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ABSTRACT

Dietary fibre is an umbrella term comprising various types of carbohydrate polymers that cannot be digested
nor absorbed by the human small intestine. Consumption of dietary fibre is linked to beneficial effects on
cognitive and affective processes, although not all fibres produce the same effects. Fibres that increase short-
chain fatty acid (SCFA) production following modulation of the gut microbiota are thought to be the most
potent fibres to induce effects on cognitive and affective processes. SCFAs can exert their effects by
improving central, peripheral and systemic immunity, lowering hypertension and enhancing intestinal
barrier integrity. Here, we propose additional mechanisms by which dietary fibres may contribute to
improvements in affective and cognitive processes. Fibre-induced modulation of the gut microbiota may
influence affective processes and cognition by increasing brain-derived neurotrophic factor levels. Depend-
ing on the physicochemical properties of dietary fibre, additional effects on affect and cognition may occur
via non-microbiota-related routes, such as enhancement of the immune system and lowering cholesterol
levels and subsequently lowering blood pressure. Mechanistic randomised placebo-controlled trials are
needed to establish the effects of dietary fibre consumption and the magnitude of explained variance in affect
and cognition when incorporating measurements of microbiota-dependent and microbiota-independent
mechanisms in humans.
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Introduction

Dietary fibre, which is derived from fruits and vegetables, legumes, whole-grain breads, and cereals, is an
umbrella term comprising various types of carbohydrate polymers that cannot be digested nor absorbed
by the human small intestine. Consequently, dietary fibre ends up in the colon, where it is fermented by
the gut microbiota. Consumption of dietary fibre has been linked to various beneficial physiological
effects, including effects on affective (Lawton et al., 2013) and cognitive (Sandberg et al., 2018) processes.
Notably, dietary fibre consumption can aid in prevention or treatment of symptoms of depression,
anxiety, and stress (Jacka et al., 2017; Silk et al., 2009), which are psychological states characterised by
negative mood (e.g., worry, fear, sadness, loss of interest, or emotional tension) that are often accom-
panied by impaired facets of cognition. Moreover, preclinical data suggests that impaired facets of
cognition, such as attention, mental flexibility, and executive functioning, can be restored by dietary fibre
(Chunchai et al., 2018).
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Since dietary fibres vary in origin, chemical composition, and physicochemical properties (compris-
ing solubility, fermentability, and viscosity), they can exert different effects on the body. These
differences in physicochemical properties might differentially affect the communicative pathways to
the brain, and consequently variably influence affective and cognitive processes. Commonly accepted
mechanisms by which dietary fibres are thought to affect cognitive and affective processes are the gut
microbiome and short chain fatty acids (SCFAs) (Dalile et al., 2019). Here, we shed light on additional
potential mechanisms that may contribute to the positive effects of dietary fibres on these processes, such
as the immune system, cholesterol, the intestinal barrier, brain-derived neurotrophic factor (BDNF), and
blood pressure, and would help explain additional variance that is not explained by SCFAs. Since in
human studies most evidence is associative, we also included animal studies that assess the impact of
dietary fibre intake on these various mechanisms. To this end, the current review assesses microbiota-
dependent and microbiota-independent biological mechanisms that may underlie the effects of dietary
fibre on affective processes and cognition and outlines which physicochemical properties may predict
such effects.

Dietary fibres: a definition

Since dietary fibres are characteristically heterogeneous, different classifications have been used to define
them, including origin, chemical composition, and physicochemical properties with additional sub-
categorisation based on the degree of polymerisation. The most commonly used definition of dietary
fibre is according to the Codex Alimentarius, which states that dietary fibres include (1) edible
carbohydrate polymers occurring in foods as consumed, (2) edible carbohydrates obtained from food
raw materials by physical, enzymatic or chemical means and (3) synthetic carbohydrate polymers, which
have beneficial physiological effect demonstrated by generally accepted scientific evidence (Joint
FAO/WHO Food Standards Programme Secretariat of the CODEX Alimentarius Commission, 2010).
In 2016, the Food and Drug Administration (FDA) defined dietary fibre as either (1) non-digestible
soluble and insoluble carbohydrates (with three or more monomeric units), and lignin that are intrinsic
and intact in plants, or (2) isolated or synthetic non-digestible carbohydrates (with three or more
monomeric units), and induce physiological effects that are beneficial to human health (Food and Drug
Administration, 2020). At that time, only seven non-digestible carbohydrates were included in the latter
category (B-glucan soluble fibre, psyllium husk, cellulose, guar gum, pectin, locust bean gum, and
hydroxypropylmethylcellulose). Since then, the list has been extended with ten additional types of
dietary fibre [mixed plant cell wall fibres, arabinoxylan (AX), alginate, inulin, and inulin-type fructans
(ITFs), high amylose starch (resistant starch 2), galactooligosaccharides (GOS), polydextrose, resistant
maltodextrin/dextrin, cross linked phosphorylated RS4, and glucomannan]. Certain types of fibres, such
as ITFs and GOS fulfil the criteria of a prebiotic. Prebiotics are defined as “a substrate that is selectively
utilised by host microorganisms conferring a health benefit” (Gibson et al., 2017).

Properties of dietary fibres

The physicochemical characteristics of dietary fibres are subtyped by solubility, viscosity and ferment-
ability. Table 1 provides an overview of the most frequently investigated types of fibres and their
concomitant physicochemical properties.

Solubility

Dietary fibres can be water-soluble or water-insoluble, with most plant foods containing a mixture of both.
Approximately 20 per cent of consumed dietary fibre is soluble, whereas 80 per cent is insoluble. Insoluble
fibres consist mainly of cellulose, hemicellulose, and lignin, and are primarily present in wheat bran, most
grain products and vegetables (Cho and Dreher, 2001). Soluble fibres consist of polysaccharides such as
pectin, mucilage, and gum, and are predominantly found in some fruits (e.g., dried prunes, oranges, and
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Table 1. Overview of different types of dietary fibres with their concomitant origin, structure and degree of solubility, viscosity and fermentability.

o
Type of dietary fibre  Origin Structure Solubility Viscosity Fermentability References E
=
Cellulose Cell wall of most Linear chain of f(1—4) linked glucose Lattimer and =
plants, fruits (e.g., monomers Haub, 2010; g
apples), grains and Mudgil and =
vegetables (e.g., Barak, 2013 =)
green beans) =
=
ITFs
Inulin Wheat, garlic, onions,  Polymer of multiple fructose monomers Jenkins et al.,
chicory, artichokes linked by B-(2—1) fructosyl-fructose 2000; Lattimer
and bananas linkages and Haub, 2010
FOS Onions, garlic, Sucrose molecule (glucose - fructose Delzenne, 2003;
asparagus, wheat, disaccharide, GF1) linked to one (GF2), Jenkins et al.,
bananas, honey two (GF3) or three (GF4) additional 2000
and tomatoes fructose unites, added by glycosidic
linkages to the fructose unit
GOS Legumes (e.g., B-linked oligosaccharides made up of Jenkins et al.,
artichokes, beans galactose with glucose/galactose 2000; Silk et al.,
and lentils) and present at the reducing end 2009; Vulevic et
seaweed al., 2008
X0S Bamboo shoots, milk,  Xylose units linked by B-(1—4) bonds Qing et al., 2013
honey, fruits (e.g.,
bananas) and
vegetables
Hemicelluloses
AX Cell wall components  B-1,4-linked xylose units, substituted with — (water — — Courtin and
that constitute a a-L-arabinofuranosyl residues in 0-2 unextractable Delcour, 2001
large part of the and/or O-3. Some ferulic acid residues AX)
dietary fibre may be esterified to arabinose at 0-5 ]
fraction of cereal Courtin and
grains Delcour, 2001
Cereal f-glucans Cell wall material in Linear polysaccharide of glucose polymers Lattimer and

oat, barley, rye and
wheat

with (1—4) and B(1—3) linkages
between the units

Haub, 2010;
Mudgil and
Barak, 2013 Al
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Table 1. Continued

Type of dietary fibre ~ Origin Structure

Solubility Viscosity Fermentability References

RS-3 (retrograded) Cooked and cooled
starch sources

Gill et al., 2020;
Sajilata et al.,
2006

RS-4 (chemically Foods with modified
modified) starches (e.g.,
acylated starches)

Gill et al., 2020;
Sajilata et al.,
2006

RS-5 (starch-lipid Foods with modified
complex) starches (e.g.,
amylose and

stearic acid)

— = - Gill et al., 2020

Note: Degree of physicochemical properties are expressed as low (—), medium (+) or high (++).

Abbreviations: AX, arabinoxylan; FOS, fructooligosaccharides; GOS, galactooligosaccharides; ITFs, inulin-type fructans; RS, resistant starch; XOS, xylooligosaccharides.
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grapefruit), oats, barley, dried beans, and legumes (e.g., lentils and pinto beans) (Cho and Dreher, 2001).
Although soluble fibres are less prevalent in foods than insoluble fibres, they have an important influence
on digestive and absorptive processes, such as delaying gastric emptying, decreasing glucose absorption,
enhancing immune function, and lowering total and low-density lipoprotein (LDL) cholesterol levels (Cho
and Dreher, 2001; Jenkins et al., 2000). Insoluble fibres are important for shortening bowel transit time,
increasing faecal bulk, and softening stool (Cho and Dreher, 2001).

Viscosity

Viscosity, the capacity to gel with water, depends on the solubility of the fibre with soluble fibres having
higher viscosity. Viscous fibres reduce postprandial glucose response after carbohydrate-rich meals,
lower total and LDL cholesterol levels (Jenkins et al., 2000; McRorie and McKeown, 2017), and slow
gastric emptying and macronutrient absorption from the gut (McRorie and McKeown, 2017).

Fermentability

The fermentability of dietary fibre varies greatly, ranging from not at all (e.g., lignin) to almost complete
fermentation (e.g., pectin) (Mudgil and Barak, 2013). Soluble fibres are fermented in the colon, whereas
insoluble fibres are less and more slowly fermented. The fermentation of soluble fibres results in the
production of short-chain fatty acids (SCFAs) which, in turn, exhibit anti-inflammatory effects in the
gut, maintain intestinal barrier integrity (Lewis et al., 2010), induce mucin secretion in the gastrointes-
tinal tract (Monk et al., 2017), and promote gastrointestinal motility (Cherbut et al., 1998). In addition to
solubility, chain length and particle size determine fermentability with shorter polymers and small
particles being more readily fermented. In in vitro incubation experiments, neutral pectin fractions
produced more SCFAs and more acetate than acidic fractions, whereas rhamnose and arabinan
produced high proportions of propionate (Onumpai et al., 2011). Wood derived xylan and mannan
derivatives produced similar total amounts of SCFAs as fructooligosaccharides (FOS) but proportionally
more propionate and butyrate, respectively (La Rosa et al., 2019). In contrast, the glycosidic bond
configuration has little impact on SCFA production (Harris et al., 2017).

Dietary fibre studies on cognitive and affective processes

Here, we provide a brief overview of the state of the literature on the effects of dietary fibre on cognitive
and affective processes for the sake of completeness. Cross-sectional and prospective cohort studies
across the lifespan continue to show positive associations between higher dietary fibre intake and better
cognitive and affective processes (Muth and Park, 2021; Swann et al., 2020). Affective processes are
measured by, for instance, better mental health quality of life and lower incidents of depression and
anxiety. Moreover, dietary source of fibres appears to be differentially associated with the incidence of
depression (Kim et al., 2020). Despite assessing effects on the short-term, human interventional studies
enable controlled administration of specific fibres and exclusion of confounding effects. These studies are
displayed in Table 2. Briefly, 18 studies were found, with 7 of them (Azpiroz et al., 2017; Buigues et al.,
2016; Dehhaghi et al., 2019; Farhangi et al., 2018; Grimaldi et al., 2018; Kao et al., 2019; Silk et al., 2009)
conducted in populations with various mental, physical, or gastrointestinal disorders, and the remaining
11 conducted in healthy populations (Best et al., 2008, 2009, 2015; Childs et al., 2014; Lawton et al., 2013;
Pasman et al., 2003; Ramnani et al., 2015; Schmidt et al., 2015; Smith, 2005; Smith et al., 2015; Talbott and
Talbott, 2009). The duration of the intervention periods varied, with three studies carrying out single
administration (Best et al., 2008, 2015; Smith et al., 2015), one study comprising 2 days (Pasman et al.,
2003), and the others comprising 2-13 weeks (Azpiroz et al., 2017; Best et al., 2009; Buigues et al., 2016;
Childs et al., 2014; Farhangi et al., 2018; Grimaldi et al., 2018; Kao et al., 2019; Kazemi et al., 2019; Lawton
etal., 2013; Ramnani et al., 2015; Schmidt et al., 2015; Silk et al., 2009; Smith, 2005; Talbott and Talbott,
2009). Eleven studies utilised ITFs, with the majority of them (nine studies) showing some positive effects
on affective and cognitive indices. Five studies utilised mixtures of fibre, mostly revealing positive effects
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Table 2. Human studies assessing the effect of dietary fibre interventions on mood and cognition.

References Sample Design Intervention Placebo Effect
Pasman et al. 26 healthy men A 2-day, open, randomised, Simple carbohydrate breakfast None Complex carbohydrate breakfast
(2003) (25-45 years) crossover trial (high in mono and lowered fatigue scores relative

disaccharides; 2.1 g fibre) to simple carbohydrate
versus complex carbohydrate breakfast. No effects on
breakfast (high in depression, anger, vigour or
polysaccharides; 6.5 g fibre) tension scores

Smith (2005) 142 healthy A 2-week, placebo-controlled, 2 x 5 g/day oligofructose- Placebo (no further Oligofructose-enriched inulin

participants crossover design with 2 weeks enriched inulin details) decreased simple and choice

(19-64 years)

washout period

reaction time relative to
placebo. No other effects

Bestetal. (2008) 45 healthy
participants
(40-63 years)

An acute randomised, double-
blind, placebo-controlled
design

7 g powdered Ambrotose®
Complex (combination of
saccarides). These include
polysaccharides from aloe
vera, Larix decidua, Astragalus
gummifer and Anogeissus
latifolia, with rice starch and
glucosamine hydrochloride;
and saccharides included
mannose, galactose, fucose,
xylose, glucose, n-acetyl-
glucosamine, n-acetyl-
neuraminic acid and n-acetyl-
galactosamine

25 g of glucose or
artificial sweetener
(two drops of liquid
Stevia)

No effects

Bestetal. (2009) 109 healthy

participants (45-60)

A 12-week randomised, double-
blind, placebo-controlled

3.6 g/day powdered Ambrotose®
complex (a combination of
plant saccharides). These
include polysaccharides from
aloe vera, Larix decidua,
Astragalus gummifer and
Anogeissus latifolia, with rice
starch and glucosamine
hydrochloride; and saccharides
included mannose, galactose,
fucose, xylose, glucose,
n-acetyl-glucosamine, n-acetyl-
neuraminic acid, and n-acetyl-
galactosamine

Rice flour starch
powder

Ambrotose complex improved
memory performance
(immediate recall and
recognition memory), well-
being (reduction in anger-
hostility and depression-
dejection, feeling less irritable,
having fewer instance of being
grouchy and annoyed, and
overall more positive and
happier, experience fewer
feelings of personal
inadequacy) relative to placebo
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Table 2. Continued

References Sample

Design

Intervention Placebo

Effect

75 marathon runners
(18-53)

Talbott and
Talbott (2009)

A 4-week randomised, double-
blind, placebo-controlled trial

250 or 500 mg/day of B 1,3/1,6 Rice flour
glucan. The B-glucan were
isolated from the yeast

Saccharomyces cerevisiae

Lower tension, fatigue, confusion,
and anger and higher vigour
scores in the treatment groups
relative to placebo - with some
exhibiting dose-depending
effects. A composite (global
mood) score revealed that
mood improved after both the
250 mg dose at 4-weeks and
both 2- and 4-weeks in the
500 mg treatment groups
compared to placebo

Patients with irritable
bowel syndrome
(18-80 years)

Silk et al. (2009)

A 12-week randomised, simple
blind (patients), placebo-
controlled, parallel, and
crossover design

Trans-GOS mixture (3,5 or 7 g/d), Maltodextrin
which contained: GOS, lactose,

glucose, and galactose

Trans-GOS mixture decreased
anxiety and increased quality
of life scores relative to placebo

Lawton et al. 153 healthy low-fibre A single centre, multi-site, open, Cereals (5.4 gof fibreswith3.5gof  No comparator (non- Breakfast cereals increased
(2013) (<15 g/day) within-subjects pre-post wheat bran). The source of intervention, subjective perception of
consumers design. A 14-day non- fibres was from bran shreds, baseline general well-being (feeling less
(18-50 years) intervention (baseline, wheat bran flakes, wheat bran monitoring period) fat, more mentally alert, slim,
habitual diet) monitoring flakes with sultanas, frosted happy, and energetic whilst
period was followed by a mini wheats, raisin mini experiencing less stress, mental
14-day fibre consumption wheats, chocolate wheat bran and physical tiredness,
(intervention) period flakes, apple and fig wheat difficulty concentrating, and
bran flakes fewer headaches)
Childs et al. 44 healthy A 3-week randomised, double- Prebiotic: 8 g/day XOS; Probiotic: =~ Maltodextrin XOS increased participant-
(2014) participants blind, placebo-controlled, Bifidobacterium reported vitality and
(25-65 years) crossover design with 2-week animalis subsp. lactis (Bi-07; happiness relative to placebo
washout period 109 colony-forming units
(CFU)/d); or, Synbiotic:
combined
Smith et al. 47 healthy An acute randomised, double- 5 g/day Inulin Maltodextrin Inulin resulted in higher
(2015) participants (19-30) blind, placebo-controlled happiness scores, and

crossover design

improved memory [greater
accuracy on a recognition
memory task, albeit with

8
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Table 2. Continued

References Sample

Design

Intervention

Placebo

Effect

slower reaction time, and
improved recall performance
(immediate and delayed)]
relative to placebo

Schmidt et al 45 healthy volunteers
(2015) (18-45 years)

3-week, double-blind,
randomised, placebo-
controlled trial

5.5 g/day FOS or Bimuno®-GOS
(B-GOS®)

Maltodextrin

B-GOS® lowered attentional
vigilance to negative versus
positive stimuli on dot-probe
task as well as lowered cortisol
awakening response (CAR)®
relative to placebo. No effects
of FOS

Ramnani et al. 38 healthy
(2015) participants
(18-50 years,
mean age 38)

A 3-week randomised, double-
blind, placebo-controlled,
crossover design with 2-week
washout period

Agave fructan (5 g/day; a purified
powder extracted from Agave
tequilana Weber var. Azul.)

Maltodextrin

No effects

Bestetal. (2015) 73 healthy
participants

(45-60 years)

An acute randomised, double-
blind, placebo-controlled trial

4 g of a proprietary mixture of
non-starch polysaccharides
(NSPs; Ambrotose® complex).
This included arabinogalactan,
aloe vera gel extract, gum
ghatti, gum tragacanth that
contain gluco- and
galactomannans, acetylated
mannans, acemannan,
glucosamine HCL, and rice
starch

Rice flour or sucrose
control

Non-starch polysaccharides
resulted in glucose-
independent improvements in
recognition memory and
working memory relative to
rice flour and sucrose control

Buigues et al. Participants with
(2016) frailty syndrome
(66-90 years)

A 13-week randomised, double-
blind, placebo-controlled trial

7.5 g/day Inulin plus FOS
(Darmocare Pre)

Maltodextrin

Inulin + FOS reduced fatigue
relative to placebo

Azpiroz et al. 79 irritable bowel
(2017) syndrome patients
with rectal
hypersensitivity

(18-60 years old)

4-week, double-blind,
randomised, placebo-
controlled trial

5 g/day short chain FOS (scFOS)

Maltodextrin

scFOS lowered anxiety scores
relative to placebo

1Nn9
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Table 2. Continued

References

Sample

Design

Intervention

Placebo

Effect

Farhangi et al.
(2018)

55 females with type 2

diabetes mellitus

8-week, double-blind,
randomised, placebo-
controlled trial

10 g/day Nutriose®06 (a resistant

dextrin), which contains
glucose polymer derived from
maize, wheat, or other edible
starch

Maltodextrin

Resistant dextrin lowered cortisol

levels, depression, anxiety, and
stress scale scores, and
improved scores on general
health questionnaire relative to
placebo

Grimaldi et al.
(2018)

26 children

(4-11 years) with
autism spectrum
disorders

6-week randomised, double-
blind, placebo-controlled trial

B-GOS® mixture (Bimuno; 1.8 g:

80% GOS content)

Maltodextrin

B-GOS® improved social

behaviour scores (i.e., scores
were lower) relative to placebo

Kazemi et al.
(2019)

110 participants with

major depressive
disorder
(18-50 years)

8-week randomised, double-
blind, placebo-controlled trial

L. helveticus R0052 and B. longum

RO175 (CNCM strain 1-3470)
bacteria at a dosage of

10 billion colony-forming units
(>10 x 10° CFU) per 5 g sachet/
day

Excipients used were
as follows: xylitol,
maltodextrin, plum
flavour and malic
acid

Prebiotic product was composed

of GOS and 0.2% Plum flavour

Probiotic supplementation

resulted in a significant
decrease in depression score
compared to the placebo and
prebiotic supplementation

Kao et al. (2019)

39 non-hospitalised

participants

(18-60 years) with
psychosis, stable on
antipsychotic
medication for at
least 3 months prior
to recruitment, with
global cognitive
score 0.5 SD below
the healthy average

A 12-week randomised, double-
blind, placebo-controlled
crossover trial, without
washout period

5.5 g/day B-GOS®

Maltodextrin

B-GOS® increased the cognitive

assessment’s composite score
(reflecting verbal memory,
working memory, motor speed,
verbal fluency, attention, speed
of information processing, and
executive functions) relative to
placebo. Placebo improved
verbal fluency alone. There was
a significant pre- versus post-
effect of B-GOS® on the
executive, but not verbal,
domains

Abbreviations: GOS, galactooligosaccharides; FOS, fructooligosaccharides; XOS, xylooligosaccharides.
2CAR a measure of hypothalamic-pituitary-adrenal (HPA) axis function (Clow et al., 2010). CAR has been previously associated with anticipation of daily stress (Fries et al., 2009) and executive function

(Butler et al., 2017).

01

‘Te 30 a110], e anbrue


https://doi.org/10.1017/gmb.2021.3

GUT 1

Dendritic cell
Immune system @ * +

Mactophage yoo, Nmmnnhll
" %8 Eytokines
Viscosity fal I
rol
r - Choleste +
0"
" Hypertention
e L0 - YRELtE! -
Dietary fibre : aut n=g—d ; +
microbiota L Yoy
W E j . Acelate “ e
Fermentability \ (hmane Microglia -
H 0
N SCFAsH-¢-¢-¢ i
Hh O-H function Treg cell +
Propionate e® " Mood
Macrophage Th17 Th1 ° Cytokines / i
WHE { Cognition
e Intestinal #e
K HH 0-H
barrier

Butyrate

Snlublllty

bd

Figure 1. Overview of potential biological mechanisms underlying dietary fibres’ effects on mood and cognition according to
physicochemical properties. The degree of viscosity, fermentability, and solubility of dietary fibres influences gut microbiota
composition and function, the immune system, as well as cholesterol levels, through which mood and cognition can be modulated.
Via the direct immune route, viscous, fermentable, and soluble fibres can reduce pro-inflammatory cytokines, lower numbers and
activation of splenic macrophages and DCs, and increase neutrophils in the blood. Cholesterol levels can be lowered by viscous,
fermentable, and soluble fibres and impact the brain, but can also indirectly affect it by reducing hypertension. Fermentability and
solubility of dietary fibre modulate the gut microbiota, by which it can influence affective and cognitive processes via SCFA-dependent
mechanisms or BDNF levels. SCFAs can lower hypertension as well as improve immune function and intestinal barrier integrity. Via the
indirect immune route, SCFAs suppress pro-inflammatory reactions by reducing pro-inflammatory cytokines, increasing anti-
inflammatory cytokines and T, cells, as well as restoring microglial cell morphology and reversing microglial immaturity. All these
mechanisms have been associated with modulation of mood and cognition in health and disease. The likelihood that the different
biological mechanisms underlie dietary fibres’ effect on mood and cognition are displayed in proportion, with larger cubicle areas
reflecting increased potential. The green plus sign indicates beneficial effects. BDNF, brain-derived neurotrophic factor; DCs, dendritic
cells; Treq cells, regulatory T-cells; SCFAs, short chain fatty acids.

of interventions, unless it was administered only once. One study administrated B-glucans and one study
administered resistant starch. Not all studies are of equal quality, with some lacking proper control
conditions. Notably, most human intervention studies administered dietary fibre supplements rather
than whole foods. Whole foods are not only rich in dietary fibre but also contain minerals and
antioxidants that may improve mood and cognition (Gomez-Pinilla, 2008). Moreover, it cannot be
excluded that some placebos (e.g., maltodextrin) may have had an effect on mood and/or cognition as
well, possibly via gut-independent mechanisms (Kendig et al., 2014). Future intervention studies should
take such effects into account. Some fibres such as pectin, hemicelluloses (e.g., AX), and gums (e.g., guar,
xanthan, and Arabic gum) are yet to be explored in the context of mood and cognition. As these fibres are
highly viscous, they may affect mood and cognition through microbiota-independent mechanisms as
discussed below. Overall, the majority of studies point to beneficial effects on mood and cognition, but
none of these studies causally addresses potential mechanisms of action. In the next section, we will
discuss potential mechanisms, both microbiota-dependent as well as microbiota-independent, that may
be involved in dietary fibre’s beneficial effects on affective and cognitive processes.

Biological mechanisms

Dietary fibre may affect mood and cognition via various biological mechanisms, both microbiota-
dependent and microbiota-independent, which are reviewed in this section. Figure 1 provides an
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overview of the different biological mechanisms that may underlie dietary fibres’ effect on affective and
cognitive processes according to their physicochemical properties.

Gut microbiome

Dietary fibre’s ability to influence affective and cognitive processes is most likely through its interactions
with the gut microbiome. The gut microbiome refers to the 1 x 10'* to 1 x 10"* microorganisms that
reside in the human large intestine, which is one of the most densely and diversely colonised organs in the
human body. Pre-clinical studies suggest that the gut microbiome plays an important modulating role in
affective and cognitive processes. Studies in germ-free (GF) mice suggested a causal role of the gut
microbiota in developing brain function and behaviour, as those mice exhibit compromised social,
cognitive, and anxiety-like behaviours (Desbonnet et al., 2014), such as reduced non-spatial memory,
lower social motivation, and symptoms of anxiety compared to their conventionally raised specific
pathogen-free (SPF) counterparts (Clarke et al., 2013; Desbonnet et al., 2014). Also, faecal microbiota
transplantation of “depressive microbiota” derived from patients with major depressive disorder (MDD;
a disorder specifically known for its symptoms of negative mood and impaired cognition) to GF mice
(Zheng et al.,, 2016) resulted in depression-like behaviours relative to colonisation with “healthy
microbiota” derived from healthy donors.

Human studies also suggest that differences in the gut microbiome composition are associated with
mood and cognition. For instance, gut microbiota composition of healthy subjects differs from that of
patients suffering from MDD. Specifically, the relative abundance of Firmicutes (Jiang et al., 2015),
Bifidobacteria and Lactobacilli (Aizawa et al., 2016) appears lower in MDD patients compared to healthy
controls, whereas Actinobacteria, Proteobacteria, and Bacteroidetes appear to be higher (Jiang et al.,
2015). Increases in the relative abundance of Bifidobacteria and Lactobacilli in particular have been
associated with lower anxiety and better memory and learning in both rodents (Bravo et al., 2011) and
humans (Messaoudi et al., 2011). Nevertheless, it seems unlikely that bacterial strains are directly
responsible for these effects. Rather, it is speculated that bacterial metabolites like SCFAs and BDNF
mediate the interaction between the microbiota and psychological functioning.

Short-chain fatty acids

Soluble fibres (e.g., pectin and gums) provide substrates for bacterial fermentation, which in turn leads to
the production of SCFAs in the colon. Acetate, propionate, and butyrate are the most abundant SCFAs, and
they are present in the colon in an approximate molar ratio of 60:20:20, respectively. Type and availability
of substrate, as well as gut transit time and composition of the gut microbiota influence the levels and
relative proportions of SCFAs in the colon. Following their production by microbial fermentation of
dietary fibre, SCFAs are rapidly absorbed by colonic cells via monocarboxylate transporters and produce
energy for the cells. Those that are not absorbed travel via the basolateral membrane into the portal
circulation. In the liver, SCFAs are incorporated in glucose, cholesterol, and fatty acids, thus only small
amounts actually reach systemic circulation, and subsequently the brain (Boets et al., 2017).

SCFAs and cognitive and affective processes While numerous animal studies have relied on intracer-
ebroventricular (ICV), intraperitoneal, subcutaneous, and oral administrations to deliver SCFAs and
investigate their impact on brain and behaviour (see Dalile et al., 2019), few studies explored whether
the effects of dietary fibre/prebiotics on affective and cognitive functioning are mediated by or correlated
with the observed increases in SCFA levels. One of these studies showed that FOS- and GOS-induced
increases in cecal SCFAs correlated with effects on depressive and anxious behaviour and stress responses
in mice (Burokas et al., 2017). Moreover, drinking water supplemented with a GOS mixture (B-GOS; 3 per
cent) for 3 weeks increased plasma acetate levels and upregulated subunits of the N-methyl-p-aspartate
receptor (NMDAR) in the brain (Gronier et al., 2018; Kao et al., 2018), which is implicated in synaptic
plasticity and memory formation, as well as Acetyl Co-A Carboxylase mRNA, an enzyme in the brain
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that plays an important role in supplying fatty acids for myelination. Indeed, in one of these studies, mice
fed with the GOS mixture gained greater cognitive flexibility (Gronier et al., 2018). Unfortunately, the
other did not test whether the GOS mixture induced changes in cognition (Kao et al., 2018). Direct
administration of acetate also induced similar neurochemical changes as that of GOS (Gronier et al.,
2018), suggesting that acetate may play a mechanistic role in the observed effects of GOS administration.

Unfortunately, studies in humans administering prebiotics and assessing effects on affective and
cognitive processes do not quantify SCFAs and do not explore the extent to which circulating SCFAs
mediate the observed effects (Dalile et al., 2019). However, one study found that increasing colonic
propionate by consumption of 10 g of an inulin—-propionate ester (thereby delivering of 2.36 g propionate
to the colon, which is 2.5 times habitual daily propionate production) influenced brain anticipatory
reward responses during a functional magnetic resonance imaging (fMRI) food picture evaluation task in
non-obese men (Byrne et al., 2016). In parallel, the subjective appeal of high-energy food pictures
decreased and energy intake during an ad libitum meal was reduced. These results support the mediating
role of SCFAs in microbiota-gut-brain axis communication. Moreover, our group recently showed that
daily administration of known amounts of a SCFA mixture equivalent to 20 or 10 g of AX (174.2 mmol
acetate, 13.3 mmol propionate, and 52.4 mmol butyrate, or half the dose, respectively) to the colon of
healthy men for 1 week significantly reduced the cortisol response to an acute psychosocial stress
challenge (Dalile et al., 2020). Furthermore, we found that the increase in circulating SCFAs was
associated with a decrease in cortisol response to stress. This preliminary study indicates that SCFAs
are clearly an important mechanism through which fermentable fibres can affect HPA axis (a major
neuroendocrine system that regulates stress responses as well as affective processes) reactivity to stress.

Conceptually, SCFAs may influence affective and cognitive processes by influencing multiple
pathways that have been reviewed elsewhere (Dalile et al., 2019). However, the extent to which increasing
the substrate of SCFAs (soluble fibres) increases SCFA concentrations and consequently influences
affective and cognitive processes, remains understudied. In the following sections, we focus on potential
mechanisms by which fibre consumption may alter affective and cognitive processes via interactions
with SCFAs and other microbiota-gut-brain axis mediators, namely, the immune system, the intestinal
barrier, and hypertension. As studies that directly investigate the effect of dietary fibre on SCFAs and
these mediators and subsequent changes in affective and cognitive processes are currently lacking, we
summarise the available evidence for an effect of SCFAs on these intermediate systems and for the
involvement of these systems in the regulation of affective and cognitive processes.

Immune system (indirect effects)

Immune system and cognitive and affective processes The immune system is important for both affective
and cognitive processes. Challenging the immune system activates cytokines which are involved in the repair
of damaged tissue and the restoration of homeostasis. The inflammatory response may also elicit deleterious
effects, such as alterations in mood and cognition. This became evident from, for instance, a study
vaccinating healthy volunteers with Salmonella typhi which increased IL-6, IL-1Ra, and tumour necrosis
factor (TNF)-o, but also decreased mood without any signs of physical sickness (Wright et al., 2005). Other
studies using acute inflammatory stimulation showed similar results (Brydon et al., 2009; Strike et al., 2004).
Also, endotoxin-induced inflammation showed a dose-dependent elevation in pro-inflammatory cytokines
IL-6 and TNF-a, but also anti-inflammatory cytokine IL-10 (Grigoleit et al., 2011). These elevations were
accompanied by a dose-dependent increase in anxiety, negative mood, and poor long-term memory.
Involvement of inflammation in negative mood and poor cognitive function is supported by numerous
reviews that repeatedly showed an increased incidence of negative mood symptoms with elevated levels of
pro-inflammatory markers (CRP, TNF-o, IL-1f, IL-2, and IL6) in peripheral blood and cerebrospinal fluid
(CSF) in patients with MDD (Dowlati et al., 2010; Hannestad et al., 2011; Hiles et al., 2012). Regarding
cognition, higher levels of CRP are associated with impairment in several cognitive domains such as with
lower psychomotor speed and poorer executive function (Krogh et al,, 2014).
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Reducing inflammation has been shown to improve mood (Allison and Ditor, 2015). Moreover, mood
stabilisers such as lithium and valproate suppressed IL-6 levels in patients with bipolar disorder compared
to untreated patients (Kim et al., 2007). Atypical antipsychotics, which are used as a treatment for both
MDD and bipolar disorder, have also been shown to decrease levels of TNF-a and IL-6 in animal models
(Bian etal., 2008; Kato et al., 2007). Furthermore, meta-analyses assessing various cytokine levels after anti-
depressant treatment in people with depression show significant decreases in IL-6, IL-1P, and CRP
(Hannestad et al., 2011; Hiles et al., 2012). It seems therefore likely that inflammation plays a significant
role in mood. To this end, reducing inflammation may aid negative mood symptoms in some individuals.

SCFAs and immune system  SCFAs are able to modulate the immune system. SCFAs may reduce
inflammation by modulating molecular signalling pathways, including free fatty acid receptor (FFAR)
2 and 3 activation (Vinolo et al., 2011), and histone deacetylation (HDAC) inhibition (Waldecker et al.,
2008). As SCFAs directly interact with FFAR2 on immune cells, which is suggested to regulate regulatory
T-cells (Tyeg cells) in the colon (Smith et al., 2013), Ty, cells may then suppress immune responses,
thereby reducing inflammation.

Of all SCFAs, butyrate seems the most potent SCFA in modulating the immune system. Butyrate
increases the expression of anti-inflammatory molecules in dendritic cells (DCs) and macrophages,
thereby supporting T, differentiation (Singh et al., 2014), and hence suppress inflammation. Further-
more, due to its ability to inhibit HDAC activity, butyrate decreases the secretion of proinflammatory
cytokines interleukin (IL)-12 and IL-6 in dendritic cells and allows dendritic cells to promote anti-
inflammatory cytokine IL-10-secreting T cells (Chang et al., 2014). Moreover, butyrate inhibits the
production of pro-inflammatory cytokines interferon (IFN)-y and IL-2 (Looijer-Van Langen and
Dieleman, 2009). Propionate may also modulate inflammation by inducing forkhead box P3
(FOXP3) expression, a protein that regulates the development and function of T,y (Arpaia et al,
2013). Furthermore, both propionate and acetate have been found to increase the production of anti-
inflammatory cytokine IL-10 (Cavaglieri et al., 2003).

Indeed, most animal studies using prebiotics indicate beneficial effects on the immune system by
lowering proinflammatory cytokine expression. For instance, gene expression of pro-inflammatory
cytokines IL-1P and (TNF)-a decreased in the brain of mice fed with a high fibre (5 per cent inulin) diet
but not in mice fed a low fibre (1 per cent cellulose) diet (Matt et al., 2018). The decrease in IL-B and TNF-a
correlated significantly with faecal butyrate levels, with higher butyrate levels corresponding with lower
pro-inflammatory gene expression. Furthermore, 3-week administration of a FOS + GOS mixture
(dissolved in drinking water for 0.3-0.4 g/mouse/day) reduced the elevations in proinflammatory cytokine
levels (IL-6 and TNF-o) caused by chronic stress induction in C57BL/6] male mice (Burokas et al., 2017).
Moreover, mice fed with a high fermentable fibre (10 per cent pectin) diet became less sick and recovered
faster from lipopolysaccharide (LPS)-induced sickness compared to mice fed with non-fermentable fibre
(5 per cent cellulose) (Sherry et al., 2010). LPS-stimulated macrophages from the mice fed with pectin
showed decreased pro-inflammatory cytokines IL-1f, TNF-q, interferon (IFN)-y, IL-12, and nitrate, and
increased anti-inflammatory cytokine IL-1RA compared to mice fed with cellulose. With regards to brain-
based inflammation levels, increased levels of anti-inflammatory IL-1RA and IL-4 mRNA, and a decrease
in pro-inflammatory IL-1B and TNF-a were observed in mice fed with pectin compared to mice fed with
cellulose (Sherry et al,, 2010). Since IL-4 expression is stimulated by histone acetylation, the authors
hypothesised that the increased butyrate concentrations observed as a result from dietary fibre fermen-
tation of pectin stimulated IL-4, and hence may aid immune response regulation (McLoughlin etal., 2017).

In humans, few studies have administered SCFAs and found an effect on inflammation as shown by a
systematic review where only two of five studies revealed statistically significant decreases in serum
inflammatory markers, namely, decreases in IL-1f following colonic infusion of SCFA mixture, and
decreases in TNF levels following rectal acetate administration. Some studies using prebiotics support
the hypothesis that SCFAs induce immunomodulatory effects SCFAs. For instance, in healthy elderly,
consumption of a mixture of GOS (B-GOS; 5.5 g/day) for 10 weeks increased levels of anti-inflammatory
cytokine IL-10, and lowered levels of pro-inflammatory cytokines IL-1, IL-6, and TNF-a (Vulevic et al.,
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2008). Furthermore, supplementation with inulin and xylooligosaccharides (XOS; 6.64 g/day) for
4 weeks lowered the expression of pro-inflammatory IL-1b, IL-8, IL-12, and TNF-a, whereas it increased
anti-inflammatory IL-10 and IL-13 in the blood of healthy subjects (Lecerf et al., 2012). In a recent meta-
analysis, 9 out of 13 studies reported a significant decrease in one or more systemic pro-inflammatory
cytokine (primarily TNF-o, IL-6, c-reactive protein (CRP), or IFN-y) after consumption of prebiotic
oligosaccharides compared with control (McLoughlin et al., 2017). In contrast, in two studies that were
conducted in healthy participants, CRP, TNF-0, and IL-6 increased following oligosaccharide supple-
mentation. Another systematic review, conducted in 10 prebiotic and synbiotic (supplements combining
probiotics and prebiotics) trials, of which 7 prebiotic and 3 synbiotic, representing 534 obese/overweight
subjects, also found inconsistent effects of prebiotic treatment on immunomodulation. They found that
only 6 out of 10 trials (two with GOS, one with inulin, and three with different synbiotics) reduced CRP
levels, four out of four trials (one with oligofructose-enriched inulin, one with inulin, and two with
different synbiotics) reduced levels of IL-6 and/or TNF, and four out of the five trials (one with
oligofructose-enriched inulin, one with inulin, one with GOS, and one with different synbiotics) lowered
endotoxin levels (Fernandes et al., 2017). Taken together, it might still be too early to promote the use of
prebiotics for reduction of low-grade inflammation. However, the evidence seems promising and more
studies are needed to conclude whether prebiotics can lower inflammation via increased SCFA produc-
tion in humans, and in turn promote beneficial effects on mood and cognition.

Intestinal barrier

Intestinal barrier and cognitive and affective processes The intestinal barrier is mainly responsible for
regulating the absorption of nutrients, electrolytes, and water from the lumen, and to prevent pathogenic
microorganisms and toxic luminal substances to enter the host. A dysfunctional intestinal barrier may
lead to increased intestinal permeability, and hence to the translocation of luminal antigens, bacteria, and
toxins through the intestinal wall into the blood stream. In turn, this may cause low-grade inflammation
(Caspani and Swann, 2019) and hence may affect affective and cognitive processes. Indeed, some studies
report associations between depressive symptoms and increased levels of indirect markers of intestinal
permeability such as intestinal-type fatty acid-binding protein (I-FABP), fatty acid-binding protein
2 (FABP2), LPS, and zonulin (Ohlsson et al., 2019; Stevens et al., 2018). Moreover, a study using a direct
measure of intestinal permeability (lactulose to mannitol ratio) also found a positive association with
depression severity (Calarge et al., 2019).

SCFAs and intestinal barrier ~ SCFAs are the preferred energy substrates for the colonic epithelium
(Cushing et al., 2015) and can contribute to enhanced intestinal barrier function. This has been shown in
in vitro and in in vivo experiments in which the application of individual and combinations of SCFAs
increased transepithelial electrical resistance (Feng et al., 2018; Suzuki et al., 2008), decreased paracellular
transport markers (Suzuki et al., 2008), and stimulated the formation of tight-junctions (Feng et al.,
2018). Furthermore, SCFAs may protect the intestinal barrier from disruption induced by LPS through
the inhibition of the NLPR3 inflammasome and autophagy (Feng et al., 2018).

Interestingly, an experimental study showed that 1-week oral administration of a SCFA mixture
(67.5 mM acetate, 25 mM propionate, and 40 mM butyrate) alleviated stress-induced increases in
intestinal permeability and decreased depressive-like behaviour in mice (Van De Wouw et al., 2018).
Moreover, animal studies show that inulin supplementation (0.5 per cent as well as 1 per cent) increased
expression of intestinal barrier function-related genes after Salmonella enterica infection in SPF chickens
(Songetal., 2020). In obese mice, oligofructose increased the relative abundance of Bifidobacterium spp.,
leading to increases in GLP-2 and tight-junctions, lower levels of inflammation, and a significant
improvement of intestinal permeability (Cani et al., 2009). As ITFs stimulate SCFA production, the
effect is likely mediated by SCFAs, although this is speculative as SCFA concentrations were not
measured.
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Human studies that evaluated the impact of dietary fibre on intestinal permeability yielded incon-
sistent results. Administration of green bananas and pectin for 1 week significantly reduced intestinal
permeability and stool output in children with diarrhoea (Rabbani et al., 2001). Another study in healthy
subjects found a significant reduction in intestinal permeability markers zonulin and GLP-2 after
consumption of inulin-pasta (8 weeks) compared to control pasta (Russo et al., 2012). In contrast, a
high dose of inulin (30-35 g/day) for 1 week in patients on liquid enteral nutrition did not affect intestinal
permeability (Sobotka et al., 1997) neither did supplementation with GOS (5.5 g/day) for 12 weeks in
men with well-controlled type 2 diabetes (Pedersen et al., 2016).

These results suggest that the beneficial effects of SCFA on intestinal permeability are not always
evident from human studies. Fermentable fibres may induce beneficial effects on affective and cognitive
processes via stimulating SCFA production. However, there is a need for human studies that assess
whether improvements in intestinal barrier function by means of SCFA stimulation are also associated
with improvements in mood and cognition, albeit by attenuating stress-induced negative effects, to
confirm this speculation.

Hypertension

Hypertension and cognitive and affective processes Hypertension, also known as high blood pressure, is
a well-established risk factor for cognitive impairment and dementia (Forte et al., 2020). Cognitive
impairment is more frequent in patients with hypertension, and this is positively associated with the
severity (stage) of hypertension (Muela et al., 2017). Moreover, the prevalence of anxiety disorders is
higher in patients with essential hypertension (Vetere et al., 2007). However, it remains to be established
to what extent a reduction in blood pressure improves affective processes and cognition. A systematic
review and meta-analysis of randomised controlled trials (RCTs) indicated that pharmacological
treatment of hypertension reduces cognitive decline in older adults (Gupta et al., 2020). On the other
hand, recent large-scale associative studies report mixed findings. In 14,195 hypertensive older adults
from the United States and Australia, the use of beta blockers alone or combined with angiotensin-
receptor blockers was associated with depressive symptoms, but this was not the case when using
angiotensin-receptor blockers on its own, angiotensin-converting enzyme inhibitors, calcium channel
blockers, or any other possible combination of drugs among them (Agustini et al., 2020). However,
another cross-sectional study comprising 1.8 million patients from Scotland reported that angiotensin
antagonists and calcium channel blockers were associated with episodes of MDD in hypertensive
patients with or without history of mood disorders (Shaw et al., 2020). Another nation-wide
population-based study of 5.4 million people in Denmark found that no drugs belonging to angiotensin
agents, calcium antagonists, B-blockers, or diuretics were associated with an increased risk of depression.
In contrast, angiotensin agents, calcium antagonists, and B-blockers were associated with decreased rates
of depression. Moreover, non-clinical evidence indicates that mood and blood pressure are related, with
increasing intensity of negative moods (stress, anxiety, and anger) being associated with increased blood
pressure, with feeling tired (low energy) being associated with the opposite pattern, while changes in
intensity in positive mood (happy) showing little changes in blood pressure (Shapiro et al., 2001).

SCFAs and hypertension ~ Meta-analyses and reviews of RCTs reveal that higher dietary fibre con-
sumption reduces blood pressure, an effect that is most pronounced in patients with hypertension,
regardless of the type of fibre (Aleixandre and Miguel, 2016). Some studies report differences in gut
microbiota composition, particularly in SCFA-producers, as well as in SCFA profiles in spontaneously
hypertensive rats (SHR) and in hypertensive patients (Yang et al., 2015). For example, patients with high
blood pressure exhibit significantly less butyrate-producers such as Roseburia and Eubacterium but also
lower plasma butyrate concentrations compared to normotensive subjects (Kim et al., 2018). Further-
more, intraperitoneal or intramedullary butyrate administration (Kim et al., 2018; Wang et al., 2017),
acetate (Marcques et al., 2017), and propionate (Bartolomaeus et al., 2019) administration in drinking
water resulted in anti-hypertensive effects in rodents. Most recently, expression levels of butyrate-
sensing receptors FFAR3 and olfactory receptor (OLFR) 59 in the hypothalamus of SHR were found to be
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lower than in control rats, likely underlying the reduced effects of centrally administered butyrate on
blood pressure in the SHR. Finally, functional magnetic resonance imaging revealed reduced activation
of cardio regulatory brain regions of SHR compared to controls following ICV injection of butyrate to
reach physiological concentrations (3-5 uM/L) in the CSF (Yang et al.,, 2019). Only correlational
evidence exists in humans, which indicate that higher SCFA-producing bacteria are associated with
lower blood pressure and high faecal SCFA levels (De La Cuesta-Zuluaga et al., 2019; Verhaar et al,,
2020). Studies that aim to reduce hypertension in humans by supplementing prebiotics or other dietary
fibres would benefit from quantifying SCFAs to determine the extent to which they mediate the effect of
these dietary interventions on blood pressure. These studies suggest that more research is needed to
understand the role of hypertension in mood and cognition, and non-pharmacological interventions
such as dietary fibre or SCFA supplementation may be ripe targets for such research.

Brain-derived neurotrophic factor

BDNF is a nerve growth factor found in the brain and in the periphery with an important function in
normal neural development and in long-term memory. It is considered as a potential marker for
neuronal integrity and brain functions. As central and peripheral BDNF are highly correlated in rats
(r = 0.86) (Harris et al., 2016), circulating levels of BDNF may be used as an appropriate measure for
brain levels of BDNF. Dietary fibre may indirectly increase circulating BDNF levels via modification of
the microbiota, in particular levels of Bifidobacterium and Lactobacillus. Increases in the relative
abundance of these strains and consequent increases in BDNF levels were accompanied by a reduction
in depressive symptoms as well as improvements in cognitive performance in both animal (Bercik et al.,
2010, 2011) and human studies (Haghighat et al., 2019).

Dietary fibres have indeed shown to increase BDNF levels in both animals and humans, and some
already found associations with improvements in cognition. For instance, in a rat study administering
placebo, inulin, E. faecium, or E. faecium + inulin, BDNF levels only increased in the probiotic and
synbiotic group, but not in the prebiotic group, with only the synbiotic group showing improved memory
(Romo-Araiza et al., 2018). Furthermore, in healthy subjects, an evening meal consisting of rye kernel
bread increased plasma BDNF levels by 27 per cent at fasting on the next morning compared to white
wheat bread (Sandberg et al,, 2018). Consumption of the same bread for three consecutive days was
associated with a higher abundance of Prevotella compared to the white wheat bread (Prykhodko et al.,
2018), and the Prevotella genus was positively associated with plasma levels of BDNF. Unfortunately, no
plasma SCFAs were measured which prevented evaluating the relationship between SCFAs and BDNF.
Despite evidence that butyrate increases acetylation around the promoters of BDNF, thereby increasing its
transcription (Intlekofer et al., 2013) and the myriad pre-clinical studies showing that it increases following
butyrate administration (Stilling et al., 2016), our recent study in healthy subjects showed that colonic
administration of SCFAs did not alter serum BDNF levels (Dalile et al., 2020). Together, the evidence thus
far seems to indicate that the relationship between dietary fibre consumption and BDNF levels is mediated
by changes in gut microbiota composition, rather than increases in colonic or circulating SCFAs.

Direct effects of dietary fibre on the immune system

Dietary fibre and immune system

Few studies explored immune effects of dietary fibres that are independent of the gut microbiota. A
recent study demonstrated that dietary cellulose supplementation modulates the immune response.
Mice were fed either a normal diet or a high-fibre cellulose diet for 2 weeks and were, subsequently,
injected with endotoxin (LPS). Mice fed the high-fibre cellulose diet showed lower levels of proin-
flammatory cytokines (IL-1a, IL-1B, and IFN-a), lower numbers and activation of splenic macrophages
and DCs, and hyporesponsiveness of T cells (Di Caro et al., 2019). Splenic macrophages and DCs are
innate effector cells that are crucial for the host defence to protect against bacterial infections (Di Caro
et al., 2019). Since cellulose is hardly fermentable, the observed effects likely arose from a direct
interaction of the fibre with the immune system, rather than from SCFA production.
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Also, other glucans, more specifically -1,3/1,6-glucans, modulate the innate and acquired immune
system. Those compounds bind to pattern recognition receptors including complement receptor
3, scavenger receptors, lactosylceramide, and dectin-1, which are expressed on cells of myeloid origin,
including macrophages, dendritic cells, and neutrophils (Murphy et al., 2010). Although small amounts
of B-glucan may be absorbed after oral administration, it is most likely that B-glucan primarily act in the
gut epithelium. B-Glucan has been shown useful in the prevention of treatment of allergic disease. No
studies to date have evaluated whether the impact of B-glucan on the immune system results in
improvements in cognitive or affective processes.

Cholesterol

Cholesterol and cognitive and affective processes
Cholesterol is important for normal brain function and our mental well-being as well as cognition.
However, its involvement is complex. Cholesterol demand by neurons in the brain is very high, since it is
implicated in a variety of neuronal processes such as neurite formation and synaptic activity. Several
studies found that higher levels of LDL cholesterol were associated with depressive mood in men (Kim
etal., 2019; Tedders et al., 2011) whereas low levels of high-density lipoprotein (HDL) cholesterol were
significantly associated with depression symptoms in women (Tedders et al., 2011) and men (Lehto et al.,
2010), and is a potential risk factor for developing a mood disorder in females (Kim et al., 2018). Up to
44 per cent of the subjects who were diagnosed with a mood disorder suffered from mild hypercholes-
terolemia (>5.2 and 6.2 mmol/L) and 21 per cent from hypercholesterolemia (>6.2 mmol/L) (Davison
and Kaplan, 2012). Importantly, dietary cholesterol cannot cross the blood brain barrier. Therefore, the
mechanisms by which cholesterol influences learning and memory are thought to combine peripheral
(atherogenic and proinflammatory) and central (accumulation of intracellular beta amyloid) effects.
There is some evidence that pharmacological reduction of plasma cholesterol with statins, the most
common cholesterol-lowering drugs, may improve cognitive function in subjects without dementia
(Schreurs, 2010). However, the effects of statins on mood modulation remain controversial. For instance,
chronic statin treatment in rats (10 mg/kg atorvastatin; 10 mg/kg simvastatin; 30 mg/kg pravastatin) reduced
anxious behaviour in the open-field task (Citraro et al., 2014; Wang and Gao, 2009). Preclinical studies using
the forced swimming test also support the anti-depressant effects of statin treatment (Can et al.,, 2012).
Another study demonstrated that statin treatment decreased the risk of depression (Yang et al., 2003). In
contrast, low dose statin treatment (simvastatin 1 mg/kg; atorvastatin 0.5 mg/kg) did not improve spatial
memory and learning in guinea pigs, but instead increased levels of anxiety (Maggo et al., 2012). Further-
more, some studies in humans found that depressive symptoms increased rather than attenuated after statin
treatment (Lechleitner et al., 1992; Morales et al., 2006). It is possible that lowering cholesterol induces
positive effects on cognitive and affective processes by lowering blood pressure (see section “Hypertension”).

Dietary fibre and cholesterol

Soluble rather than insoluble fibres possess cholesterol lowering abilities in humans. The mechanism is
most likely related to the viscous properties of soluble fibre. By increasing the viscosity in the small
intestine, reabsorption of bile acids is reduced, in turn leading to increased de novo synthesis of bile acids
from cholesterol in the liver and lower circulating cholesterol levels (Fuller et al., 2016). The role of p-
glucan in lowering cholesterol has been extensively documented and led the U.S. Food and Drug
Administration (FDA) to authorise the use of health claims on oat-containing products, stating that
consumption of B-glucans at least 3 g per day lowers the risk of cardiovascular disease (Food and Drug
Administration, 2019). These health claims have also been approved by the European Commission, as
well as in various other jurisdictions (European Commision, 2011, 2012). A meta-analysis showed that
also pectin, soluble fibre from psyllium, and guar gum have cholesterol-lowering abilities (Brown et al.,
1999). Viscous fibres should be utilised in intervention studies to test their effects of affective and
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cognitive processes, and if supported, investigate whether their cholesterol-lowering ability drives the
effects on brain function in humans.

Conclusion

Collectively, studies suggest that dietary fibres may be promising in inducing psychological changes in
cognitive and affective processes. The evidence base indicates that fermentable fibres, such as ITFs,
B-glucans, pectin, and gums, are the strongest candidates to modulate these psychological functions. This
is mainly due to their ability to modulate the microbiota and increase SCFA production. However, their
ability to increase BDNF levels may also reinforce their effects on cognitive and affective processes. On the
other hand, viscous fibres such as B-glucan and non-fermentable fibres such as cellulose may exert
beneficial effects on cognitive and affective processes via microbiota-independent mechanisms such as
lowering cholesterol and inflammation, respectively. Notably, a research gap remains, where the effects of
different types of fibres on mood and cognition via the proposed mechanisms still needs to be investigated.
In addition, while preclinical studies of dietary fibres on gastrointestinal mechanisms are ample, well-
designed studies of dietary fibre effects on mood and cognition with simultaneous assessment of putative
mechanisms of actions in humans are needed. The aim with this review was to outline potential additional
microbiota-dependent and independent mechanism through which different fibre properties can act to
affect affective and cognitive processes in order to give a more complete picture of the effects of dietary
fibres and to help explain additional variance in inter-individual psychological responses to fibre con-
sumption. The resolution of various mechanistic and functional links outlined here may better facilitate
personalised nutrition for maintaining optimal psychological functioning in states of health or disease.
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