for-
mula. Let us denote these zeros by Szv(z), v = i, 2, . . ., m. Since
A(s,z) according to (2.1) after insertion of the expression for

•» av
p(s) = 2 :— becomes the quotient of two polynomials of the

, - , 1—sl<*-v
degree n -\- m, which however have the common factor

II (cs — csij(z)) we get A(s, z) as a quotient of two polynomials of
1-1

the degree m. In fact we find

n (s —ac)
A(S, Z) = - ; F .

n (S-S2V(Z))
V =- 1

For >s = 0 we get
m

n av
A I \ V = 1

A{o, z) = — .

A(s,z)
Thl l s TuT7\ = -

/ I |O Z) TT .
v ' n ( 1 —
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62 GENERALIZATION OF CLASSICAL RUIN THEORY

Let us now assume that there are no multiplicities among the
S2V{z), v = I , 2, . . . , m.

Then, developing in partial fractions we may write

A(s, z) =

A(o,z) g°Z y gv{z) -1. ,. •
£j I — S S2V(z)

Comparing with (3.1) we find after multiplying by 1 — s/s2;-(z)
letting s -> S2j(z) that

n S2j{z)

gj(z) = = 1, 2, . . ., m. (3.2)

n
Taking s = o we further get

We now have

0 - » - 1

Since

i = J esu ds(u), we get for u > o
0 -

m

v - 1

Observing (3.3) we can write this

I — S/S2V(Z)

) , Re(s)

(3-3)

< /e.

, z) = (34)

where ^(^), w = 1, 2, . . ., m are given by (3.2).
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If our assumption that the roots szv(z) are simple is not satisfied
we instead get limiting forms of (3.4).

Note that the formula (3.4) generalizes a formula given by Cramer
([8] p. 82) for <\i(u) when P'{y) is an exponential polynomial with
positive coefficients and K(t) = 1—e~l. Note also that for the
truth of formula (3.4) it is not fundamental that k(s) is just rational.
However, the assumption about the rationality of p(s) seems essen-
tial if m is to be finite. If m is permitted to be infinite the foimula
(3.4) is open for generalizations to wider classes of distribution
functions P(y).

By the formula (3.4) we have got ty(u, z) without numerical in-
version of formula (2.2). However, we must pay for this advantage
in two ways.

First, we must restrict ourselves to use only a number of expo-
nential terms when we represent in analytical form our experience of
the distribution of individual claims. This restriction is perhaps not
too serious. The experience presented by Aimer [1] seems to justify
the use of three or four exponential terms in most practical cases.
Also Philipson [10] seems to accept such a view.

Second, we must be able to compute s*v{z), v = 1, 2, ..., m, the
zeros of 1 — k(z — cs) p(s) for Re(s) > 0 with great precision for a
large number of z-values (whereas the roots sij(z), j = 1, 2, . . ., n
do not enter the formula). Let us see what this means.

Take first the simple Poisson process where K(t) = 1 — e~l,
Then the equation k(z — cs) p(s) = 1 takes the well-known form

p{s) = 1 + cs — z.

If P(y) can be represented by at most 4 exponential terms then
p(s) becomes a rational function where the denominator polynomial
is at most of the 4th degree i.e. m < 4. Our equation then becomes
an equation of the 5th degree at most i.e. m -\- 1 < 5. At most we
have to compute 4 roots since the root in the left halfplane does not
enter the formula (3.4).

Let us now consider the Sparre Andersen generalization with
K(t) expressed by n exponential terms. The equation k(z — cs) •
p(s) = 1 then becomes an equation of degree m -\- n. At the first
stage it seems reasonable to let n = 2 corresponding to two
exponential terms in K(t). If m < 4 we thus have m -\- n < 6 i.e.
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we must compute the 4 roots in the right halfplane Re(s) > o of an
equation of the 6th degree since the two roots in the left halfplane
does not enter (3.4).

The equations we have to solve have complex coefficients as a
consequence of the appearance of z. Computer programs do exist
which are claimed to give all zeros of a complex polynomial in a
rapid way. It is the intention of the committee to try to use this
method to get ^(u, z) and to compute <f(w, T) by a numerical inver-
sion e.g. according to the Bohman C-method. The committee will
also make attempts to determine l£(w, Z) in some cases by numerical
inversion in order to compare the precision obtained.

In the simple case when m = 1 formula (3.4) takes the form

••««,<*> (3.5)

(where we have dropped the index 1). If also n = 1 then s2(z) is one
of the roots of a second degree equation and it is known (Arfwedson
[3] p. 21) that ty(u, T) can be expressed by Bessel functions. In this
case it is thus possible to avoid even the numerical inversion of (3.4).
If, in one way or another, this may be generalized to n > 1 or/and
m > 1 is unknown to the author.

4. Closing remarks
As pointed out above the simplifications presented in section 3

have been possible only by paying a certain price. Obviously there
are cases where this price becomes too high. Let us consider e.g. the
risk situation characteristic for the portfolio retained by the cedant
in an Excess of Loss treaty. In such a case it seems natural to con-
sider a distribution function P(y) with P(M—) < 1, P(M) =
= P(M-\-) = 1, for a finite M. Then p(s) becomes an entire function
(non-rational) and section 3 gives no help. Thus one has to use the
double numerical inversion of section 2 or, if this turns out to be too
expensive, one can—as Mr. Bohman has proposed—try to use
simulation techniques. In order to get a certain idea about the
precision and the cost of such techniques it is the intention of the
committee to use them also in some cases where the method of
section 3 turns out to succeed. A third way to tackle the indicated
problem could be an attempt to generalize the method of section
3 to include the risk situation mentioned above.
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