
5
Gauge symmetries and interactions
It is well known that the overall phase of a wave-function in quantum mechanics is not measurable.
On the other hand, the so-called Aharonov–Bohm effect [☞ e.g., the texts [407, 471, 480, 472, 29,
324]] is based on the interference of two wave-functions and measures the relative phase, which
proves that it is not possible to circumnavigate the complex nature of wave-functions. This then
shows: (1) phases of wave-functions are physically relevant variables, and (2) any change in the
overall (common) phase in a wave-function of the whole system must be a symmetry. This and the
next chapters focus on this symmetry, and the corresponding conserved charge guaranteed to exist
by Noether’s theorem.

Moreover, this phase should be variable locally: in one way in one spacetime point, in another
way in another spacetime point. It turns out that this seemingly simple (gauge) principle is actually
the foundation of the contemporary understanding of all fundamental interactions [☞ [31] for the
most complete review to date]. These five chapters (5–9) are dedicated to the application of this
gauge idea, from technically simple examples towards more complex and realistic applications,
and not following the history of its development but using the benefit of hindsight and the lessons
of that history. For a flippant introduction of this idea, see also Refs. [33, 275, 269].

5.1 The non-relativistic U(1) example

Start with the well-known non-relativistic quantum-mechanical description of a particle under
the influence of a potential V(�r ), the wave-function of which is determined by the Schrödinger
equation:

ih̄
∂

∂t
Ψ(�r, t) =

[
− h̄2

2m
�∇2 + V(�r, t)

]
Ψ(�r, t), (5.1)

and by the boundary conditions. In part, the boundary conditions follow from the shape of the
potential and the chosen energy E of the system, and are in part specified by choice. For example,
in directions/regions where V(�r, t) > E as r → ∞, we require limr→∞ Ψ(�r, t) = 0; we also require
that both

∫
V d3�r |Ψ(�r, t)|2 and

∫
V d3�r Ψ∗(�r, t)H Ψ(�r, t) integrals are finite for every choice of the

volume V. In the direction êk where r → ∞ is not obstructed by a boundary condition, we may
require that

Ψ(�r, t) ∼ exp
{

+ i
∫

d(êk·�r)
√

2m[E−V(�r, t)]/h̄
}

, r → ∞. (5.2)
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166 Gauge symmetries and interactions

Such a particle may freely “escape to infinity” in the direction êk, along which the kinetic energy
remains positive, limr→∞

(
E − V(�r )

)
> 0.

It is very well known that in this formalism the complex wave-function Ψ(�r, t) in its entirety
does not correspond to any measurable quantity, but that |Ψ(�r, t)|2 is a physically measurable
probability density of finding the particle in an infinitesimal volume d3�r at the point�r in space and
t in time. It follows that the phase of the complex function Ψ(�r, t) is not measurable,1 so that no
transformation

Ψ(�r, t) → eiϕ Ψ(�r, t) (5.3)

can have any physical (measurable) consequence. The transformation (5.3) is a symmetry of the
Schrödinger equation (5.1) if and only if the phase ϕ is a constant. In other words, the transfor-
mation (5.3) is a symmetry of the Schrödinger equation of the physical system described by the
equation if and only if the identical transformation is applied to all points in space and each mo-
ment of time. Such a symmetry transformation is called global. Its existence is the necessary and
sufficient condition for the application of Noether’s theorem, and – therefore – for the existence of
a corresponding conserved charge.

However, there should exist no physical obstacle for a transformation such as (5.3) to be
performed with the phase ϕ in one point of space and at one moment in time, and a completely
different phase in another point of space and at another moment in time. Indeed, the choice of
the wave-function phase should be a completely arbitrary choice of an unmeasurable degree of
freedom, with no measurable consequence. In other words, the transformation (5.3) would have
to be an exact symmetry of the physical system even if the phase ϕ is an arbitrary function of
x = (ct,�r ). Such transformations and symmetries are called local.

Digression 5.1 A rather formal justification for the transformation (5.3) to be a sym-
metry of the system is provided by noting that the formulation (5.3) in fact unnecessarily
relies on the coordinate representation of the abstract state |Ψ(t)〉. Furthermore, it is
known that only pure quantum states may be represented by a state vector |Ψ(t)〉, while
a general state must be represented by a real, convex, normalized linear combination

ρρρρ = ∑
n

rn |n〉〈n|, such that rn ∈ R, 0 � rn � 1, ∑
n

rn = 1. (5.4a)

This is called the state operator [29], a.k.a. the density matrix/operator [471, 472, 360,
for example]. Equivalently, ρρρρ† = ρρρρ, Tr[ρρρρ] = 1 and 〈u|ρρρρ|u〉 � 0 for every |u〉. A state
operator (5.4a) represents a pure state if there exists a |Ψ〉 = ∑n cn|n〉 such that ρρρρ =
|Ψ〉〈Ψ|; otherwise, ρρρρ represents a mixed state.

The phase transformation (5.3) of the state vectors |n〉, written as |n〉 → eiϕϕϕϕ|n〉,
leaves the state operator ρρρρ invariant:

ρρρρ→ ∑
n

rn

(
eiϕϕϕϕ|n〉

)(
〈n|e−iϕϕϕϕ†

)
= ∑

n
rn|n〉〈n| = ρρρρ,

if and only if
[

eiϕϕϕϕ , |n〉〈n| ] = 0 and ϕϕϕϕ† = ϕϕϕϕ.
(5.4b)

1 Here, we have in mind only the overall phase. In the transformation of the linear combination Ψ = Ψ1 + Ψ2 →
eiϕ1 Ψ1 + eiϕ2 Ψ2, the phase (ϕ1+ϕ2) is the unmeasurable overall phase, while the relative phase (ϕ1−ϕ2) is measurable
by means of interference. This overwhelmingly reminds us of the fact that the absolute values of coordinates (and the
phase is indeed a kind of coordinate) are not measurable quantities, while coordinate differences – i.e., distances – are.
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5.1 The non-relativistic U(1) example 167

In turn, the information about the change of this (or any other) choice cannot be transported
instantly, and there will have to exist some physical mechanism for transporting this information
from point to point in space and time.

It is not hard to verify that the transformation (5.3) with ϕ = ϕ(�r, t) is not a symmetry of the
Schrödinger equation (5.1):

ih̄
∂

∂t
Ψ =

[
− h̄2

2m
�∇2 + V(�r, t)

]
Ψ, (5.5)

�
���

�
��

transformation (5.3), with ϕ = ϕ(�r, t)

ih̄
∂

∂t

(
eiϕΨ

)
=

[
− h̄2

2m
�∇2 + V(�r, t)

](
eiϕΨ

)
,

ih̄ eiϕ
(

i
∂ϕ

∂t

)
Ψ + ih̄ eiϕ ∂Ψ

∂t
= − h̄2

2m
�∇·

(
eiϕ(i�∇ϕ)Ψ + eiϕ�∇Ψ

)
+ V(�r, t)eiϕΨ,

ih̄ eiϕ
(

i
∂ϕ

∂t

)
Ψ + ih̄ eiϕ ∂Ψ

∂t

= − h̄2

2m

(
eiϕ(i�∇ϕ)2Ψ + eiϕ(i�∇2ϕ)Ψ + 2eiϕ(i�∇ϕ)·(�∇Ψ) + eiϕ�∇2Ψ

)
+ V(�r, t)eiϕΨ,

so, using the original equation (5.1) and upon dividing by Ψ(�r, t), we obtain

∂ϕ

∂t
=

h̄
2m

(
i(�∇2ϕ) + 2i(�∇ϕ)·(�∇ ln (Ψ)) − (�∇ϕ)2

)
. (5.6)

This result is absolutely unacceptable! Not only did the (unmeasurable!) phase ϕ(�r, t) turn out not
to be an arbitrarily selectable function of space and time, but it would have to satisfy a differential
equation (5.6) that depends on the particular state of the system represented by the wave-function
Ψ(�r, t)!

The resolution of this seeming paradox can only lie in changing the Schrödinger equation,
but in a way that does not ruin any of the many confirmed results obtained from this equation.
Evidently, this is a very demanding request.

Following the computation (5.5)–(5.6) closely, one notices that the ultimate – and absolutely
unacceptable – result stems from the fact that derivatives of the “new” wave-function eiϕΨ(�r, t)
differ from the eiϕ-multiples of the derivative of the “old” wave-function Ψ(�r, t). With this hint,
introduce a new kind of derivative:

∂

∂t
→ Dt :=

∂

∂t
+ X, �∇ → �D := �∇ + �Y, (5.7a)

where the quantities X and �Y will be determined so that these newfangled D-derivatives satisfy
the relations

D ′
tΨ

′ = D ′
t(eiϕΨ) = eiϕ(DtΨ), �D ′Ψ′ = �D ′(eiϕΨ) = eiϕ(�DΨ). (5.7b)

By writing Ψ = e−iϕΨ′, these requirements show that

(D ′
t · · · ) = eiϕ(Dte−iϕ · · · ), (�D ′ · · · ) = eiϕ(�De−iϕ · · · ), (5.7c)

where D ′
t, �D

′ denotes these new derivatives after the Ψ → eiϕΨ transformation. In turn, with these
newfangled derivatives, the Schrödinger equation becomes

ih̄DtΨ =
[
− h̄2

2m
�D2 + V(�r )

]
Ψ, or

[
ih̄Dt +

h̄2

2m
�D2 − V(�r )

]
Ψ = 0, (5.8)
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168 Gauge symmetries and interactions

and changes under the transformation (5.3) as

0 =
[
ih̄D ′

t +
h̄2

2m
�D′·�D ′−V(�r )

]
(eiϕΨ) =

[
ih̄eiϕDt +

h̄2

2m
�D ′·eiϕ�D−eiϕV(�r )

]
Ψ

= eiϕ
[
ih̄Dt +

h̄2

2m
�D · �D − V(�r )

]
Ψ, (5.9)

which is satisfied precisely when equation (5.8) is. Thus, with these newfangled derivatives Dt
and �D, which themselves change via the transformation (5.3), the new Schrödinger equation (5.8)
remains invariant.

Comment 5.1 It is not at all unreasonable that the procedure for computing a rate of change
(the derivative operator) needed adjustment. Recall that the total derivative d

dt f
(
t, g(t)

)
=[

∂
∂t + ∂g

∂t
∂
∂g

]
f may be viewed as the partial derivative ∂

∂t corrected for the fact that the func-
tion f also depends on t implicitly, via its dependence on g(t). By the same token, complex
wave-functions also depend on the spacetime coordinates implicitly, via their dependence
on the choice of a spacetime variable phase.

It remains to examine the nature of these newfangled derivatives (5.7), as well as the dif-
ferences between the new Schrödinger equation (5.8) and the old one (5.1). The newfangled
derivatives satisfy (5.7c) [( ∂

∂t
+ X′

)
· · ·

]
= eiϕ

[( ∂
∂t

+ X
)

e−iϕ · · ·
]
,[(

�∇ + �Y′) · · · ] = eiϕ[(�∇ + �Y
)
e−iϕ · · · ]; (5.10)

which yields

X′ = X − i
∂ϕ

∂t
and �Y′ = �Y − i(�∇ϕ). (5.11)

The relations (5.11) ought to be familiar to all Students who have successfully completed a
standard electrodynamics course! With the definitions

Φ :=
h̄
iq

X, �A :=
ih̄
q

�Y, λ :=
h̄
q
ϕ, (5.12)

the definitions (5.7a) become

Dt :=
∂

∂t
+ i

q

h̄
Φ, �D := �∇− i

q

h̄
�A, (5.13)

and are called the covariant derivatives. Combining, we have

Φ → Φ′ = Φ − ∂λ

∂t
, �A → �A′ = �A + (�∇λ), (5.14a)

Ψ(�r, t) → Ψ′(�r, t) = eiqλ(�r,t)/h̄ Ψ(�r, t). (5.14b)

The first two relations are the standard gauge transformations of the vector and the scalar
electromagnetic potentials. The third relation is the corresponding gauge transformation of the
wave-function Ψ(�r, t) of a particle with the electric charge q, which is evidently a translation of the
phase of this function.
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5.1 The non-relativistic U(1) example 169

Comment 5.2 The action of the gauge transformation (5.14b) implies that the complex con-
jugate wave-function Ψ∗(�r, t) represents a particle with the charge that is opposite to the
particle represented by Ψ(�r, t): q(Ψ∗) = −q(Ψ).

The first two transformation equations (5.14a) clearly imply that the effect of λ(�r, t) is in-
distinguishable from that of λ(�r, t) + λ0, where λ0 = const., and the single-valuedness of Ψ(�r, t)
then implies that λ0 must be an integral multiple of 2π· h̄

q0
, where q0 then must be a minimal, unit

electric charge. That is, the transformation function λ(�r, t) takes 2π· h̄
q0

-periodic distinct values, i.e.,
along a circle of radius h̄

q0
. In turn, the exponential Uλ := eiqλ(�r,t)/h̄ is unitary: (Uλ)† = (Uλ)−1,

and such λ-parametrized exponentials form the gauge group, called U(1) [☞ Appendix A, and
especially A.2].

More precisely, note that the transformation function, λ = λ(�r, t), remains an unrestricted,
arbitrary function of space and time2 – true to the original insight and definition as discussed
above. The combined transformation (5.14) is then the true and complete local symmetry: a con-
tinuous family of U(1) gauge groups of symmetries, one independent U(1) symmetry in every point
of space and time!

Owing to the identity �∇×(�∇ f ) ≡ 0 valid for any scalar function f , it follows that (�∇×�A)
is invariant with respect to the transformations (5.14). Similarly, since the transformation of �∇Φ
is precisely opposite of the transformation of ∂

∂t
�A, the sum (�∇Φ + ∂

∂t
�A) is also invariant. These

expressions are, of course, familiar:

�B := �∇×�A and �E := −
(
�∇Φ +

∂�A
∂t

)
(5.15)

are the magnetic and the electric fields, expressed in terms of the electromagnetic potentials. The
ability to define gauge-invariant fields �B and �E will be shown to be an exceptional consequence of
the abelian (commutative) nature of the U(1) gauge transformation (5.14).

Digression 5.2 The term “gauge transformation” for the relations (5.14) is a historical
atavism: It is a derivative of the literally translated German original coinage by Hermann
Weyl, Eichinvarianz, by which he denoted the invariance with respect to transforma-
tions (5.14) [564]. Weyl noticed that Einstein’s general theory of relativity is invariant
with respect to complex rescalings. His original idea that the imaginary part of the
rescaling function ϕ(�r, t) in the transformation (5.14b) may unite gravity with elec-
tromagnetism turned out unphysical. Such a rescaling symmetry would permit fixing
a length unit in Nature, for which Weyl used the German verb eichen, meaning to gauge,
to calibrate. The word gauge and its derivatives that are used in the English literature,
jauge in French, βαθμίδας in Greek, mérték in Hungarian, (simply imported) gauge in Ital-
ian, kalibróvoqna� in Russian, de gauge in Spanish, etc. are all literal translations of the
German verb eichen.

Soon, Vladimir A. Fok (first, according to Professor Okun [394], in 1926), Her-
mann Weyl, Erwin Schrödinger and Fritz London noticed that quantum mechanics,
as governed by the Schrödinger equation, has a symmetry with respect to the com-
bined transformations (5.14) using a real function ϕ(�r, t).3 This was derived here as a

2 Well, yes: λ(�r, t) clearly must be differentiable, at least once with respect to both t and�r for the equations (5.14a) to be
well defined; see however also Section 5.2.3.

3 Woit recounts [577, pp. 61–62] that Schrödinger hinted at this in a 1922 paper, but was chidingly reminded of this
neglected “tidbit” in December of 1926 by the young London; see also the account in Ref. [119].

https://doi.org/10.1017/9781009291507.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.008


170 Gauge symmetries and interactions

transformation stemming from the innate property of wave-functions that their phases
are not measurable.

Fundamental physics is indubitably quantum. Equations (5.1)–(5.14) and their logic
then indicate the fundamental nature of this principle to be that of a local symmetry ,
emphasizing that a spacetime variable parameter λ(�r, t) in the transformations (5.14)
parametrizes a spacetime continuum of U(1) symmetries. Local symmetry is then used
as a conceptually correct alternative for the historically well-entrenched term gauge
symmetry or the descriptive but rarely used modifier phase symmetry.

Comment 5.3 Note that the transformation (5.14) may be understood as a spacetime-depen-
dent translation of sorts in the (abstract, target) space of values of the functions defined
over the spacetime; a translation of the electromagnetic potentials and a phase-shift of the
wave-function:

Eq. (5.14) ⇒ Arg
[
Ψ(�r, t)

] → Arg
[
Ψ(�r, t)

]
+ ϕ(�r, t), Arg[z] := 1

2i ln
( z

z∗
)
. (5.16)

The electromagnetic potentials and the phase of the wave-function are all physically un-
measurable variables, the existence of which is however necessary for the consistency of
the model. Lorentz symmetry requires the gauge potentials to be 4-vectors, although only
two polarizations (components) have a physical meaning; the complex-analytic structure of
the Schrödinger and Dirac equations requires the use of complex wave-functions, although
the (overall) phase is not physically measurable.

With the definitions (5.12), the Schrödinger equation (5.8) becomes

ih̄
[ ∂
∂t

+
iQ
h̄

Φ
]
Ψ =

[
− h̄2

2m

(
�∇ +

Q

ih̄
�A
)2

+ V(�r, t)
]
Ψ. (5.17)

That is,

ih̄
∂

∂t
Ψ(�r, t) = HEM Ψ(�r, t), (5.18)

where

HEM =
1

2m

( h̄
i
�∇− Q �A(�r, t)

)2
+

[
V(�r, t) + Q Φ(�r, t)

]
(5.19)

is the Hamiltonian for a particle of mass m and electric charge q := Q(Ψ). The dynamics of this
particle is affected by the interaction with the potential V(�r, t), as well as the electromagnetic
potentials �A(�r, t) and Φ(�r, t).

Conclusion 5.1 The transformation (5.14) with (5.16) is the fundamental assertion that we
are at liberty to arbitrarily change the quantities that were introduced in the (mathemat-
ical) model of the physical system for its consistency, but which on principle represent no
physically measurable quantity.

It is worth noticing that the quantum description of the interaction of a charged particle with
the electromagnetic field is inherently described in terms of the electromagnetic potentials �A, Φ
and not in terms of the electric and magnetic field, �E, �B. Moreover, the Hamiltonian (5.19) can-
not, in the general case, be expressed locally (without integration) as an interaction of a charged
particle with the �E- and �B-fields.
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5.1 The non-relativistic U(1) example 171

The following facts will be shown to be consequences of the abelian (commutative) nature
of the U(1) symmetry group: (1) the Maxwell equations4 (5.72) as well as the corresponding
Lagrangian and Hamiltonian for the electromagnetic field can be expressed exclusively in terms
of the electric and the magnetic field, and (2) electromagnetic potentials can be fully eliminated
from the equations of motion, the Lagrangian and the Hamiltonian except if there is matter that
interacts with the electromagnetic field.

Indeed, the transformations (5.14) are parametrized by one function, λ(�r, t), which defines
the local unitary operator

ϕ(�r, t) �→ Uϕ := exp
{

iϕ(�r, t) Q
}

(5.20)

as in equation (A.37), where the operator Q may be regarded:

1. from the mathematical vantage point, as the generator of the U(1) symmetry,
2. from the physical vantage point, the electric charge operator. The electric charge of a par-

ticle is then the eigenvalue and the wave-function of the particle the eigenfunction of the
operator Q.

At every point of spacetime x = (ct,�r ) separately, the (continuously many) operators Uϕ defined
by equation (5.20) form an abelian (commutative) group, denoted U(1). Since the function in the
exponent manifestly satisfies ϕ " ϕ+ 2π, this group is sometimes identified with the circle, S1. To
repeat: Since ϕ = ϕ(�r, t) gives an independent “angle”-transformation at every point in space and
time, we have a 4-dimensional continuum of U(1) symmetry groups.

Comment 5.4 The full space of “coordinates” in electrodynamics is therefore of the form
(spacetime× S1) – a 5-dimensional topological space, equipped with a particular geometry;
this was clear as early as in 1914 to Gunnar Nordstrøm [☞ Digression 11.5 on p. 414].

5.1.1 Exercises for Section 5.1

✎ 5.1.1 Fill in the details of the computation (5.7)–(5.14).

✎ 5.1.2 From the definitions (5.15), derive Gauss’s law for the magnetic field and Faraday’s
law of induction. (This proves that the equations (5.72b) are consequences of Maxwell’s
definitions (5.15).)

✎ 5.1.3 Show that the gauge-invariant scalar functions of ε0, μ0, �E and �B with the dimen-
sions of (volume) energy density and which are analytic functions of the components of the
vectors �E and �B must be of the form

c1
(
ε0 �E2) + c2

( 1
μ0

�B2) + c3
(√ ε0

μ0
�E·�B). (5.21)

The results in Table C.4 on p. 527, should be useful.

✎ 5.1.4 Determine the constants c1, c2, c3, c4, c5 so that∫
dt d3�r

{
c1
(
ε0 �E2) + c2

( 1
μ0

�B2) + c3
(√ ε0

μ0
�E·�B) + c4 ρΦ + c5�j·�A

}
(5.22)

4 James Clerk Maxwell described electrodynamics, originally in 1873, as a system of equations which would today be

written as �E := −�∇Φ − ∂�A
∂t and �B := �∇×�A, and then �∇·(ε0�E) = ρ and �∇×(�B/μ0) − ∂(ε0�E)

∂t = �j. By the Maxwell
equations (5.72) today, one understands the consequences of the first two of these equations together with the latter
two, expressed exclusively in terms of the electric and the magnetic field, where the electromagnetic potentials, �A and
Φ, are eliminated, and where there are neither (monopole) magnetic charges nor magnetic currents: ρm = 0 =�jm.
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172 Gauge symmetries and interactions

is the Hamilton action the variation of which by Φ and �A, using the relations (5.15),
produces Gauss and Ampère’s law (5.72a).

5.2 Electrodynamics with leptons
By quantum electrodynamics one understands the relativistic theory that describes the interaction
of photons and electrically charged particles. Unlike leptons, quarks and hadrons also interact via
the much stronger strong nuclear interaction, so the analysis of their interactions is considerably
more complicated. This section is limited to the electromagnetic interactions of leptons, and the
next one turns to the electromagnetic interactions of the hadrons.

It follows from the relations (A.43d)–(A.43f) that the components of the radius-vector, and
then also any other vector quantity, span a spin-1 representation of the rotation group. One thus
says that the photon (represented by the vector potential,5 �A) has spin 1. On the other hand, it is
well known that electrically charged particles such as the electron and the quarks, which make up
all tangible matter, have spin 1

2 .
Thus, we must first establish the relativistic generalization of the Schrödinger equation for

particles of spin 1
2 and 1, as well as the argument from the previous section, which specifies the

interaction between them.

5.2.1 Relativistic spinors and the Dirac equation
The Schrödinger equation

ih̄
∂

∂t
Ψ(�r, t) = H Ψ(�r, t) ⇔ Ψ(�r, t) = e

−ih̄−1 ∫ t
t0

dt′ H(t′) Ψ(�r, t′), t > t0 (5.23)

is simply the statement that the Hamiltonian generates the time evolution of the wave-function
Ψ(�r, t). In non-relativistic physics (here, without electromagnetic potentials),

ih̄
∂

∂t
= H =

1
2m

( h̄
i
�∇
)2

+ V(�r, t) ⇔ E =
�p 2

2m
+ V(�r, t), (5.24)

the combination of which with equation (5.23) is the diffusion equation: of second order in
spatial derivatives, but first order in the time derivative. This also implies the “quantization
correspondence” (in the coordinate representation)

�p ↔ �p =
h̄
i
�∇, and E ↔ H = ih̄

∂

∂t
. (5.25)

Instead of the non-relativistic relation (5.24), the relativistic version of the Schrödinger
equation would have to correspond to the relativistic relation (3.37), and using the correspon-
dences (5.25) we obtain

�p2c2 + m2c4 = E2 ↔
[

c2
( h̄

i
�∇
)2

+ m2c4
]
Ψ(�r, t) =

(
ih̄
∂

∂t

)2
Ψ(�r, t),

⇒
[

 +

(mc
h̄

)2]
Ψ(�r, t) = 0. (5.26)

This is the so-called Klein–Gordon equation, where


 :=
[ 1

c2
∂2

∂t2 − �∇2
]

(5.27)

is called the d’Alembertian or the wave operator.
5 It will soon be shown that, as a consequence of the U(1) gauge symmetry, the four functions Φ, �A represent only two

physical degrees of freedom, which may be identified with two components of the vector �A that are perpendicular to
the direction of the photon motion.
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Digression 5.3 Ironically, Schrödinger seems to have known [243] about the equa-
tion (5.26) before publishing the equation that soon acquired his name, but discarded
it in the belief that the double-valuedness of the solution (3.37), E = ±c

√
�p2 + m2c2,

precludes a probabilistic interpretation |Ψ(�r, t)|2. Wolfgang Pauli and Victor Weisskopf
proved in 1934 that the essential obstacle to this interpretation of the quantity |Ψ(�r, t)|2
in relativistic physics is the fact that relativistic physics must contain the possibility of
creating and annihilating particles, as permitted by conservation of energy, linear and
angular momentum, charge, etc. This implies that the number of particles in relativistic
physics is not a conserved quantity, and contradicts the elementary consequence of the
Schrödinger equation:

(5.1) ⇒ ∂�

∂t
= −�∇· �J +

2
h̄
#m

(
V(�r )

)
�, (5.28a)

�(�r, t) := |Ψ(�r, t)|2, �J (�r, t) :=
h̄
m

#m
[
Ψ∗(�r, t)�∇Ψ(�r, t)

]
. (5.28b)

This shows that
d
dt

∫
V

d3�r �(�r, t) = −
∮
∂V

d2�σ · �J +
2
h̄

∫
V

d3�r #m
(
V(�r )

)
�(�r, t). (5.28c)

The probability of finding the particle (represented by Ψ) within the volume V changes
only by the probability flowing through ∂V (the boundary of the volume V ) – if and only
if the potential V(�r, t) is a real function where �(�r, t) is nonzero. The number of particles
is then also conserved, and this is indeed the case in standard quantum mechanics.

Motivated by the fact that the non-relativistic Schrödinger equation is of first order in time
derivatives, while the Klein–Gordon equation is of the second order, Paul Dirac found a way to
factorize the Klein–Gordon equation and so obtain a differential equation that is of first order both
in spatial and in time derivatives. Indeed, in the rest-frame of the particle, �p = 0, so that the
relativistic relation (3.37) reduces to

E2 − m2c4 = 0 ⇒ (E + mc2)(E − mc2) = 0, (5.29)

which is the desired factorization. With �p �= 0, the desired factorization of the equivalent
equation (3.36) is of the form

p2 − m2c2 = 0 ⇒ 0 = (βμpμ + mc)(γγγγνpν − mc),

= βμγγγγν pμpν + mc(γγγγμ − βμ)pμ − m2c2. (5.30)

As the original equation p2 − m2c2 = 0 has no linear terms in the 4-momentum p, it must be that
βμ = γγγγμ. Equating the quadratic terms one then obtains that

γγγγμγγγγν pμpν = p2 ≡ ημν pμpν. (5.31)

Since pμpν = pνpμ, we in fact have the conditions{
γγγγμ , γγγγν

}
= 2ημν, (5.32)

where [ημν] = diag(1,−1,−1,−1) is the matrix-inverse of the metric tensor (3.19) of empty
spacetime. This yields

p2 − m2c2 = 0 = (γγγγμpμ − mc)(γγγγμpμ + mc). (5.33)
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Using the relativistic combination of the correspondences (5.25), this produces the Dirac equation:

pμ → h̄
i
∂μ ⇒ [

ih̄γγγγμ∂μ − mc
]
Ψ(x) = 0, (5.34)

where the standard abbreviation [☞ Digression 3.6 on p. 93]

∂μ :=
∂

∂xμ
, −→ (− 1

c ∂t, �∇), (5.35)

was introduced. The choice of the second of the two factors in equation (5.33) for defining the
Dirac equation is an arbitrary, but standard choice.

The question remains, what sort of objects the γγγγμ are so as to satisfy the relations (5.32).

The Dirac spinor
Relations of the type (5.32) define so-called Clifford algebras. Their abstract structure, properties
and representation theory had been established by mathematicians William Kingdon Clifford and
Hermann Grassmann back in the second half of the nineteenth century. However, in the first half
of the twentieth century, this was unknown among physicists, and Dirac independently found the
smallest matrix realization of the γγγγμ objects, which today we call Dirac matrices; relation (5.32)
then implicitly contains the unit 4×4 matrix in the right-hand side. There exist several “standard”
choices of Dirac matrices; here we follow the traditional sources [64, 63] and use the so-called
Dirac basis:

γγγγ0 =
[

1 O
O −1

]
, γγγγi =

[
O σσσσi

−σσσσi O

]
, i = 1, 2, 3. (5.36)

To satisfy the relations (5.32), γγγγμ cannot be “ordinary” numbers but can be matrices. This implies
that the operator that acts upon Ψ(x) in the Dirac equation (5.34) also has to be a 4×4 matrix,6

so Ψ(x) must be a column-matrix with four components!
Recall that the solutions of the Schrödinger equation, e.g., for the hydrogen atom (4.8), yield

Ψ(�r, t) as an expansion over spherical harmonics, Ym
� (θ, φ), which correspond to components of

the “spin-�” representation7 of the SO(3)
1−2≈ SU(2) rotation group [☞ Table A.2 on p. 469]. For

example, the hydrogen atom states with � = 1 and m = ±1, 0 span the 3-vector representation of
the rotation group, where it is also easy to define the Cartesian basis:

(Ψn)x := 1
2

(
Ψn,1,+1 + Ψn,1,−1

)
,

(Ψn)y := 1
2i

(
Ψn,1,+1 − Ψn,1,−1

)
,

(Ψn)z := Ψn,1,0. (5.37)

The elements of the (2�+1)-dimensional vector space {Ψn,�,m, for |m| � �, �m ∈ Z} may just as
easily be represented as (2�+1)-component column-matrices.

However, the 4-component nature of the solutions to the Dirac equation represents an
additional degree of freedom, a relativistic generalization of the “spin” factor that we used in
Section 4.4.2, such as in the factorization (4.123), for example. Even for � = 0, the Dirac equation
has four linearly independent solutions. In the simple case when �p = 0, the Dirac equation reduces
to [ ih̄

c
γγγγ0 ∂

∂t
− mc1

]
Ψ = 0. (5.38)

6 Since the γγγγμ ’s are 4×4 matrices, the Dirac equation should, pedantically, be written as [ih̄γγγγμpμ − mc1]Ψ = 0.
7 When it denotes a rotation group representation, the term “spin-j” is simply short for “the total angular momentum

where the eigenvalue of the quadratic operator J 2 equals j(j + 1),” regardless of the physical original and composition
of this total angular momentum.
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The solutions in Dirac’s basis of γγγγ-matrices are

ΨA(t) = e−i(mc2/h̄)t
[

Ψ1(0)
Ψ2(0)

]
, and ΨB(t) = e+i(mc2/h̄)t

[
Ψ3(0)
Ψ4(0)

]
, (5.39)

where ΨB(t) represents the solutions with negative energy; i.e., anti-solutions with positive energy
that move backwards in time, according to the Stückelberg–Feynman interpretation that is by now
the standard understanding: ΨB(t) → ΨB(−t) [☞ definition (5.49)].

Using the redefinition of solutions (wave-functions for particles) with negative energy as anti-
solutions (wave-functions for antiparticles) with positive energy, the standard solutions (following
the conventions of Ref. [243]) are

u↑ ∝

⎡⎢⎢⎢⎢⎣
1
0

pz c
E+mc2

(px+ipy)c
E+mc2

⎤⎥⎥⎥⎥⎦ , u↓ ∝

⎡⎢⎢⎢⎢⎣
0
1

(px−ipy)c
E+mc2

pz c
E+mc2

⎤⎥⎥⎥⎥⎦ , (5.40)

v↓ ∝
[

O 1

1 O

]
u↑ ∝

⎡⎢⎢⎢⎢⎣
pz c

E+mc2

(px+ipy)c
E+mc2

1
0

⎤⎥⎥⎥⎥⎦ , v↑ ∝
[

O 1

1 O

]
u↓ ∝

⎡⎢⎢⎢⎢⎣
(px−ipy)c

E+mc2

pz c
E+mc2

0
1

⎤⎥⎥⎥⎥⎦ , (5.41)

(5.42)

where E = +
√

�p2c2 + m2c4 always, and the solutions with negative energy are

u↑
−(E,�p) = −v↓(−E,−�p) and u↓

−(E,�p) = v↑(−E,−�p). (5.43)

Note that u↑, u↓, u↑
−, u↓

− are four linearly independent solutions to the Dirac equation (5.34),
whereas v↑, v↓ satisfy the Dirac equation with pμ → −pμ – which precisely holds for the com-
plementary factor in equation (5.33). The solutions to the Dirac equation may then be written as

Ψ(x) = ∑
s=↑,↓

[
Nu e−(i/h̄)x·p us(p) + Nv e−(i/h̄)x·p vs(p)

]
, (5.44)

which represents the “plane wave” of a spin- 1
2 particle, free of the influence of any potential. This

Ψ(x), however, is not a 4-vector in the 4-dimensional spacetime, but the so-called Dirac spinor,
which we will see transforms with respect to Lorentz transformations, in an intrinsic fashion,
distinct from 4-vectors.

Lorentz transformations of the Dirac spinor
From relation (A.121c), we see that the antisymmetrized products of two Dirac gamma matrices,
γγγγμν := i

4 [γγγγμ,γγγγν], close a Lie algebra:[
γγγγμν , γγγγρσ

]
= ημργγγγνσ − ημσγγγγνρ + ηνσγγγγμρ − ηνργγγγμσ. (5.45)

It is not hard to verify that the definitions J j := 1
2i ε jklγγγγ

kl and K j := iγγγγ0j result in the commutation
relations (5.45) written as[

J j , J k
]

= iε jk
mJ m,

[
J j , Kk

]
= iε jk

mKm,
[

K j , Kk
]

= −iε jk
mJ m. (5.46)
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176 Gauge symmetries and interactions

While the J j elements generate SO(3) rotations, the K j elements generate Lorentz boosts. The
elements of the Lorentz group – in the representation that acts upon 4-component Dirac spinors –
are obtained as exponential functions of the linear combinations of these six generators:

g(�ϕ,�β) := exp
{− i(ϕjJ j + βjK j)

}
= exp

{
β jγγγγ

0j − ε jkmϕ
jγγγγkm}

= exp
{
λμνγγγγ

μν
}

. (5.47)

These may be shown to actually form a double covering of the SO(1, 3) group, denoted Spin(1, 3):
to each non-identity element of the SO(1, 3) group there correspond precisely two elements of the
Spin(1, 3) group. For example, the 360◦-rotations of SO(1, 3) correspond to the ±1 elements of
Spin(1, 3), and only the SO(1, 3) 720◦-rotation corresponds to the unique element 1 ∈ Spin(1, 3).

Let us just cite here [64] that the Lorentz boost in the x1-direction causes the transformation

Ψ(x) →
[√

1
2 (γ+ 1)1 −

√
1
2 (γ− 1)γγγγ01

]
Ψ(x), (5.48)

where γ with no index denotes the familiar relativistic factor γ := 1√
1−v2/c2 . It is then easy to

verify that Ψ†Ψ is not Lorentz-invariant, but that Ψ†γγγγ0Ψ is. One thus defines

Ψ := Ψ†γγγγ0 (5.49)

as the Dirac-conjugate of the Dirac spinor Ψ, and note that Ψ Ψ is Lorentz-invariant.
Using the results from Appendix A.6.1, the following bilinear8 functions may be constructed

from a Dirac spinor and its Dirac-conjugate spinor:

Expression Lorentz representation Number of independent
components

Ψ Ψ = scalar, 1
Ψγγγγμ Ψ = 4-vector, 4

Ψγγγγμν Ψ = antisymmetric rank-2 tensor, 6
Ψγγγγμγ̂γγγΨ = axial (i.e., pseudo-) 4-vector, 4

Ψ γ̂γγγΨ = pseudo-scalar, 1

(5.50)

Since every complex 4×4 matrix may be written as a complex linear combination of 16 matri-
ces (A.124) [580], the 16 functions (5.50) also form a complete system of bilinear functions of
the Dirac spinor, Ψ. It is important to note that in the functions (5.50), the γγγγ-matrices do not
transform with respect to the Lorentz transformations, but Ψ and Ψ do, and in fact just so that
each bilinear product as a whole transforms in the indicated fashion. For example, ΨγγγγμΨ really
transforms, as a whole, as the components of any other contravariant 4-vector.

Comment 5.5 The careful Reader may have questioned the identification of the matrices J j
and K j as the rotation and Lorentz boosts. The list (5.50) gives unambiguous confirmation,
in the form of the correct Lorentz transformations of the listed bilinear expressions.

The notation (5.50) is standard, and supposes that one consistently uses that the γγγγμ,γγγγμν and
γ̂γγγ are all 4×4 matrices, Ψ is a 4-component row-matrix, and Ψ a 4-component column-matrix.
Instead, one may also use the index notation, so the Ath element of the column-matrix Ψ is writ-
ten ΨA, the Ath element of the row-matrix Ψ is ΨA, and similarly for the γγγγ-matrices, so that the
expressions (5.50) become

ΨAΨA, ΨA (γμ)A
B ΨB, ΨA (γμν)A

B ΨB, ΨA (γμ)A
B (γ̂)B

C ΨC, ΨA (γ̂)A
B ΨB. (5.51)

8 It is understood that “bilinear” here means “anti -linear + linear in Ψ and Ψ, respectively.”
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Similarly, instead of column-matrices (5.40)–(5.41), we may write9 u↑A, etc., where, for example,

u↑1 = N, u↑2 = 0, u↑3 = N
pzc

E + mc2 , u↑4 = N
(px + ipy)c

E + mc2 , etc. (5.52)

The normalizing factors in equation (5.44) are chosen so that

u↑ u↑ = 2mc = u↓ u↓ and v↑ v↑ = −2mc = v↓ v↓. (5.53)

The solutions of equations (5.40)–(5.41) are also complete, in the sense that10

∑
s=↑,↓

us us = /p + mc1 and ∑
s=↑,↓

vs vs = /p − mc1, (5.54)

that is,

∑
s=↑,↓

us,A us
B = (γμ)A

B pμ + mcδA
B and ∑

s=↑,↓
vs,A vs

B = (γμ)A
B pμ − mcδA

B . (5.55)

The matrix (5.54) and the (explicit) index notation (5.55) may be used interchangeably, as needed
and for the sake of compactness and clarity. Also, by the general Dirac spinor Ψ one understands a
general linear combination

Ψ := êA ΨA, (5.56)

just as we write x = êμ xμ for a 4-vector. However, one must keep in mind that the êμ are (Carte-
sian) unit vectors in the 4-dimensional spacetime in which we too move, whereas the êA are unit
vectors in an abstract vector space of solutions to the Dirac equation.

Helicity, chirality and the Weyl equation
It is useful to note a very important difference between two seemingly similar properties of spin-
1
2 particles: helicity and chirality. Much of the analysis here may be found in standard texts on
particle physics and field theory as cited in the preface, but there is also a book dedicated to all
matters of spin in particle physics [334]. The generalization of this analysis of course also exists
for particles with arbitrary spin, subject however to the Weinberg–Witten theorem 6.1 on p. 249,
as well as to higher-dimensional spacetime as needed in string theory.

Using the projectors (A.121b)
γγγγ± := 1

2 [1 ± γ̂γγγ], (5.57)

one defines in a fully Lorentz-invariant way:

Ψ± := γγγγ±Ψ, so Ψ+ + Ψ− = Ψ, γγγγ±Ψ± = Ψ±, γγγγ±Ψ∓ = 0. (5.58)

For Ψ+ (also written as ΨR) one says that it has right-handed chirality, and Ψ− (also ΨL) has left-
handed chirality. To this end, Weyl’s basis (A.132) of Dirac matrices is particularly convenient. The
complex 2-component projections Ψ± are Weyl spinors.

Independently of chirality, for particles with linear momentum �p and spin �S, one defines the
helicity operator, h := p̂·�S/h̄, the eigenvalue of which is the helicity of the particle. With the mental
(mnemonic and entirely fictitious!) image of the intrinsic angular momentum (spin) of the particle
represented as the rotation of the particle itself, helicity may be represented as the “projection of
the spin in the direction of motion.” For example, a spin- 1

2 particle may have helicity + 1
2 or − 1

2 ,

9 Caution: the Dirac 4-spinors u↑, u↓, v↑ and v↓ are linearly independent and each has four components. Only a total of
four of these components are linearly independent.

10 Caution: the normalizations (5.53) and (5.54) differ from the standard quantum mechanical ones.
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depending on whether, respectively, it “spins” about the direction of motion in the right-hand sense
or the left-hand sense.

Helicity is not defined in a Lorentz-invariant manner. Indeed, a particle with a nonzero mass
always has a rest-frame wherein it does not move, and where �p = 0, so the eigenvalues of h
vanish. Also, it is always possible to pass such a particle, i.e., Lorentz-boost, into a coordinate
system wherein the particle moves in the direction opposite to the original �p. Since this changes
the sign of �p but not of �S, the eigenvalues of h also change their sign. It follows that helicity cannot
be Lorentz-invariant for particles with nonzero mass.

For particles with no mass, helicity is Lorentz-invariant, and coincides with chirality.

— ❦ —

The solutions (5.40)–(5.43) of the Dirac equation (5.34) indicate that the upper and lower com-
ponents of the Dirac spinor are not independent and it is not possible to separate them in a
Lorentz-invariant way. The relations (A.121b) define the projectors γγγγ± that are Lorentz-invariant
since the γγγγ-matrices do not change with respect to Lorentz transformations, which gives rise to
the hope that the Dirac 4-component spinor may be separated into two 2-component spinors in a
Lorentz-invariant way.

Digression 5.4 One often finds a “quick” argument in the literature that γγγγ-matrices are
Lorentz-invariant: supposedly, in the product γγγγμpμ, the Lorentz transformations act upon
the physical quantity, the 4-momentum, and not on the γγγγ-matrices. This recalls the view
that rotations of a vector �v = êivi act upon the basis elements êi, not on the components,
which are “only numerical values” in a given coordinate system. However, it is equally
reasonable to adopt the vantage point where the inverse rotations act upon the compo-
nents vi, and not upon the basis elements êi. Both applications of the transformations
produce a net change in the physical quantity êivi, which is regarded as the “active”
transformation. By contrast, the “passive” transformation simultaneously rotates both the
basis vectors êi as well as the components vi (in the inverse sense), so that the physical
quantity �v remains invariant.

However, this is not a case of active/passive action of the Lorentz transformations:
The Dirac γγγγ-matrices indeed are components of a 4-vector, but those components are
matrices, the rows of which are in the basis of the Dirac 4-component spinor Ψ, and
the columns of which are in the basis of the Dirac-conjugated spinor Ψ. The Lorentz
transformations act upon all three bases, and those actions mutually cancel so that the
γγγγ-matrices remain invariant. In other words, the product ΨγγγγμΨ pμ is evidently Lorentz-
invariant: ΨγγγγμΨ is a contravariant 4-vector and pμ a covariant one, so ΨγγγγμΨ pμ is the
scalar product of a contravariant 4-vector and a covariant 4-vector. By adapting the index
notation so as to also count the components of the Dirac spinor (5.51), we have

(ΨγγγγμΨ) pμ =
(
ΨA (γγγγμ)A

B ΨB
)

pμ, (5.59a)

so that the numerical values (γγγγμ)A
B for each fixed μ, A, B are simply the Clebsch–Gordan

coefficients in the expansion of the product Ψ × Ψ in a spacetime 4-vector basis. In turn,
the coefficients (γγγγμ)A

B also appear in the tri-linear Lorentz-invariant contraction of the
basis vectors êA(γγγγμ)A

B êμ êB [☞ Section A.6]. Lastly, rewriting the above equation as

(ΨγγγγμΨ) pμ = (γγγγμ)A
B

(
ΨA ΨB pμ

)
(5.59b)
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re-interprets the matrices γγγγμ as the (in general) C-valued projection of the direct product
of Dirac-conjugate Dirac-spinors, Dirac-spinors and 4-momenta to Lorentz-invariant (in
general) complex numbers: γγγγ : {Ψ}× {Ψ}× {p} → C.

However, it is not hard to show that helicity projections do not commute with the Dirac
matrices:

[γγγγ±,γγγγμ] �= 0 : [1,γγγγμ] = 0 = {γ̂γγγ,γγγγμ} ⇒ γγγγ±γγγγμ = γγγγμγγγγ∓. (5.60)

Owing to this, an attempt to use the projections (5.58) on the Dirac equation yields

γγγγ±[ih̄γγγγμ∂μ − mc1]Ψ = [ih̄γγγγ±γγγγ
μ∂μ − mcγγγγ±1]Ψ = [ih̄γγγγμγγγγ∓∂μ − mc1γγγγ±]Ψ

= ih̄γγγγμ(∂μΨ∓) − mcΨ±, (5.61)

which is a system of differential equations that couples Ψ+ and Ψ− precisely when m �= 0.
Conversely,

γγγγμ∂μΨ± = 0 ⇔ mΨ± = 0. (5.62)

Conclusion 5.2 (Weyl) The Dirac spinor Ψ separates in a Lorentz-invariant way into the
right-handed Ψ+ ≡ ΨR := γγγγ+Ψ and left-handed Ψ− ≡ ΨL := γγγγ−Ψ 2-component Weyl
spinor (the eigen-spinors of the γ̂γγγ matrix) precisely when the mass of the particle vanishes.

These (Weyl) spinors satisfy the simpler differential equations, γγγγμ∂μΨ± = 0. Indeed, the Dirac
differential equation (5.34) is a system of four coupled differential equations for four components
of the Dirac spinor Ψ. By contrast, γγγγμ∂μΨ± = 0 is a system of two coupled differential equations
for two components of the Weyl spinor Ψ+ and separately for Ψ−.

Hermann Weyl noticed and published the characteristics of this special case of the Dirac
equation in 1929. Yet, when Pauli invented the neutrino so as to preserve the energy conserva-
tion law, he did not want to use Weyl’s equations on the grounds that they permit violating the
symmetry of parity.11 To wit, the Lorentz-invariant separation of Ψ+ and Ψ− ∝ P(Ψ+) permits
an independent – and different – treatment of these two halves of the Dirac spinor of opposite
chirality. This is quite ironic, since Pauli did correctly predict the mass of the neutrino to be either
very teeny or vanishing, and even during his own life it became clear that Nature really treats the
left-handed neutrino very differently from the right-handed one. Until the discovery of the see-saw
mechanism [☞ Section 7.3.2], the Weyl equations provided a much better model for neutrinos,
and describe the maximal parity violation as observed in Nature.

— ❦ —

The frequent confusion of helicity and chirality has been fostered by the fact that massless parti-
cles are a specially simple case both for chirality and for helicity, where these two different physical
quantities coincide. On the other hand, the Lorentz invariance of chirality is of fundamental im-
portance in the contemporary formulation of weak and electroweak interactions, while helicity is
easier to measure. The Reader should strive to conceptually differentiate and carefully distinguish
between these two inherently different quantities.

11 Up to the experimental confirmations of parity violation in weak interactions [☞ Sections 2.4.2 and 4.2.1], Pauli had,
just as many other renowned physicists of the time, ardently advocated against ideas that include parity violation; see,
e.g., A. Salam’s Nobel lecture [473].
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The Dirac Lagrangian density
The construction of the Dirac Lagrangian density is straightforward, if we only require the variation
of the Hamilton action with that Lagrangian density to produce the Dirac equation. First, note that
Ψ and Ψ may formally be treated as independent quantities. The Dirac equation (5.34) is then
simply multiplied from the left by Ψ (and by c for units) and we identify

LD = βΨ(x)
[
c /p + mc21

]
Ψ(x) = −βΨ(x) [ih̄ cγγγγμ∂μ − mc21] Ψ(x), (5.63)

where β is an arbitrary overall sign, since the variation by Ψ yields a β-multiple of equation (5.34).
Variation by Ψ yields the Hermitian conjugate of equation (5.34), i.e., nothing new (and nothing
unneeded).

Digression 5.5 The Dirac spinor Ψ is a 4-tuple of formally anticommutative variables. In
the general case, if ψ and χ are anticommutative and f and g are commutative variables,
we have that

[ f , g] = 0, [ f ,ψ] = [ f ,χ] = 0 = [g,ψ] = [g,χ], but {ψ,χ} = 0;

(5.64a)[ ∂
∂ f

,
∂

∂g

]
= 0,

[ ∂
∂ f

,
∂

∂ψ

]
=

[ ∂
∂ f

,
∂

∂χ

]
= 0 =

[ ∂
∂g

,
∂

∂ψ

]
=

[ ∂
∂g

,
∂

∂χ

]
, but

{ ∂

∂ψ
,
∂

∂χ

}
= 0.

(5.64b)

Also,
∂

∂ψ
χ = −χ ∂

∂ψ
and

∂

∂χ
ψ = −ψ ∂

∂χ
, (5.64c)

which the Student must keep in mind when deriving the equations of motion from
Lagrangian densities that also contain fermionic (anticommutative) variables. It is
convenient to define the right-derivative:

ψ

←−
∂

∂ψ
= 1, (ψχ)

←−
∂

∂ψ
= −

(
ψ

←−
∂

∂ψ

)
χ = −χ, (ψχ)

←−
∂

∂χ
= ψ

(
χ

←−
∂

∂χ

)
= ψ, etc., (5.64d)

and diligently apply derivatives either from right or from left.

The definition of the Lagrangian allows us to identify the components of Ψ as the canonical
coordinates, so we may also define the canonically conjugate momentum densities:

πΨ := LD

←−
∂

∂
.
Ψ

=
(− βΨ[ih̄ cγγγγμ∂μ − mc21]Ψ

)←−−−−
∂

∂(c∂0Ψ) = −iβh̄Ψγγγγ0 = −iβh̄Ψ†, (5.65)

where we applied the right-derivative [☞ Digression 5.5 on p. 180]. The Hamiltonian then becomes

HD = πΨ

.
Ψ −LD = (−iβh̄Ψ†)(

.
Ψ) + βΨ[ih̄ cγγγγμ∂μ − mc21]Ψ

= −βΨ†H Ψ + βΨ[ih̄ cγγγγμ∂μ − mc21]Ψ, H ≡ ih̄ ∂
∂t . (5.66)

The sign β in the computation (5.65) may now be determined as follows: For an on-shell
Dirac fermion, i.e., one that satisfies the equations of motion (5.34), the second term in the
expression (5.66) vanishes, and we obtain

HD

∣∣
(5.34) = −βΨ†H Ψ, where [Ψ] = 1

L3/2 . (5.67)

https://doi.org/10.1017/9781009291507.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.008


5.2 Electrodynamics with leptons 181

We thus choose β = −1 for the total energy (the Hamiltonian) of the Hamilton–Jacobi canonical
formalism on-shell and the expectation value of the quantum-mechanical operator H to have the
same sign. To sum up:

LD = −Ψ(x)
[
c /p + mc21

]
Ψ(x) = Ψ(x) [ih̄ cγγγγμ∂μ − mc21] Ψ(x), (5.68a)

πΨ = ih̄Ψ†, (5.68b)

HD = πΨ

.
Ψ −LD = Ψ†H Ψ − Ψ[ih̄ cγγγγμ∂μ − mc21]Ψ. (5.68c)

Also, since the Dirac equation (5.34) may be written as

ih̄
.
Ψ = HDΨ :=

[
(ih̄ c�γγγγ·�∇ + mc2)γγγγ0]Ψ, (5.69)

and HD is the on-shell Dirac Hamiltonian operator: HD
(5.34)= ΨHDΨ, as arranged in equa-

tion (5.67).

Digression 5.6 The Dirac Lagrangian densities are often “antisymmetrized” using the
identity∫

d4x Ψγγγγμ∂μΨ = 1
2

∫
d4x Ψγγγγμ∂μΨ + 1

2

∫
d4x

[
∂μ

(
ΨγγγγμΨ

)− (∂μΨ)γγγγμΨ
]

(5.70a)

= 1
2

∫
d4x

[
Ψγγγγμ∂μΨ − (∂μΨ)γγγγμΨ

]
+ 1

2

∮
V

d3(x)μ
(
ΨγγγγμΨ

)
︸ ︷︷ ︸

=0

, (5.70b)

where the third, 3-dimensional integral is computed over the 3-dimensional boundary
of spacetime, which is “at infinity.” Physical fields are required to vanish there. We thus
write

Ψγγγγμ∂μΨ " 1
2

[
Ψγγγγμ∂μΨ − (∂μΨ)γγγγμΨ

]
=: 1

2

(
Ψγγγγμ

↔
∂ μΨ

)
, (5.70c)

where the middle expression defines the symbol
↔
∂ μ. So antisymmetrized, we have that

LD " −Ψ(x)
[ 1

2 c
↔
/p + mc21

]
Ψ(x) = Ψ(x) [ i

2 h̄ c
↔
/∂ − mc21] Ψ(x). (5.70d)

Finally, the components of the canonically conjugate momentum density (5.68b) are con-
stantly proportional to the Hermitian conjugates of the components of the Dirac spinor itself.
Roughly speaking, one half of the Dirac (4-component) spinor are canonical coordinates of the
system, the other half are conjugate momenta. The choice of which particular components are
regarded as coordinates and which are momenta is, of course, arbitrary – up to the condition that
the relations {

Ψ , (ih̄Ψ†)
}

= ih̄1 ⇒ {
Ψ , Ψ† } = 1 (5.71)

produce the canonical anticommutation relations between the canonical momenta and the
canonical coordinates. This arbitrariness is identical to that in classical physics.
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5.2.2 The U(1) gauge symmetry and photons
Classical electrodynamics builds on the Maxwell equations,

�∇·�E =
1

4πε0
4π ρe, �∇×(c�B) − 1

c
∂�E
∂t

=
1

4πε0

4π
c

�je, (Ampère) (5.72a)
(G

au
ss

)
⎧⎪⎪⎨⎪⎪⎩ �∇·(c�B) =

μ0

4π
4π ρm, −�∇×�E − 1

c
∂(c�B)
∂t

=
μ0

4π
4π
c

�jm, (Faraday) (5.72b)

that encompass the indicated laws, and where c = 1√
ε0 μ0

is the speed of propagation of light in
vacuum. The densities of the magnetic (monopole!) charges, ρm, and currents, �jm, are included
for later discussion of electro-magnetic duality [☞ Section 11.4]. No experiment indicates their
existence, so that the equations (5.72b) are cited in the literature almost exclusively with ρm → 0
and�jm → 0. However, note that the units satisfy [ρe/ε0] = [μ0 ρm], as well as [�je/ε0] = [μ0�jm].

The relativistic description
For the purposes of a relativistic description of electrodynamics [☞ also Comment 8.1 on p. 294],
we introduce12

Aμ := (Φ,−c �A), (gauge potential) Aμ := ημνAν = (Φ, c �A); (5.73a)

Fμν := ∂μAν − ∂νAμ,
(

antisymmetric
rank-2 tensor

)
Fμν := ημρFρσησν; (5.73b)

and identify

F00 = 0, F00 = 0, (5.73c)

F0i = ∂0 Ai − ∂i A0 =
1
c
∂(−cAi)

∂t
− ∂Φ
∂xi = Ei, F0i = η00F0jη

ji = −Ei, (5.73d)

Fij = ∂i Aj − ∂j Ai =
∂(−cAj)
∂xi − ∂(−cAi)

∂xj

= c
(∂Ai

∂xj − ∂Aj

∂xi

)
= cε ji

k Bk = −cεij
kBk, Fij = ηikFklη

jl = −cεijkBk (5.73e)

and, of course, Fμν = −Fνμ. In matrix form, we have

[
Fμν

]
=

⎡⎢⎢⎣
0 E1 E2 E3

−E1 0 −cB3 cB2
−E2 cB3 0 −cB1
−E3 −cB2 cB1 0

⎤⎥⎥⎦ ,
[

Fμν
]
=

⎡⎢⎢⎣
0 −E1 −E2 −E3
E1 0 −cB3 cB2
E2 cB3 0 −cB1
E3 −cB2 cB1 0

⎤⎥⎥⎦ . (5.74)

Since Fμν are components of a rank-2 tensor, it follows that the Lorentz transformations act
by [☞ Digression 3.5 on p. 91]

yμ = Lμνxν ⇒ Fμν(y) = Lρμ Fρσ(x) Lσν, i.e. F(y) = LLLLT F(x) LLLL. (5.75)

The familiar Lagrangian [☞ also Exercises 5.1.3 and 5.1.4] for the electromagnetic field may thus
be written as

LEM = − 4πε0
4 Fμν Fμν. (5.76)

12 The negative relative sign in the definition of Aμ cancels the difference in signs in the definition (5.13), an additional
factor of c equates the units of Φ and �A, which stem from the difference between Dt and �D.
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Example 5.1 Let �E = ê2E2 and �B = 0 be given in an inertial Cartesian coordinate system
S, and let the inertial system S̃ move with respect to S with the constant speed ê1v1. The
relations (5.75) then yield

Ẽ2 = γE2, and also B̃3 = γ
v1

c2 E2. (5.77)

A field that in one inertial coordinate system looks like a “purely” electric field, can in
another inertial system easily be represented by a combination of electric and magnetic
fields. Notice, however, that the equation �E·�B = 0 remains valid. Indeed, this is a Lorentz-
invariant characteristic of the specified field [☞ relations (5.80a)].

The Maxwell equations (5.72a) may then also be written as

∂μ Fμν =
1

4πε0

4π
c

jνe , (5.78)

where je = (cρe,�je) is the 4-vector of electric charge and current densities. Analogously, the
Maxwell equations (5.72b) may be written also as

1
2 ε
μνρσ∂μ Fνρ =

μ0

4π
4π
c

jσm, (5.79)

where jm = (cρm,�jm) is the 4-vector of (monopole) magnetic charge and current densities.

Digression 5.7 Direct substitution yields
1
2 FμνFμν = �E2 − c2�B2 and 1

4 ε
μνρσFμνFρσ = −c�E·�B, (5.80a)

which, using the transformations (5.75), shows that these two bilinear expressions in �E
and �B are Lorentz-invariant. Evidently, these are the only linearly independent Lorentz-
invariant bilinear expressions in Fμν and Fμν, and so then also in �E and �B. Since
the Lagrangian density for electrodynamics must be a scalar (invariant) density and
quadratic in electric and magnetic fields, we find that the Lagrangian density must be
of the form

LEM = C1 FμνFμν + C2 ε
μνρσ FμνFρσ. (5.80b)

The coefficients C1, C2 are chosen so that the variation of the Hamilton action,
δ
∫

d4x LEM = 0, reproduces the Maxwell equations. The fact that this renders C2 = 0
then poses the (unanswered☞ ) question: Why is, in the possible “addition”

Lϑ,EM = ϑ 4πε0
4 εμνρσ FμνFρσ, (5.80c)

to the standard Lagrangian density (5.76) of the parameter ϑ = 0, either identically or
up to experimental error (i.e., ϑ ≪ 1)?

Direct substitution of Fμν = ∂μAν − ∂νAμ on the left-hand side of equation (5.79) yields

1
2 ε
μνρσ∂μ

(
∂νAρ − ∂ρAν

)
= 1

2 ε
μνρσ∂μ∂νAρ − 1

2 ε
μνρσ∂μ∂ρAν, (5.81)
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where both terms vanish separately, since

εμνρσ∂μ∂ν = εμνρσ∂ν∂μ︸ ︷︷ ︸
μ↔ν

= ενμρσ∂μ∂ν = −εμνρσ∂μ∂ν. (5.82)

That is,
Fμν = ∂μAν − ∂νAμ

(5.79)⇐⇒ 0 =
μ0

4π
4π
c

jσm. (5.83)

The existence of magnetic charges and currents would then be an obstruction for equating Fμν
with ∂μAν − ∂νAμ, i.e., the electric and the magnetic fields could not be expressed in terms of
an unambiguously specified 4-vector potential (5.15) [☞ Section 5.2.3], and conversely: if Fμν =
∂μAν− ∂νAμ for an unambiguously specified 4-vector potential Aμ(x), then no monopole magnetic
charge or current can exist. We thus have:

Conclusion 5.3 Electric and magnetic charges and currents exist simultaneously if and
only if there can be no unambiguously specified 4-vector potential Aμ(x) for which the
electromagnetic field would be Fμν = ∂μAν − ∂νAμ [☞ Section 5.2.3].

Digression 5.8 Define a “differential 2-form” F := Fμν dxμ∧dxν, where “∧” denotes the
antisymmetric product of the differentials, as well as the operator d := dxμ∂μ. Then

d∧d ≡ 1
2 (∂μ∂ν − ∂ν∂μ) dxμ∧dxν ≡ 0. (5.84a)

The Maxwell equations (5.72b), i.e., (5.79), are then equivalent to

d∧F = jm, jm :=
μ0

4π
4π
c

jσm εμνρσ dxμ∧dxν∧dxρ, (5.84b)

and the differential 3-form jm is the obstruction for equating the differential 2-form F
with d∧A, for any differential 1-form A = Aμdxμ. F is said to be a nontrivial (non-exact)
2-form.13

On the other hand, equations (5.72a), i.e., (5.78), may also be written in the
form (5.84b). To this end, however, we need one more item of notation: in tensorial
notation, any antisymmetric rank-r tensor may be turned into an antisymmetric rank-
(4−r) tensor by contracting with εμνρσ or εμνρσ. Thus, a 4-vector jμm is “translated” into
a rank-3 tensor jμm → (jμmεμνρσ) and a 3-form jm. A double use of this operation yields
1
2ε
μνρσ∂ν( 1

2 ερσαβFαβ) = ∂νFμν. The corresponding operation with differential forms is the
so-called “Hodge star,” which turns an r-form into a (4−r)-form: ∗A is a 3-form, ∗jm a
1-form, etc. The Maxwell equations (5.72a) and (5.78) are thus equivalent to

d∧ ∗ F = je, je :=
1

4πε0

4π
c

jμe εμνρσdxν∧dxρ∧dxσ. (5.84c)

Equations (5.84b) and (5.84c) respectively provide a compact form of the Maxwell
equations:

d ∧ F = jm and d ∧ ∗F = je. (5.84d)
Since d∧d ≡ 0, d∧d∧(∗F) = d∧je produces d∧je = 0, which is the well-known con-
tinuity equation (2.66), the integral of which yields the electric charge conservation
law [☞ also Section 6.1.2]. Similarly, d∧d∧F = d∧jm implies d∧jm = 0, the continuity
equation, and thus the (monopole) magnetic charge conservation law.

13 By the same token is “dQ,” in thermodynamics in general, a nontrivial 1-form and not an exact differential.
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Comment 5.6 The fact that the existence of (monopole) magnetic charges and currents ob-
structs the expression of the electromagnetic field Fμν as an antisymmetric derivative of
an unambiguously specified 4-vector potential Aμ points to a significant difference be-
tween electric and magnetic charges and currents – in spite of the fact that the Maxwell
equations (5.72) look “symmetric.” This “symmetry” – a duality, more precisely – is the
mapping

EM : Fμν ←→ (∗F)μν = [ 1
2 ε
μνρσFρσ] =

⎡⎢⎢⎣
0 −cB1 −cB2 −cB3

cB1 0 E3 −E2
cB2 −E3 0 E1
cB3 E2 −E1 0

⎤⎥⎥⎦ , (5.85)

which swaps the roles of �E and c�B. This implies that the vanishing of ρe and�je is a necessary
and sufficient condition for the existence of some unambiguously specified 1-form Ã such
that ∗F = d∧Ã; here, Ã = dxμ Ãμ is the 1-form of the dual 4-vector of gauge potentials.

Conclusion 5.4 The difference between F and ∗F, i.e., Fμν and 1
2 εμνρσFρσ, i.e., �E and c�B,

i.e., (cρe,�je) and (ρm/c,�jm/c2) – and so also the whole formalism – is however fully
conventional .

The discrete transformation (5.85) is equivalent to EM : (�E, c�B) → (c�B,−�E). Since 2
EM =

−1 and 4
EM = 1, EM is equivalent to a 90◦-rotation. In fact, one may define even a

continuous duality rotation

EM(ϑ) :
[

�E
c�B

]
→

[
�E′
c�B′

]
=

[
cos ϑ sin ϑ

− sin ϑ cos ϑ

] [
�E
c�B

]
(5.86)

and correspondingly for electric and magnetic charges and currents. The statement that
there are no magnetic monopoles is then equivalent to stating that, using this “rotation,”
the variables �E and c�B (i.e., Fμν) may always be chosen so that ρm = 0 = �jm, so that
F = d∧A, i.e., Fμν = ∂μAν − ∂νAμ – simultaneously in the whole universe and for all
particles in Nature.

The standard electrodynamics
In agreement with experiments, we set ρm = 0 =�jm, so that the relations (5.15) and (5.73b) hold,
as does the so-called Bianchi identity, as a consequence of the now applicable definition (5.73b),

εμνρσ∂νFρσ = 0, (5.87)

and instead of equation (5.79); equations (5.74)–(5.78) remain unchanged.
In classical electrodynamics, one primarily uses the electromagnetic field Fμν, i.e., �E and

�B, and the potentials are secondary. However, in the non-relativistic formulation of the interac-
tion (5.19) of the electromagnetic field with substance in quantum theory, the potentials had
already been proved to be the fundamental quantities. Besides, the assumption that the elec-
tromagnetic field is defined in relations (5.73b) makes the relation (5.87) – and then also the
laws (5.72b) – a trivial consequence. Thus, in electrodynamics expressed in terms of the 4-vector
potential Aμ, the dynamics reduces to the equation (5.78):

∂μ(∂μAν − ∂νAμ) = ∂μ∂
μ Aν − ∂ν(∂μAμ) =

1
4πε0

4π
c

jνe . (5.88)

The number of independent degrees of freedom in the electromagnetic field is thereby reduced
from six in the rank-2 tensor Fμν (the components of electric and magnetic field) to four in the
4-vector Aμ.
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However, the 4-vector potential, Aμ, is well known not to be unambiguously determined, as
we are free to change

Aμ → A′
μ = Aμ − c∂μλ. (5.89)

This is precisely the gauge transformation of the scalar and vector potential (5.14a), as it was
derived in Section 5.1. The physical meaning of the transformation (5.89) may be seen from the
Fourier transform:

Aμ → A′
μ = Aμ − c∂μλ

F−→ Ã′
μ = Ãμ + ickμλ̃, (5.90)

where kμ := pμ/h̄ is the wave 4-vector of electromagnetic radiation. The component of the 4-
vector potential in the direction of motion (in the 4-dimensional spacetime!) of the electromagnetic
beam is arbitrary, and may be cancelled by a judicious choice of the gauge function λ. In that sense
one frequently imposes the Lorenz gauge14:

∂μAμ = 0 ↔ kμ Ãμ = 0. (5.91)

Notice that this gauge is Lorentz-invariant. Using it, the dynamical part of the Maxwell equa-
tions (5.88), simplifies to


Aμ =
1

4πε0

4π
c

jμe , (5.92)

which is the wave-equation for the gauge potentials Aμ(x), with the sources jμe .
The gauge (5.91) reduces the number of degrees of freedom in the electromagnetic field

(which is determined by the relation (5.73b) in terms of the 4-vector potential) from four to three.
But, that’s not all: the FitzGerald–Lorentz length contraction applies to all physical quantities,
and so also to the components of the 4-vector potential. Since, in vacuum, the changes in the
electromagnetic field propagate at the speed of light, it follows that the longitudinal component
of the 4-vector potential Aμ(x) equals zero, that is, its Fourier transform satisfies �k· �̃A = 0. The
inverse transformation then gives �∇·�A = 0, the so-called Coulomb gauge. The combination of the
Lorenz and the Coulomb gauge produces

.
A0 = 0, so that the temporal component of the 4-vector

gauge potential is an arbitrary constant.
This reduction of the number of degrees of freedom from three to two cannot be described

in a Lorentz-invariant way, so there are essentially two different approaches:

1. in addition to the Lorentz-invariant gauge, impose another gauge – such as the Coulomb
gauge �∇·�A = 0, which explicitly violates Lorentz symmetry, or

2. leave Aμ “ungauged” and having more than two degrees of freedom. Subsequently, system-
atically track and subtract the contributions of the nonphysical degrees of freedom in the
4-vector Aμ.

In the absence of free carriers of electric charge, jμe = 0. The equation (5.92) then becomes


Aμ = 0, (5.93)

which is the d’Alembert equation, i.e., the Klein–Gordon equation with mγ = 0. The solutions are
found in the form

Aμ(x) = a e−(i/h̄)p· x εμ(p),
{

pμpμ = 0 ⇒ E = |�p|c,

pμεμ = 0 → ε0 = 0 = �p·�ε, (5.94)

14 This gauge (as in “condition,” of “specification”) bears the name of Ludvig Valentin Lorenz (1829–91), not of Hendrik
Antoon Lorentz (1853–1928) after whom the Lorentz transformations, (FitzGerald–)Lorentz length contraction, and
Lorentz group were named.
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where in the second row we see the joint effect of the (Lorentz-invariant) Lorenz and (Lorentz-
violating) Coulomb gauge, and where a is the photon amplitude.

In quantum theory, Aμ(x) could serve as the wave-function of the photon: the 4-vector poten-
tial that has two physical degrees of freedom, which are transversal to the direction of the photon’s
propagation. In a Cartesian coordinate system where the photon moves along the (x3 = z)-axis,
the two transversal polarizations are

�ε1 = (1, 0, 0) and �ε2 = (0, 1, 0), (5.95)
and

�ε+ = 1√
2
(�ε1 + i�ε2) and �ε− = 1√

2
(�ε1 − i�ε2) (5.96)

are the so-called right- and left-circular polarizations, the eigenvectors of the rotation generator,
J 3, with the eigenvalues ±1, respectively.

5.2.3 The magnetic monopole sneaks in
The immediate interpretation of Conclusion 5.3 on p. 184, notwithstanding, Paul Dirac found in
1931:

1. There does exist a way to include magnetic monopole charges and currents into the standard
electrodynamics, i.e., the physical system described by the equations

∂μ Fμν =
1

4πε0

4π
c

jνe , 1
2 ε
μνρσ∂μ Fνρ = 0, Fμν = ∂μAν − ∂νAμ. (5.97)

2. The quantum nature of Nature forces the magnetic and the electric charges to satisfy a
mutual, so-called Dirac (dual charge), quantization law:

qe qm = 2π h̄ n, n ∈ Z. (5.98)

From here,

αe :=
1

4πε0

e2

h̄ c
≈ 1

137
⇒ αm :=

1
4πμ0

g2

h̄ c
=

n2

4
4πε0 h̄ c

e2 ≈ 137
4

n2, (5.99)

so that the interaction intensity with magnetic monopole charges and their currents must be very
large ( αm

αe
≈ 4, 690 n2), reciprocally to the relatively weak interaction with (electric) monopole

charges and their currents, αe ≈ 1/137.

The magnetic monopole gauge potential
Dirac’s quasi-realistic model of a magnetic monopole stems from the very well known fact about
magnets, that the magnetic field is strongest near the ends of a magnetic (physical) dipole and
weakest near its middle. Take one such magnet – a cylindrical solenoid, for example – and affix
the coordinate origin to the “north” pole of the magnet, squeeze the cross-section of the solenoid
and stretch it so that the “south” pole is pulled out towards z → −∞. In the limit when the cross-
section of the solenoid is negligible and the “south” pole is infinitely far, the magnetic field of such
a magnet is spherically symmetric and has a source (the “north” pole) at the coordinate origin,
with the “south” pole nowhere in sight.

This thought-construction evidently shows that part of the space (the negative z-semi-axis) is
physically inaccessible: Every test-magnet detects a spherically symmetric (Coulomb-esque) mag-
netic field �B ∝ qm�r/r3 in all of space around the coordinate origin – except along the negative
z-semi-axis, where the test magnet cannot be placed as that is where the infinitely long and
infinitely thin solenoid is. This “forbidden zone” is called the Dirac string.
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Dirac showed that the vector potential [296]

�A(�r ) : so that �∇× �A = �B =
qm

4π
�r
r3 (5.100)

must be singular, as a function of the position�r, along some line (the Dirac string) that begins at
the coordinate origin and extends out to infinity – which is the location of the infinitely thin Dirac
solenoid. However, in 1975, T. T. Wu and C. N. Yang showed that there is no need to exclude this
line from the physically accessible space – paying the price in accepting that the vector potential �A
then cannot be an unambiguously specified (vector) function. However, since the vector potential
is not directly measurable, this ambiguity (non-single valuedness) has no physically measurable
repercussion.

Indeed, define [536, 210]

�AN =
qm

4π
x êy − y êx

r(z + r)
, �AS =

qm

4π
x êy − y êx

r(z − r)
, (5.101a)

= − qm

4π
cos(θ)−1
r sin(θ)

êφ, = − qm

4π
cos(θ)+1
r sin(θ)

êφ, (5.101b)

and notice that the function �AN is well defined everywhere except along the (“southern”) z-semi-
axis, while the function �AS is well defined everywhere except along the (“northern”) z-semi-axis.
Also, define

�BN := �∇× �AN =
qm

4π
�r
r3 , and �BS := �∇× �AS =

qm

4π
�r
r3 .

(except where x = 0 = y and z � 0) (except where x = 0 = y and z � 0)
(5.102)

Since �BN and �BS perfectly coincide as functions everywhere where both are defined, the “true”
magnetic field �B is defined to be equal to �BN or �BS, using that “auxiliary” magnetic field function
that is well-defined in the region of interest.15

Since
�AS − �AN = 2

qm

4π

(yêx − xêy

x2 + y2

)
= −2

qm

4π
�∇[

ATan(x, y)
]
, (5.103)

where

ATan(x, y) :=
{

arctan(y/x) for x � 0,
π + arctan(y/x) for x � 0, (5.104a)

arctan x

–2

0

2

1

0

–1

–2

0

2

)y
ATan(x,y)

–2
0

2

0

2

4

–2

2

0

(5.104b)

15 This is the same “trick” that cartographers use when they carve up the map of the Earth’s globe (which cannot be
depicted accurately on a single flat sheet of paper) into a sufficiently large number of sufficiently small maps, each
of which depicts adequately a sufficiently small region of the Earth surface. These maps are then bound into an atlas
where “adjacent” maps overlap sufficiently to provide the traveller with connecting information along any – of course
continuous – voyage.
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it follows that �AN and �AS differ by a gauge transformation (5.89) with the gauge parameter λ(x) =
2qm ATan(x, y). Since the potentials �AN and �AS are not themselves measurable, but provide the
same (measurable) magnetic field, the gauge transformation

�AN → �AS = �AN + �∇λNS, λNS(x) = −2
qm

4π
ATan(x, y) (5.105)

is then really a symmetry of the physical system.

Dirac’s dual quantization of charges
As relations (5.14a)–(5.14b) show, the gauge transformation (5.105) induces the change in the
phase of the electron wave-function:

Ψ(x) → Ψ′(x) = eiqeλNS(x)/h̄ Ψ(x). (5.106)

As the value of the function ATan(x, y) is the azimuthal angle φ " φ+2π, the relation (5.105)
yields

exp
{

iqeλNS(x)/h̄
}

= exp
{
− i

qmqe

2π h̄
φ
}

. (5.107)

No gauge transformation – and so not this one – can change the single-valuedness of the wave-
function, which of course is chosen single-valued to begin with. Thus the phase (5.107) also must
be a single-valued function of φ, and qmqe

2π h̄ must be an integer:

qeqm

2π h̄
!= n ∈ Z, i.e., qm

!= n
(2π h̄

qe

)
, (5.108)

which is called the Dirac (dual charge) quantization of the magnetic charge, and where (2π h̄/qe)
is the elementary (unit) amount of magnetic charge.

It will prove useful to rewrite this argument by direct integration of the relation (5.105):∫ 2

1
d�r·�AN =

∫ 2

1
d�r·�AS +

[ ∫ 2

1
d�r·�∇λNS = λNS(�r2) − λNS(�r1)

]
, (5.109)

that is, ∫ 2

1
d�r·�AN −

∫ 2

1
d�r·�AS = λNS(�r2) − λNS(�r1). (5.110)

Dirac’s quantization of the magnetic charge thus stems from the requirement that iqe
∫

C d�r·�A may
depend on the choice of the concrete line integration contour only up to an integral multiple of
2π:

e
iqe

∫
C1

d�r·�A−qe
∫

C2
d�r·�A = e

iqe
∮

C1−C2
d�r·�A != e2πi n = 1, (5.111)

where (C1−C2) is a closed contour since C1 and C2 have the same end-points: ∂C1 = ∂C2.16 Using
Stokes’ theorem,

∮
C d�r·�A =

∫
S d2�σ·(�∇×�A) where S is some surface bounded by the contour C,

i.e., C = ∂S, and the definition of the magnetic field, �B := (�∇×�A), we have that

2π n != qe

∫
C1

d�r·�A − qe

∫
C2

d�r·�A = qe

∮
(C1−C2)=∂S

d�r·�A = qe

∫
S

d2�σ·�B. (5.112)

Applied to the magnetic field of a (hypothetical) magnetic monopole charge, this condition pro-
duces the quantization (5.108). However, the same condition also represents a reason for the
existence of the so-called Aharonov–Bohm effect [☞ textbooks [407, 471, 480, 472, 29, 324],

16 For any space X , the symbol ∂X denotes the “boundary of X .”
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for example], which is experimentally verified, and which should therefore be called the
“Dirac–Aharonov–Bohm effect.”

Today, several additional, alternative arguments are known to infer the same mutual quanti-
zation. One of them was published by Alfred S. Goldhaber in 1965. The magnetic field (5.100) of
a magnetic monopole exerts a force upon a particle of electric charge qe that passes through the
magnetic field at the velocity �v. This so-called Lorentz force,

�FL = qe �v× �B, (5.113)

is perpendicular to the plane containing �v and �B. Select a coordinate system so that �v = v êz,
where θ := 	(�r,�v) = 	(�B,�v) since for the magnetic monopole �B ∝ �r [☞ relation (5.100)]. The
distance b := |r sin(θ)| is called the “impact parameter,” just as in the set-up for the collision of
two marbles, in Example 3.2 on p. 111. Select the x-axis to be in the direction of this parameter
and �B is in the (x, z)-plane. For sufficiently large values of b, the deflection (in the direction of the
y-axis) from the trajectory (along the z-axis) will be small enough to be accurately estimated by
the integral

(��p)y ≈
∫ +∞

−∞
dt (�FL)y =

qevqmb
4π

∫ +∞

−∞

dt
(b2 + v2t2)3/2 =

qe qm

2πb
, (5.114)

so that
(��L)z = b(��p)y =

qeqm

2π
. (5.115)

It remains to conclude – because of the quantum nature of Nature – that the change in the angular
momentum must be an integral multiple of h̄. This immediately reproduces equation (5.108).

Finally, let us also mention the fact that the electromagnetic field has a linear momentum
density ε0�E× �B. For the field near point-like electric and magnetic charges that are separated
by the vector �R, it may be shown that the total (integrated) linear momentum of the total field
vanishes, whereby the total (integrated) angular momentum is independent of the choice of the
coordinate origin and has the value [☞ [296]; this result was published by J. J. Thomson, in 1904]

�LEM =
qeqm

4π

�R
R

. (5.116)

The quantization of this angular momentum in (integral) units of h̄ also indicates a quantization
of the magnetic charge in units that are inversely proportional to the elementary electric charge,
but gives a value that is twice as large as the result (5.108). That is, the previous two arguments
produce a stricter result. One could have obtained this as early as 1904 from equation (5.116),
but only by adopting the quantization of angular momentum in half-integral units of h̄ – thus
foreshadowing spin- 1

2 particles and systems. At the time, no one thought of it.

5.2.4 Exercises for Section 5.2

✎ 5.2.1 Using the stated definitions of J i, K j and the ensuing relations (5.45), prove equa-
tion (5.46).

✎ 5.2.2 Using the relation (5.45) with the choice ϕi = 0, β2 = 0 = β3 and β1 = β, prove
relation (5.48) by expanding the exponential function, then re-summing the result after
using the relation (5.32).

✎ 5.2.3 Prove the equivalence of results (5.34) and (5.69), as well as that HD = ΨHDΨ.

✎ 5.2.4 Using the relation (5.74)–(5.75) and (3.13b), derive equations (5.77).
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5.3 Quantum electrodynamics with leptons
The description of electrodynamics in the previous section is classical. Quantum computations are
consistently derived from quantum field theory – of photons and leptons – and this derivation
is outside the scope of this book. Instead, following Ref. [243] and the introductory material in
Section 3.3, we will consider several examples of computations with Feynman diagrams that depict
interactions of charged leptons and photons.

5.3.1 Quantum electrodynamics calculation
We have already seen Feynman diagrams that depict electromagnetic processes: O(e4) contri-
butions to the e−p+ scattering are depicted by the diagrams (4.39), and the two-photon e−e+

annihilation is depicted by diagram (4.48). Modeled on Section 3.3.4, we first assign a mathe-
matical expression to every graphical element, and by adapting Procedure 3.1 on p. 116, we will
compute the amplitude M, which we will then insert into the formulae (3.112) and (3.114) for
decays and scattering, respectively.

Although we will not derive the Feynman rules for electrodynamics from the Lagrangian, we
present this Lagrangian density. By combining the results (5.76) and (5.68a), changing

∂μ → Dμ := ∂μ + i
h̄ c Aμ Q so that D′

μ

(
eiϕ(x)Ψ(x)

)
= eiϕ(x)(DμΨ(x)

)
, (5.117)

in accord with the definitions (5.13) and (5.73a), and where Q Ψ = qΨΨ produces the electric
charge of the particle represented by Ψ, we have

LQED = Ψ(x) [ih̄ c /D − mc2] Ψ(x) − 4πε0
4 FμνFμν

= Ψ(x)
[
γγγγμ

(
h̄ c i∂μ − qΨ Aμ

)−mc2
]

Ψ(x)

− 4πε0
4 (∂μAν−∂νAμ)ημρηνσ(∂ρAσ−∂σAρ). (5.118)

By construction, this Lagrangian is invariant under the gauge transformation

A′
μ(x) = Aμ(x) − c∂μϕ(x) and Ψ′(x) = eiϕQ/h̄ Ψ(x). (5.119)

Digression 5.9 The equation of motion for Aμ(x) is obtained by varying either the La-
grangian density (5.118) or the Hamilton action

∫
d4x LQED with respect to Aμ(x). Using

so-called functional derivative generalization of partial derivatives:
δ

δAρ(y)
F (Aμ(x), (∂μAν(x)), . . . ) := δ4(x−y)

∂

∂Aρ(x)
F (Aμ(x), (∂μAν(x)), . . . ), (5.120a)

δ

δ(∂ρAσ(y))
F (Aμ(x), (∂μAν(x)), . . . ) = δ4(x−y)

∂

∂(∂ρAσ(y))
F (Aμ(x), (∂μAν(x)), . . . ),

(5.120b)

we obtain the general result
δ

δAρ(x)

∫
d4y F

(
Aμ(y), (∂μAν(y))

)
=

∫
d4y

δAσ(y)

δAρ(x)

∂

∂Aσ(y)
F

(
Aμ(y), (∂μAν(y))

)
=

∫
d4y δ4(x−y)δσρ

∂

∂Aσ(y)
F

(
Aμ(y), (∂μAν(y))

)
=

∂

∂Aρ(x)
F

(
Aμ(x), (∂μAν(x))

)
.

(5.120c)
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Using
∂

∂Aρ(x)
Aμ(x) = δ

ρ
μ,

∂

∂Aρ(x)

(
∂μAν(x)

)
= 0, (5.120d)

∂

∂(∂ρAσ(x))
Aμ(x) = 0,

∂

∂(∂ρAσ(x))
(
∂μAν(x)

)
= δ

ρ
μδ
σ
ν , (5.120e)

where we need not write the arguments “(x),” we obtain

∂μ
∂LQED

∂(∂μAν)
=
∂LQED

∂Aν
⇒ ∂μ Fμν =

qΨ

4πε0
ΨγγγγνΨ. (5.120f)

Comparing result (5.120f) with equation (5.78) identifies

jμe :=
qΨc
4π

ΨγγγγμΨ (5.120g)

as the 4-vector of the electric current density. The combined Lagrangian density (5.118)
shows that, while the dynamics of photons alone may be described in terms of the Fμν
field, i.e., �E and �B, the Lagrangian description of the interaction with charged particles
requires the use of the gauge 4-vector potential Aμ – although the derived equations of
motion (5.120f) and the obvious (Bianchi) consequence (5.87) may be expressed fully in
terms of the �E and �B fields.

Digression 5.10 Varying the Lagrangian density LQED, as in equation (5.118), with re-
spect to Aμ and Ψ (from the left), we obtain the complementary and coupled system of
Euler–Lagrange equations of motion:

∂μ Fμν =
qΨ

4πε0
ΨγγγγνΨ,

[
i h̄ c γγγγμ∂μ − mc21

]
Ψ = qΨ Aμγγγγ

μΨ. (5.121)

The procedure given in Digression 5.9 is equally applicable to interactions of arbitrary
charged particles with photons: for a particle of a spin other than 1

2 , the Dirac Lagrangian den-
sity must be replaced by a corresponding Lagrangian density but where the “gauge covariant
derivatives” ∂μ → Dμ (5.117) are used. As an introduction and because of immediate application,
the formulae will be written for a lepton/antilepton, i.e., electron/positron. The computations,
however, are easy to adapt for other charged spin- 1

2 particles – one should only substitute the
appropriate charges and masses. Also, it should not be too hard to also adapt the computations
to include charged particles without spin. This is usually called “scalar electrodynamics” in the
literature, but we leave this aside.

Because of the difference in units and numerical simplification, the notation

ge :=
√

4π αe =
|e|√
ε0h̄c

(= |e|√4π/h̄ c, in Gauss’s units) (5.122)

is useful. On one hand, ge gives a dimensionless measure of the interaction strength; on the other,
many electrodynamics computations may then be relatively easily adapted for weak nuclear and
chromodynamics computations by changing ge → gw and ge → gc, respectively, and inserting a
few additional factors [☞ Chapter 6].
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The practical use of most concrete models in quantum field theory reduces to the prescription
(see also Procedure 11.1 on p. 416 and discussion in Section 11.2.4):

Procedure 5.1 Start with a concrete model defined within classical field theory.

1. For any considered process, list the possible sub-processes, as discussed in
Section 3.3.1 and in the form of a sequence of Feynman diagrams partially
ordered:
(a) by the number of closed loops [☞ Comment 3.5 on p. 122],
(b) by the powers of a characteristic interaction parameter,
(c) by the powers of h̄.

2. Compute the amplitude Mi for each (sub)process, as described by the specific
Feynman calculus rules of the model; see for example Procedures 5.2 on p. 193
and 6.1 on p. 232, below.

3. Add the amplitudes, with a negative relative sign between sub-processes that
differ only by the exchange of two identical fermions.

4. Compute the corresponding scattering cross-section or decay constant as dis-
cussed in Section 3.3.3, and illustrated there for a simple toy-model.

The specific Feynman calculus rules mentioned in step 2 above are derived from the same classical
action and rely on the correspondences discussed in Section 3.3.1 and in particular the listing on
page 106. As stated there, that task is deferred to proper field-theory texts [64, 63, 48, 257, 307,
221, 159, 422, 423, 538, 250, 389, 243, 45, 580, 238, 241, 239, 240].

For the particular case at hand, the model describing the interaction of electrically charged
spin- 1

2 fermions (such as electrons) and the electromagnetic field, the classical model is described
by the Lagrangian (5.118), and the specific Feynman calculus rules are as follows:

Procedure 5.2 The contribution to the amplitude M corresponding to a given Feynman di-
agram for an electrodynamics process with electrons and positrons is computed following
the algorithm [☞ textbooks [445, 425, 586] for a derivation]:

1. Notation
(a) Energy–momentum: Denote incoming and outgoing 4-momenta by p1, p2, . . . , and the

spins by s1, s2, . . . Denote the “internal” 4-momenta (assigned to lines that connect two
vertices inside the diagram) by q1, q2,. . .

(b) Orientation: For a spin- 1
2 particle, orient the line in the 4-momentum direction, oppo-

sitely for antiparticles. Orient external photon lines in the direction of time (herein,
upward). Orient the internal photon lines arbitrarily, but use the so-chosen orientation
consistently.

(c) Polarization: Assign every external line the polarization factor:

Spin- 1
2 particle

incoming us s = spin projection = ↑, ↓
outgoing us

Spin- 1
2 antiparticle

incoming vs (" spin- 1
2 particle, travels

backwards in time)outgoing vs

Photon incoming εμ εμpμ = 0 and ε0 = 0

outgoing εμ∗
(5.123)
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2. Vertices To each vertex assign the factor

−→ −igeγγγγ
μ. (5.124)

Even without derivation, this factor clearly corresponds to the term −qΨΨ /AΨ in equa-
tion (5.118), and so represents the elementary interaction of the photon with the current
of the charged particle that Ψ represents.

3. Propagators To each internal line with the jth 4-momentum assign the factor:

spin- 1
2 particle: −→ i

/qj − mjc
= i

/qj + mjc1

q2
j − m2

j c2
, (5.125)

photon: −→ − i
ημν

q2
γ

. (5.126)

As internal lines depict virtual particles, /qj \= mjc and q2
γ \= 0, respectively [☞ Tables C.7

on p. 529 and C.8 on p. 529]. Up to multiplicative coefficients, these factors also stem
from (5.118); these are Fourier transforms of the Green functions for the differential opera-
tors /D and Dμν, in Ψ /DΨ := −Ψ[ih̄ c /∂− mc2]Ψ and AμDμνAν :" − 4πε0

4 FμνFμν, respectively,
where “"” denotes effective equality (equivalence) under the integral, after integration by
parts and “ :"” defines the left-hand side by means of such an effective equality.

Digression 5.11 Integration by parts is used rather often, so that, e.g.,∫
d4x (∂μAν)(∂μAν) =

∫
d4x ∂μ(Aν∂

μAν) −
∫

d4x Aν(∂μ∂μAν)

=
∮
V(μ)

(d3x)μ (Aν∂
μAν) −

∫
d4x Aν(∂μ∂μAν), (5.127a)

where V(μ) is a closed 3-dimensional hypersurface that bounds the 4-dimensional space-
time and (d3x)μ is the volume element of V(μ). As the domain of 4-dimensional
integrals is typically all of spacetime, V(μ) is a hypersurface “at infinity” where all fields
are required to vanish, so the integrated term also vanishes. With this in mind, the
relation (5.127a) is written as∫

d4x (∂μAν)(∂μAν) " −
∫

d4x Aν(∂μ∂μAν), (5.127b)

which defines the relation “",” in this context, as “equality under spacetime integral up
to integrated terms that are assumed to vanish,” or “equivalence up to integrals of total
derivatives.”

4. Energy–momentum conservation To each vertex assign a factor (2π)4δ4(∑j kj), where kj
are 4-momenta that enter the vertex. 4-momenta that leave the vertex have a negative
sign – except for external spin- 1

2 antiparticles, since they are equivalent to particles that
move backwards in time.

5. Integration over 4-momenta Internal lines correspond to virtual particles and their 4-

momenta are unknown; these variables must be integrated:
∫ d4qj

(2π)4 .
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6. Reading off the amplitude The foregoing procedure yields the result

−i M (2π)4δ4(∑
j

pj), (5.128)

where the factor (2π)4δ4(∑j pj) represents the 4-momentum conservation for the entire
process, and where the amplitude (matrix element) M is read off.

7. Fermion loops To each fermion loop (closed line) assign a factor −1. A mathematically
rigorous derivation of this rule follows from Feynman’s approach using path integrals, which
is far beyond the scope of this book. See however Digression 2.4 on p. 52 and especially
statement 4a therein; see also the booklet [166] for an intuitive albeit not entirely rigorous
explanation, Ref. [434, Vol. 1, Appendix A] for a serious introduction, and Ref. [165] for
the original reference.

8. Antisymmetrization Since the amplitude of the process must be antisymmetric in pairs of
identical (external) fermions, the partial amplitudes that differ only in the exchange of two
identical external fermions must have the relative sign −1.

As in Section 3.3.4, one draws all Feynman diagrams that contribute at the desired
order in ge, and then computes the (partial) amplitudes for each of the diagrams. The
algebraic sum of these contributions yields the total amplitude, which is then inserted in
formulae (3.112) and (3.114) for decays and scatterings, respectively.

In the remaining part of Section 5.3, the contributions of the following 12 Feynman diagrams
will be examined, where we follow the treatment in Refs. [243] [☞ also Refs. [64, 580, 241]]:
Each of these diagrams depicts a separate contribution to some O(g2

e ) process and, exceptionally,
O(g4

e ) for the last diagram. Processes are identified by the “external” particles, whereby diagram (a)
in Figure 5.1, all by itself represents one process, while diagrams (b) and (c) in Figure 5.1 represent
two contributions to the same process.

Denote the external lines so that incoming are bottom-left=1 and bottom-right=2, and
outgoing are top-left=3 and top-right=4. So, e.g.,

(5.129)

depicts the elastic scattering of an electron and a muon via the exchange of a photon. In fact,
the incoming (and so also the outgoing) pair of fermions in the diagrams in Figure 5.1 (a)–(d),
p. 196, could be identified as any other pair of different spin- 1

2 particles, including the electron–
proton pair in the hydrogen atom. It is, however, important to keep in mind that the relativistic
description in terms of the perturbative expansion in the degree of the interaction constant ge is
appropriate for scatterings and for decays but not for bound states, the description of which is
inherently non-perturbative in this sense.

To see this, note that the bound states of the hydrogen atom are determined by the Coulomb
field, which results from summing over all possible exchange processes including one to infinitely
many photons. The static electromagnetic field, known as the Coulomb field, may be identified with
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Figure 5.1 The first 12 Feynman diagrams that depict the quantum-electrodynamical processes be-
tween spin- 1

2 particles and the photon. The last diagram depicts one of the corrections for the
process (a).

the (Bose) condensation of infinitely many photons,17 and is a phenomenon that is inherently non-
perturbative in the number of exchanged particles, and so inherently unreachable in the analysis
using elementary processes depicted by Feynman diagrams.

In turn, in scatterings and decays, the exchange of a single photon produces the domi-
nant contribution, while multi-particle exchanges produce ever smaller corrections: scatterings
and decays are inherently perturbative in the number of exchanged particles.

Electron–muon scattering
Scatterings of the type e− + μ− → e− + μ−, where the muon is a “target” that is significantly
heavier than the “probe” (here, e−), are called Mott scattering, after Sir Nevill Francis Mott. In the
non-relativistic regime one obtains Rutherford scattering, named after Ernest Rutherford’s experi-
ment of bombarding a foil of gold with α-particles. Reading off of the diagram in Figure 5.1, and
following the Procedure 5.2 on p. 193, we get∫ d4q

(2π)4 (2π)4δ4(p1 − p3 − q) (2π)4δ4(p2 − p4 + q)

× [
us3 A(p3)(ige γ

μA
B)us1,B(p1)

](−iημν
q2

)[
Us4 C(p4)(ige γ

νC
D)Us2,D(p2)

]
=

ig2
e (2π)4

(p1 − p3)2 δ
4(p2 − p4 + p1 − p3)

[
us3 A(p3) γ

μA
B us1,B(p1)

][
Us4 C(p4) γμ

C
D Us2,D(p2)

]
, (5.130)

and comparison with the diagram (5.129) shows that us1,b(p1) represents the incoming electron,
and Us4 C(p4) the outgoing muon, etc.
17 And the other way round, photons are the quanta of the electromagnetic field in the sense that they are the smallest

“packet” of a change in the electromagnetic field. These quanta – oscillations in the electromagnetic field – move at the
speed of light; once established, the electrostatic or magnetostatic field does not move at all and extends through the
whole available space.
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From there, using the expression (5.128), we get

M(a) = − g2
e

(p1 − p3)2

[
us3 A(p3) γ

μA
B us1,B(p1)

][
Us4 C(p4) γμ

C
D Us2,D(p2)

]
. (5.131)

If the spins of the incoming and outgoing particles are known, the polarization spinors us1,B, Us2,D,
us3 A and Us4 C are selected as given in equations (5.40), one computes the components of the
4-vectors [us3 γγγγμ us1 ] and [Us4 γγγγμ Us2 ], and then the sum of the products.

When in turn the spins of the interacting particles are not measured, and we are interested in
the inclusive effective cross-section of the scattering, i.e., the inclusive decay constant, summing over
all spins produces an important simplification. Indeed, the formulae (3.112) and (3.114) need
|M|2 = MM. On the other hand, M(a) contains a factor[

uA(p3) γ
μA

B uB(p1)
]† =

[
u†(p3)γγγγ

0 γγγγμ u(p1)
]† =

[
u†(p1) (γγγγμ)† (γγγγ0)† u(p3)

]
=

[
u†(p1)1 (γγγγμ)† γγγγ0 u(p3)

]
=

[
u†(p1)γγγγ

0 γγγγ0 (γγγγμ)† γγγγ0 u(p3)
]

=
[
u(p1)γγγγ

μ u(p3)
]
, γγγγμ := γγγγ0(γγγγμ)†γγγγ0, (5.132)

so that |M(a)|2 contains the factor[
uA(p3) γ

μA
B ub(p1)

][
uC(p1) γ

νC
D uD(p3)

]
. (5.133)

Digression 5.12 The physical requirement (A.127) implies that

γγγγμ := γγγγ0(γγγγμ)†γγγγ0 (A.127)= γγγγμ. (5.134)

Finally, summing over spins permits using the relations (5.54):

∑
s1,s3

[
us3 A(p3) γ

μA
B us1B(p1)

][
us1 C(p1) γ

νC
D us3D(p3)

]
= ∑

s3

γμA
B

[
∑
s1

us1B(p1) us1 C(p1)
]
γνC

D

[
us3D(p3) us3 A(p3)

]
(5.54)= γμA

B (/p1 + mec1)B
C γ

νC
D (/p3 + mec1)D

A

= Tr
[
γγγγμ (/p1 + mec1)γγγγν (/p3 + mec1)

]
, (5.135)

which is independent of the spins s1, s3 that are not being measured.
It then follows that

〈|M(a)|2〉 =
g4

e

(p1 − p3)4 ∑
s1,s3

Tr
[
us3(p3)γγγγ

μ us1(p1)
]

Tr
[
us1(p1)γγγγ

ν us3(p3)
]

× ∑
s2,s4

Tr
[
Us4(p4)γγγγμ Us2(p2)

]
Tr

[
Us2(p2)γγγγν Us4(p4)

]
=

g4
e

(p1 − p3)4 Tr
[
γγγγμ (/p1 + mec1)γγγγν (/p3 + mec1)

]
× Tr

[
γγγγμ (/p2 + mμc1)γγγγν (/p4 + mμc1)

]
(5.136)

=
g4

e

(p1 − p3)4 Xμν(1, 3; e−) Xμν(2, 4; μ−). (5.137)
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Digression 5.13 This result – in fact, the entire procedure (5.131)–(5.137) – may also be
depicted graphically:

(5.138a)

where the diagram labels were simplified, so “1” stands for us1,a(p1) and “1” for us1
a (p1),

etc. The product M†
(a)M(a) is then simply depicted by putting two diagrams next to each

other. However, the summation of the product M†
(a)M(a) over spin (and, in general,

all other unmeasured degrees of freedom) of, say, particle 1 is graphically depicted by
connecting (concatenating) the two lines labeled “1” into a single line. Thus,

.

(5.138b)

By cutting the photon lines, we arrive at the graphical depiction (5.137):

. (5.138c)

This graphical rendition of the computation of
〈|M|2〉 is further detailed in Ref. [64].

The computation of the tensors

Xμν(1, 3; e−) := Tr
[
γγγγμ (/p1 + mec1)γγγγν (/p3 + mec1)

]
, (5.139a)

Xμν(2, 4; μ−) := Tr
[
γγγγμ (/p2 + mμc1)γγγγν (/p4 + mμc1)

]
(5.139b)

reduces to writing out the γγγγ-polynomials in the square brackets (5.136), and simplifying using the
identities (A.125). The final result is [☞ Ref. [241] for the “factorization” (5.137) and derivation]

〈|M(a)|2〉 =
8g4

e

(p1 − p3)4

[
(p1·p2)(p3·p4) + (p1·p4)(p3·p2) + 2(memμc2)2

− (mμc)2(p1·p3) − (mec)2(p2·p4)
]
. (5.140)

Electron–electron scattering
The computation (5.140) used that e− �= μ−. However, the result may be adapted also to the
elastic e− + e− → e− + e− scattering, named after Christian Møller. This, however, does not reduce
to a simple replacement mμ → me in the final expression (5.140), since when the two outgoing
particles are identical, we must take into account another, equally possible process, depicted by the
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Feynman diagram (c) in Figure 5.1 on p. 196. The total amplitude is then the difference between
the amplitudes for (b) and for (c) in Figure 5.1 on p. 196. Indeed, since the electrons are fermions,
the total amplitude must be antisymmetric with respect to the exchange of any two, and so also
the two outgoing electrons. Thus,

M2e−→2e− = M(b) −M(c)

= − g2
e

(p1 − p3)2

[
u3 γγγγ

μ u1
][

u4 γγγγμ u2
]
+

g2
e

(p1 − p4)2

[
u4 γγγγ

μ u1
][

u3 γγγγμ u2
]

(5.141a)

(5.141b)

where the expression is simplified by not writing the indices indicating the spin or those for the
Dirac spinor components, and all these arguments are denoted by a single subscript: usi ,A(pi) →
ui. Computing 〈|M|2〉 in this case complicates as compared to (5.131)–(5.140): squaring the
expression (5.141) by absolute value, we obtain

|M2e−→2e− |2 = |M(b)|2 + |M(c)|2 − 2&e
(
M†

(b) M(c)

)
. (5.142)

The first two summands may be copied from equation (5.140), upon changing mμ → me
and swapping 3 ↔ 4 for |M(c)|2. The remaining, “interference” summand18 is “a little” more
complicated:

M†
(b)M(c) ∝ [u2γγγγ

μu4][u1γγγγμu3][u4γγγγ
νu1][u3γγγγνu2] = [u2γγγγ

μu4][u4γγγγ
νu1][u1γγγγμu3][u3γγγγνu2]

=
[
u2γγγγ

μu4u4γγγγ
νu1u1γγγγμu3u3γγγγνu2

]
, (5.143)

summing over spins produces

〈M†
(b)M(c)〉 ∝

〈[
u2γγγγ

μu4u4γγγγ
νu1u1γγγγμu3u3γγγγνu2

]〉
=

〈
Tr

[
γγγγμu4u4γγγγ

νu1u1γγγγμu3u3γγγγνu2u2
]〉

= Tr
[
γγγγμ(/p4 + mec1)γγγγν(/p1 + mec1)γγγγμ(/p3 + mec1)γγγγν(/p2 + mec1)

]
, (5.144)

for the computation of which one needs identities like (A.125), but up to and including the eighth
degree in the γγγγ-matrices. However, using the matrix identities (A.121)–(A.122) these may always
be reduced to the listed identities (A.125) [☞ Theorem A.5 on p. 487].

Electron–positron scattering
The elastic scattering e− + e+ → e− + e+ is known as Bhabha scattering, after Homi Jehangir
Bhabha. Again there are contributions from two sub-processes:

(5.145)

18 The existence of such interference summands is the hallmark of quantum mechanics: the basic principle is that in
classical physics one adds probabilities of the partial contributions to a process, whereas in quantum physics one adds
the amplitudes of those probabilities and then squares this sum to obtain the probability.
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It is not hard to show that M(d)(1, 2, 3, 4) = M(c)(1, 3, 2, 4); i.e., by exchanging the incoming
positron with the outgoing electron: the incoming positron, labeled “2,” is equivalent to the
outgoing electron, labeled “3,” together with the p2 ↔ −p3 swap:

(5.146)

Antisymmetrizing with respect to this exchange of two fermions, we then have

Me−e+→e−e+ = M(d) −M(e) (5.147a)

= − g2
e

(p1 − p3)2 [u3γγγγ
μu1][v2γγγγμv4] +

g2
e

(p1 + p2)2 [v2γγγγ
μu1][u3γγγγμv4]. (5.147b)

The expression for M(d) was obtained from equation (5.131), swapping U2 → v4: incoming muon
into the incoming (backwards in time!) positron, as well as U4 → v2: outgoing muon into the
outgoing (backwards in time!) positron.

Compton scattering
For electron–photon scattering, there are again two diagrams:

(5.148)

This time, the diagrams do not differ in an exchange of two fermions – we evidently do differen-
tiate between the incoming and the outgoing electron, so there is no antisymmetrization; these
amplitudes are therefore being added,

Me−γ→e−γ = M( f ) + M(g), (5.149a)

where, following Procedure 5.2 on p. 193, we obtain

−iM( f )(2π)4δ4(p1 + p2 − p3 − p4)

=
∫ d4q

(2π)4 (2π)4δ4(p1 − p3 − q)(2π)4δ4(p2 − p4 + q)

× u4 ε
μ
2 (−igeγγγγμ)

i(/q + mec1)
q2 − m2

e c2 (−igeγγγγν)ε
ν∗
3 u1, (5.149b)

M( f ) =
g2

e
(p1 − p3)2 − m2

e c2

(
ε
μ
2 [u4 γγγγμ(/p1 − /p3 + mec1)γγγγν u1]εν∗3

)
, (5.149c)
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M(g) =
g2

e
(p1 + p2)2 − m2

e c2

(
ε
μ∗
3 [u4 γγγγμ(/p1 − /p3 + mec1)γγγγν u1]εν2

)
. (5.149d)

We obtained the amplitude M(g) from M( f ) by swapping

p2 ↔ −p3 and (εμ2 , εν∗3 ) ↔ (εμ∗3 , εν2). (5.150)

This is easy to depict diagrammatically:

1

3↖

ν

2 ↖

4

μ

1 3↘

ν

2 ↘

μ

4

1 3∗ → 2↖

μ

2∗ →3↖

ν

4

(5.151)

Electron–positron pair annihilation and creation
For inelastic scattering e− + e+ → 2γ, there are again two diagrams:

Me−+e++→2γ = M(h) + M(i) =
q

+ q

1 2

3 4

1 2

3 4
(5.152)

which are being added: They differ in the exchange of two photons 3 ↔ 4, which are bosons, so
the total amplitude is being symmetrized. As in the previous examples, we obtain

=
g2

e
(p1 − p3)2 − m2

e c2

(
εν∗4 [v2γγγγν(/p1 − /p3 + mec1)γγγγμu1]ε

μ∗
3

)
+

g2
e

(p1 − p4)2 − m2
e c2

(
εν∗3 [v2γγγγν(/p1 − /p4 + mec1)γγγγμu1]ε

μ∗
4

)
. (5.153)

For the process of pair-creation 2γ→ e− + e+, there are again two diagrams:

M2γ→e−+e+ =

1 2

q
3 4

+
1 2

q
3 4

(5.154)

These contributions to the amplitude are being added as they again differ in the exchange of the
two incoming photons. Owing to the evident (time-reversal) symmetry between the results (5.154)
and (5.152), we have that M2γ→e−+e+ = M†

e−+e+→2γ.

5.3.2 Effective cross-sections and lifetimes
The results for M and

〈|M|2〉 from the previous section may now be used in the above
formulae (3.112) and (3.114), (3.122) and (3.127), as well as (3.159), (3.161) and (3.162).
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Mott and Rutherford scattering
For the scattering of a light “probe” on a heavy “target” where the spins are not measured, we
may use the results (5.136). In addition, in the approximation where the target mass (mB = M) is
sufficiently larger than the probe mass (mA = m) so that the target recoil is negligible – which is
easily realistic if the target is affixed in the lab – we use the result (3.161):

dσ
dΩ

≈
( h̄

8πMc

)2 〈|M|2
〉

. (5.155)

Since the target is immovable, we have

p1 = (−E/c,�p1), p2 = (−Mc,�0), p3 ≈ (−E/c,�p3), p4 ≈ (−Mc,�0), (5.156)

where we used the conservation law of energy, i.e., the 0th component of 4-momentum, and have
approximated E4 ≈ Mc2 and �p4 ≈�0, so that E3 ≈ E1 = E. It follows that the angle in the relation
�p1·�p3 = �p2 cos θ is small, θ ≈ 0, so that |�p1| ≈ |�p3| =: |�p|. In this approximation,

(p1 − p3)
2 ≈ −(�p1 −�p3)2 = −�p 2

1 −�p 2
3 + 2�p1·�p3 = −4�p2 sin2

(
θ

2

)
, (5.157a)

(p1·p3) ≈
E2

c2 −�p1·�p3 = �p2 + m2c2 − �p2 cos θ = m2c2 + 2�p2 sin2
(
θ

2

)
, (5.157b)

(p1·p2) = ME ≈ (p2·p3) ≈ (p1·p4) ≈ (p3·p4), (p2·p4) ≈ M2c2. (5.157c)

Thus, 〈
|M|2

〉
≈

(
g2

e Mc

�p 2 sin2( θ2 )

)2 (
m2c2 +�p 2 cos2

(
θ

2

))
, (5.158)

dσ
dΩ

≈
(

αh̄

2�p 2 sin2( θ2 )

)2 (
m2c2 + �p 2 cos2

(
θ

2

))
. (5.159)

This is Mott’s formula, which is a very good approximation of the differential cross-section for
e−–p+ scattering, and even better for electron scattering on heavy ions. In the approximation
where �p2 � m2c2, we obtain

dσ
dΩ

≈
(

αh̄

2�p 2 sin2( θ2 )

)2

m2c2 =
(

αh̄ c

2 m�v 2 sin2( θ2 )

)2

, (5.160)

which is the classical Rutherford formula (2.3).
The system of equations (4-momentum conservation)

(−E1/c,�p1) + (−Mc,�0) = (−E3/c,�p3) + (−E4/c,�p4) (5.161a)

produces, denoting pi := |�pi|,√
m2c2 + p2

1 + Mc =
√

m2c2 + p2
3 +

√
M2c2 + p2

4, (5.161b)

p1 = p3 cos θ + p4 cos φ, (5.161c)

0 = p3 sin θ − p4 sin φ. (5.161d)

Eliminating the angle φ from the last two equations produces

p4 =
∣∣�p1 −�p3

∣∣ =
√

p 2
1 − 2p1 p3 cos(θ) + p 2

3 (5.161e)

https://doi.org/10.1017/9781009291507.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291507.008


5.3 Quantum electrodynamics with leptons 203

which, together with relation (5.161b) gives
(

with E1 = c
√

m2c2 + �p 2
1

)

p3± =
p1(E1M+m2c2) cos(θ) ± p1(E1+Mc2)

√
M2−m2 sin2(θ)

(M2+m2)c2+2E1M+p 2
1 sin2(θ)

(5.162)

This is why simplifying approximations such as Mott’s are convenient.

Electron–positron pair annihilation
In a model that has only electrons (and positrons) and photons, the decay – strictly speaking – is
not possible: neither can a fermion (an electron or a positron) decay into any number of photons,
nor can a photon decay into a real electron–positron pair [☞ Exercise 5.3.6]. However, the well-
studied decay π0 → 2γ is actually the process π0 = (q + q) → γ+ γ, which is in fact an inelastic
scattering of a quark–antiquark pair that were, originally, bound into the state π0. This process
has contributions not only from the electromagnetic interaction, but also from weak and strong
nuclear interactions, which complicates the estimate.

Instead, consider the decay of positronium, which is most conveniently computed in the
positronium rest-frame, i.e., in the electron–positron CM system. It is known that in this system
the electron and the positron move rather slowly, so we compute in the approximation where the
electron and the positron are static immediately before their annihilation. The two photons created
in the annihilation carry the same energy and so have linear momenta of the same magnitude and
opposite direction. Thus we choose

pe− = p1 = mec(−1, 0, 0, 0), pe+ = p2 = mec(−1, 0, 0, 0), (5.163a)

pγ1
= p3 = mec(−1, 0, 0, 1), pγ2

= p4 = mec(−1, 0, 0,−1), (5.163b)

whereby it follows that

(p1 − p3)
2 − m2

e c2 = −2m2
e c2 = (p2 − p4)

2 − m2
e c2. (5.164)

Besides, for the photons we use both the Lorenz gauge (5.91), whereby

ε3·p3 = 0 = ε4·p4, (5.165)

as well as the Coulomb gauge, whereby the polarization 4-vectors ε3 and ε4 have no temporal
component. Since p1 and p2 only have temporal components, it follows that

ε3·p1 = 0 = ε4·p1 and ε3·p2 = 0 = ε4·p2. (5.166)

The expressions (5.153) may, after a little simplifying, be written as

M(h) =
g2

e
(p1 − p3)2 − m2

e c2

(
[v2 /ε∗4(/p1 − /p3 + mec1)/ε∗3u1]

)
, (5.167)

M(i) =
g2

e
(p1 − p4)2 − m2

e c2

(
[v2 /ε∗3(/p1 − /p4 + mec1)/ε∗4u1]

)
, (5.168)

where /ε∗i := ε∗i
μγγγγμ – the gamma-matrix is not conjugated. Consider first M(h), where

/p1 /ε∗3
(A.126a)= −/ε∗3 /p1 + 2ε∗3 ·p1

(5.166)= −/ε∗3 /p1, (5.169a)

/p3 /ε∗3
(A.126a)= −/ε∗3 /p3 + 2ε∗3 ·p3

(5.165)= −/ε∗3 /p3, (5.169b)
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(/p1 − /p3 + mec1)/ε∗3u1 = /ε∗3(−/p1 + /p3 + mec1)u1 = /ε∗3 /p3u1, (5.169c)

where the last equality holds as the incoming electron, u1, is on-shell, i.e., it satisfies the Dirac
equation, (/p1 − mec1)u1 = 0. M(i) is similarly simplified so that, using the choices (5.163b), we
obtain

Me−+e+→2γ = − g2
e

2m2
e c2 v2[/ε∗4 /ε∗3 /p3 + /ε∗3 /ε∗4 /p4]u1 (5.170)

= − g2
e

2mec
v2[/ε∗4 /ε∗3(γγγγ0 + γγγγ3) + /ε∗3 /ε∗4(γγγγ0 − γγγγ3)]u1

= − g2
e

2mec
v2[(/ε∗4 /ε∗3 + /ε∗3 /ε∗4)γγγγ0 + (/ε∗4 /ε∗3 − /ε∗3 /ε∗4)γγγγ3]u1

= − g2
e

2mec
v2[2ε∗4μη

μνε∗3νγγγγ0 + 4iε∗4μγγγγ
μνε∗3νγγγγ3]u1

= − g2
e

2mec
v2[−2�ε∗4 ·�ε∗3γγγγ0 + i(�ε∗4×�ε∗3)·�Σγγγγ3]u1, (5.171)

where we used again that ε0
i = 0 and where we defined

Σi := 2εijk γγγγ
jk = i

2 εijk [γγγγj,γγγγk]. (5.172)

Finally, we use that the spins of the electron and the positron are antiparallel, and use

u↑
1 =

√
2mc

[ 1
0
0
0

]
, u↓

1 =
√

2mc
[ 0

1
0
0

]
, v↓

2 =
√

2mc[0 0 1 0], v↑
2 =

√
2mc[0 0 0 1]. (5.173)

Thus, using the concrete matrices in Appendix A.6.1,

M↑↓ = −2ig2
e (�ε

∗
3 ×�ε∗4)z = −M↓↑, (5.174)

from which it follows that the symmetric state of the electron–positron system, (|↑↓〉 + |↓↑〉)/
√

2,
cannot decay into two photons. However, since the process e+ + e− → γ is kinematically forbidden,
it follows that the symmetric state of positronium may only decay into three or more photons.

On the other hand, the antisymmetric state, (|↑↓〉 − |↓↑〉)/
√

2, can decay into two photons.
Thus we have

M|0,0〉 = 1√
2

(
M↑↓ −M↓↑

)
, (5.175)

where |0, 0〉 = (|↑↓〉 − |↓↑〉)/
√

2 is the so-called singlet state of positronium before decay.
Next, re-insert the polarization vectors19

�ε|1,+1〉 = − 1√
2
(1, i, 0) and �ε|1,−1〉 = 1√

2
(1,−i, 0), (5.176)

so that

(�ε∗3 ×�ε∗4)↑↓ =
(
�ε∗3,|1,+1〉 ×�ε∗4,|1,−1〉

)
= −1

2

∣∣∣∣∣∣
ê1 ê2 ê3
1 −i 0
1 i 0

∣∣∣∣∣∣ = −i ê3 = −(�ε∗3 ×�ε∗4)↓↑, (5.177)

whereby the photon polarization too must be in the antisymmetric superposition

1√
2

(|1, +1〉3|1,−1〉4 − |1,−1〉3|1, +1〉4
)
. (5.178)

19 The signs are chosen so that {�ε|1,+1〉,�ε|1,−1〉, ê3} would form a right-handed coordinate system.
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Finally, adding the contributions to the amplitude as in the superposition (5.178),

Me−+e+→2γ = −4g2
e . (5.179)

Although the final numeric value of this result seems disproportionately simple in comparison with
the length and details of the derivation, note that we have also derived that the antiparallel spins
in the electron–positron system imply that:

1. the positronium spin before the two-photon decay equals zero, i.e.,
the positronium is in the so-called singlet state |0, 0〉 = (|↑↓〉 − |↓↑〉)/

√
2;

2. the spin of the two-photon state produced in the positronium decay equals zero,
and the state itself is the antisymmetric superposition (5.178);

3. the triplet state of positronium, |1, 0〉 = (|↑↓〉 + |↓↑〉)/
√

2, may only decay into three or
more photons.

Given the amplitude (5.179), we may compute: First of all, using the result (3.127), we have
the effective cross-section of the electron–positron annihilation in the CM system:

dσ
dΩ

=
( h̄ c

8π(E1 + E2)

)2 |�p f |
|�pi| |M|2 =

( h̄ c
16π(mec)

)2 |Eγ/c|
|me v|

∣∣− 4g2
e
∣∣2, (5.180)

where we used that, because of (5.163a)–(5.163b), E1 = mc2 = E2 and Eγ = mec2. Simplifying,
we obtain

dσ
dΩ

=
1
cv

( h̄α
me

)2
, and σ =

4π
cv

( h̄α
me

)2
, (5.181)

since dσ/dΩ does not depend on angles.
For the decay constant and the lifetime of positronium, use relation (3.109), where the total

number of scatterings equals N = Lσ, and luminosity is L = vρ, with ρ the probability density of
finding the electron and the positron at the decay location. For an individual positronium “atom,”
ρ = |Ψ(�0, t)|2 and N represents the decay probability in unit time, i.e., the decay constant. Thus,

Γ = v σ |Ψ(�0, t)|2 =
4π
c

( h̄α
me

)2|Ψ(�0, t)|2, (5.182)

in agreement with Conclusion 3.2 on p. 113, and the relation (3.110). Recall: [|Ψ(�0, t)|2] = L−3;
at the end of Section 4.1.5, the result from analyzing the hydrogen atom was adapted, |Ψ(�0, t)|2 =( αme c

h̄ n

)3. With this result, we finally get

Γ =
4π
c

( h̄α
me

)2[ 1
π

(α( 1
2 me)c
h̄ n

)3]
=
α5 mec2

2 h̄ n3 , (5.183)

and the positronium lifetime becomes

τ =
1
Γ

=
2 h̄ n3

α5 mec2 ≈ (1.24494×10−10 s) × n3. (4.51)

5.3.3 Renormalization
When discussing electron–muon scattering (5.129)–(5.140), we took into account only the Feyn-
man diagram of lowest order in the ge-, i.e., α-power expansion. The results (5.131)–(5.140)
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produce M(a) =
√
〈|M(a)|2〉 = O(g2

e ) = O(α). Next order corrections stem from the following
diagrams:

(5.184)

of which we will consider the last two. Denote

p1

p3

p 2

p 4

q q ′

k

k ′

(5.185)

Calculation
The amplitude for this process is obtained following Procedure 5.2 on p. 193:∫ d4q

(2π)4
d4q′

(2π)4
d4k

(2π)4
d4k′

(2π)4 (2π)4δ4(p1 − p3 − q) (2π)4δ4(q − k + k′) (2π)4δ4(k − k′ − q′)

× (2π)4δ4(p2 − p4 + q′)
[
u3(ige γγγγ

μ)u1
](−iημν

q2

)
× (−1) Tr

[
(igeγγγγ

ν)
i

/k − mec
(igeγγγγ

ρ)
i

/k′ − mec

](−iηρσ
(q′)2

)[
U4(ige γγγγ

σ)U2
]

(5.186a)

= −g4
e

∫ d4q
(2π)4

d4k
(2π)4 (2π)4δ4(p1 − p3 − q) (2π)4δ4(p2 − p4 + q)

× [
u3 γγγγ

μ u1
](ημν

q2

)
Tr

[
γγγγν

1
/k − mec

γγγγρ
1

/k − /q − mec

](ηρσ
q2

)[
U4 γγγγ

σ U2
]

= −i(2π)4 δ4(p1 + p2 − p3 − p4)

×
[−ig4

e

q4

∫ d4k
(2π)4

[
u3 γγγγ

μ u1
]Tr[γγγγμ(/k + mec)γγγγρ(/k − /q + mec)]

(k2 − m2
e c2)[(k − q)2 − m2

e c2]

[
U4 γγγγ

ρ U2
]]

q=p1−p3

, (5.186b)

where the factor (−1) in the expression (5.186a) reflects rule 7 in Procedure 5.2 on p. 193. With
the abbreviation q := p1 − p3, we have

M(a′) =
−ig4

e

q4

[
u3 γγγγ

μ u1
]{ ∫ d4k

(2π)4

Tr[γγγγμ(/k + mec)γγγγρ(/k − /q + mec)]

(k2 − m2
e c2)[(k − q)2 − m2

e c2]

}[
U4 γγγγ

ρ U2
]
. (5.187)

Comparing with equation (5.131), we see that the inclusion of this O(g4
e ) contribution20

(5.188)

20 For the complete result computed to O(g4
e ), we of course must include all contributions (5.184) [☞ Refs. [243, 45,

580, 241]]; for brevity and pedagogical focus, only the last two are considered here.
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is equivalent to replacing the photon propagator in Procedure 5.2:

−iημρ
q2 → −iημρ

q2 +
−i Hμρ

q4 + · · · =
−i
q2

[
ημρ +

Hμρ

q2 + · · ·
]
, (5.189)

where

Hμρ := ig2
e

∫ d4k
(2π)4

Tr[γγγγμ(/k + mec)γγγγρ(/k − /q + mec)]

(k2 − m2
e c2)[(k − q)2 − m2

e c2]
. (5.190)

Since Hμρ may only depend on the (rank-2) metric tensor ημν and the 4-momentum qμ, it
must be that (as a rank-2 tensor and with [Hμν] = 2[q])

Hμρ = −ημρ q2 I(q2) + qμ qρ J(q2). (5.191)

Here, I(q2) and J(q2) are two Lorentz-invariant functions of the 4-momentum q, so they must be
functions of the Lorentz-invariant square q2. Since q is the 4-momentum of the virtual photon, q2

need not be restricted to the mass shell (q2 = 0, for the massless photon) and may attain arbitrary
values.

The function J(q2) contributes nothing to the final result, as it occurs, within the ampli-
tude (5.187), only contracted with the 4-momentum:

[u3γγγγ
μ u1]qμ = [u3 /q u1] = [u3 (/p1 − /p3) u1] = 0. (5.192)

This last equality holds since both the incoming and the outgoing electrons are on the mass shell:

/p1 u1 = mec u1 and u3 /p3 = u3 mec. (5.193)

(Recall: /pi = γγγγμpi μ are 4×4 matrices, ui 4-component column-matrices and ui 4-component row-
matrices.) It remains to compute the function I(q2), which may be brought into the shape [243]:

I(q2) =
g2

e
12π2

{ ∫ ∞

m2
e

dξ
ξ

− 6
∫ 1

0
dζ ζ(1−ζ)ln

(
1− q2

m2
e c2 ζ(1−ζ)

)}
. (5.194)

While the first integral diverges logarithmically,

∫ ∞

m2
e

dξ
ξ

= lim
μ→∞

∫ μ2

m2
e

dξ
ξ

= 2 lim
μ→∞

ln
( μ

me

)
= ∞, (5.195a)

the second term, in curly brackets in relation (5.194), equals

f (x) :=
(12−5x)

√
x(x+4) − 6(x−2)(x+4) tan−1

(√
x

x+4

)
3
√

x3(x+4)

=
4
x
− 5

3
− 2(x−2)

x

√
x+4

x
tan−1

(√ x
x + 4

)
, (5.195b)

x := − q2

m2
e c2 = − (p1 − p3)2

m2
e c2 ≈ 4

�p 2
e, in

m2
e c2 sin2( θ

2

)
= 4

�v 2
e, in

c2 γ2
e sin2( θ

2

)
, (5.195c)
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where �pe, in and �ve, in are, respectively, the 3-vectors of linear momentum and the velocity of the
incoming electron, γe the corresponding relativistic factor, and θ their deflection angle. Note that
f (x) varies relatively slowly:

–20 10 10 20

–3

–2

–1

1

2
�e f(x)

)

�m f(x)
)

π

(5.196)

The total amplitude is

M(a) = lim
μ→∞

M(a)(q2, μ) + · · · , (5.197a)

where

M(a)(q2, μ) = −g2
R(μ)

[
u3 γγγγ

μ u1
](ημν

q2

){
1 +

g2
R(μ)

12π2 f
( −q2

m2
e c2

)}[
U4 γγγγ

ν U2
]
+ · · · , (5.197b)

ge,R(μ) := ge

√
1 − g2

e
6π2 ln

( μ

me

)
, (5.197c)

and where “· · · ” denotes omitted contributions from the other diagrams (5.184), as well as O(g6
e )

contributions, and the equality (5.197b) with definition (5.197c) holds up to O(g6
e ) corrections.

Physical meaning
The definition (5.197a) actually uncovers a conceptual error in the original set-up of the com-
putation: The identification of the e− + μ− → e− + μ− elastic scattering amplitude of course
depends on the strength of the interaction of the electron and the muon with the photons that
mediate the electromagnetic interaction. The measure of the strength of that interaction was ini-
tially identified [☞ definition (5.122)] with the dimensionless parameter ge = e√

ε0 h̄ c
used in

the assignment (5.124), which in turn is derived (within a field theory course) from the clas-
sical Lagrangian (5.118), with qΨ → −e (for the electron). However, the electric charge is of
course a measured parameter, and elastic scatterings such as e− + μ− → e− + μ− in fact define
the quantity that we call the (physical) electric charge. In other words, the original parameter
qΨ → −e = −ge

√
ε0 h̄ c used in (5.118) is neither independently nor directly measurable, and

should never have been identified identically with the physical electric charge of the electron.

Conclusion 5.5 The quantity that is measurable and which is being compared with ex-
perimental data may in turn be identified with the symbol ge,R, as defined by the
relation (5.197c) as a function of the auxiliary (intermediate and, essentially, arbi-
trary) parameters ge, μ – and up to O(g4

e ) contributions, which were omitted in the
expansion (5.197a).
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From the form of equation (5.197c), taking the μ → ∞ limit and the physical fact that the
measurable charge ge,R is of course a finite quantity, it follows that the original and unmeasurable
variable ge must be a function of the variable μ, so that

ge,R := lim
μ→∞

ge(μ)

√
1 − g2

e (μ)
6π2 ln

( μ

me

)
+ · · · < ∞ (5.198)

This perhaps fussy “detailing” is in fact logical, given that both ge and μ are auxiliary (intermediate)
variables that serve only to connect the mathematical model (developed in a perturbative way from
the classical physics model) to the physical quantities that this model describes.

In field theory (a course that should follow this introduction), the rules in Procedure 5.2
on p. 193 are derived from the Lagrangian for electrodynamics of charged spin- 1

2 particles. The
parameter ge should show up in this Lagrangian. However, just like that Lagrangian, the parameter
by itself is not measurable, but defines the measurable charge by means of the iterative relation
the beginning of which is given by equation (5.198). Thus, relation (5.197b) may be written as

Me−+μ−→e−+μ−(q2) = −g2
e,R(q2)

[
u3 γγγγ

μ u1
](ημν

q2

)[
U4 γγγγ

ν U2
]
+ · · · , (5.199a)

ge,R(q2) = ge,R(0)

√
1 +

g2
e,R(0)
12π2 f

( −q2

m2
e c2

)
, (5.199b)

that is,

αe,R(q2) = αe,R(0)
{

1 +
αe,R(0)

3π
f
( −q2

m2
e c2

)}
,

≈ αe,R(0)
{

1 +
αe,R(0)

3π
ln

( q2

m2
e c2

)}
, q2  m2

e c2, (5.199c)

where the electric charge is defined as the renormalized parameter of the electromagnetic inter-
action, ge,R(q2), as is then defined the parameter of the electromagnetic fine structure, αe,R(q2), as
a function of the Lorentz-invariant intensity of the 4-momentum transfer, from the “probe” (here
e−) to the “target” (here μ−).

The quantities ge,R(0) and αe,R(0) are the limiting values of the functions ge,R(q2) and αe,R(q2),
when the 4-momentum transfer between the “probe” and “target” is negligible, and in that limit
we have αe,R(0) ≈ 1

137 . The numerical values of the corrections (5.199c) are relatively small, e.g.,
O(6×10−6) for a direct collision at c/10 speed, so that the value 1

137 is used as a first approximation
for αe,R(q2) as if it were a constant. However, precise measurements of electromagnetic processes,
such as in the Lamb shift (1.38a), indeed verify the corrections (5.199c).

The fact (5.199c) that the numerical value of the electric charge depends on the 4-momentum
of the interaction with which that electric charge is being measured indicates the conceptual error
in classical physics, where the parameters in the model of the physical system or process have
a priori identified physical meaning and concrete value. The quantum nature of Nature teaches
us that only those particular combinations and functions of the model parameters for which the
values really can be measured must in fact have concrete (real and finite) values.

The contribution of the last diagram (5.184) equals the second term in equation (5.199c),
only with a virtual muon in the central closed loop. That induces the replacement me → mμ in the
result (5.199c), which reduces the contribution since

ln
( q2

m2
μc2

)
= ln

( q2

m2
e c2

)
− [

2 ln(206) ≈ 10.6558
]
. (5.200)
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210 Gauge symmetries and interactions

In fact, since the fermionic closed loop in the center of the diagram (5.185) depicts a virtual spin-
1
2 fermion – which by definition is not observed – the contribution of the same diagram should
be summed over all electrically charged spin- 1

2 fermions. The electron’s contribution is however
dominant, since the electron is the lightest of all electrically charged spin- 1

2 fermions, and the
corrections (5.199c) [☞ relations (5.195b)–(5.196)] are scaled by the logarithm of the inverse
mass of the particle in this central loop.

Finally, the relation (5.199c) is a result of the O(g4
e ) contributions, which is depicted by the

diagrams (5.188). It is not hard to show that the infinite series of diagrams of growing order:

+ + + + · · · · · ·
(5.201)

summing the geometric series result in

αe,R(|q2|) ≈ αe,R(0)

1 − αe,R(0)
3π ln

( |q2|
m2

e c2

) , |q2|  m2
e c2. (5.202)

In the domain m2
e c2 � q2 � m2

e c2 exp
{ 3π

2α(0)

}
, αe,R(q2) is a very slowly growing function, and the

approximation αe,R(q2) ≈ αe,R(0) ≈ 1
137 is very good.

The various diagrams that are not shown in the series (5.201) [☞ collection (5.184)] ei-
ther provide significantly smaller contributions than those shown (comparing diagrams of the
same order in g2

e ) or their contribution may be absorbed by renormalizing parameters such as
the mass of the electron, me. The contributions (5.201) are usually called the “leading logarithm”
contributions.

The renormalization group
Note that the result (5.197c) was obtained by including the quantum correction of only the lowest
order, and the result (5.202) includes the dominant corrections. Evidently, these corrections –
computed iteratively and sequentially – may be organized in a quantitative sequence, so that from
one iteration to the next one there is a “flow”:(

α(0)
e,R(|q2|) := αe,R(0)

)
�→ · · · �→ α(k)

e,R(|q2|) �→ α(k+1)
e,R (|q2|) �→ · · · �→ α(∞)

e,R (|q2|), (5.203)

where only the limiting result, α(∞)
e,R (|q2|), may be identified with the real physical quantity. The

precise specification of the ordering of this renormalization “flow” depends on the concrete ap-
plication – and this is one of those conceptual ideas that are applied in almost all branches of
physics! The formal transformations that lead from one step in this renormalization flow into the
next form a structure called the “renormalization group” – although it in fact does not satisfy the
group axioms: The transformation R(k+1)

(k) that takes the kth into the (k+1)th “step” has no binary
operation defined with most other such transformations; only the consecutive “products” of the
form R(k+1)

(k) ◦ R(k)
(k−1) are defined [☞ Comment 9.2 on p. 323].

In field theory, the application of this procedure and its structure was discovered by Ernst
Stückelberg and Andre Petermann back in 1953 [502, 146]. The contemporary practice in field
theory varies, but by now mostly relies on Kenneth Wilson’s approach (1982 Nobel Prize), further
developed by Joseph Polchinski [431]; see also Ref. [425] by Michael Peskin, who was Wilson’s
student, and who in turn was Gell-Mann’s student. In this approach, the renormalization flow
is organized by means of a varying upper limit in otherwise divergent integrals, i.e., by the en-
ergy/mass values up to which particles and excitations are included. The earlier approach, after
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5.4 Quantum electrodynamics of hadrons 211

Murray Gell-Mann and Frank James Low, varies the value of the renormalization 4-momentum μ
in the computations that lead to the results such as (5.198) and is still being used.

Essentially two types of behavior can result from this renormalization flow, which motivates:

Definition 5.1 A quantum system is renormalizable if merely the parameters used in the
classical Lagrangian of a system change owing to quantum corrections, but the functional
form of this Lagrangian remains the same. Otherwise, a system is non-renormalizable.

See also Definition 11.1 on p. 419 for a more precise statement. Suffice it here to say that all
possible Yang–Mills type gauge theory models interacting with any spin-0 and spin- 1

2 matter fields –
including the Standard Model – are renormalizable.

5.3.4 Exercises for Section 5.3

✎ 5.3.1 For Γ ∈ {1,γγγγμ,γγγγμν, (γγγγμγ̂γγγ), γ̂γγγ}, compute for which Γ is Γ := (γγγγ0Γ†γγγγ0) = Γ, and for
which Γ is Γ = −Γ.

✎ 5.3.2 Derive the equations of motion (5.120f).

✎ 5.3.3 Derive equation (5.140).

✎ 5.3.4 Derive equation (5.144), and then equation (5.142).

✎ 5.3.5 Find the diagram that, as (5.138c), depicts the result (5.144) and represents it by a
graphical depiction as in Digression 5.13 on p. 198.

✎ 5.3.6 From the 4-vector equation pγ = pe− + pe+ and the symmetry �pγ·�pe− = �pγ·�pe+ , as
well as |�pe− | = |�pe+ |, show that the decay of a real photon into a real electron–positron pair
is kinematically forbidden.

✎ 5.3.7 Prove relation (5.195c), i.e., that q2 = −4�p 2
i sin2( θ

2

)
.

✎ 5.3.8 Compute the collision energy for which the expression (5.202) diverges.

5.4 Quantum electrodynamics of hadrons
The interaction between photons and quarks is described by the same theory as the interaction be-
tween photons and leptons, discussed in Sections 5.2.1 and 5.3.1. However, individual quarks are
not available for experimenting. They are always within bound states, so-called hadrons: mesons,
which are (qq)-systems, and baryons, which are (qqq)-systems. The interaction between a lep-
ton (as a “probe”) and a hadron (as the “target”), as well as between two hadrons, reduces to
the interaction with individual (anti)quarks within the hadron, and so necessarily depends on the
distribution of these individual (anti)quarks within the hadron. This distribution is described by
so-called form-factors, which effectively21 describe the strong nuclear interactions that bind the
(anti)quarks into hadron bound states.

The second difficulty stems from the fact that the number of new hadrons is limited only by
the available energy: as the collision energy grows, more and more new hadrons may be produced

21 Here, “effective” means “successfully and with no a-priori detailed fundamental basis/derivation”; the adjective
“phenomenological” is used in the literature, in the same sense.
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in inelastic collisions, and the analysis very quickly becomes a combinatorially growing nightmare.
Catalogues of hadrons such as Ref. [293] provide data about hundreds and hundreds of hadrons.

In principle, in the interaction between leptons and hadrons as well as between two hadrons,
there are also contributions from weak nuclear interactions. However, that (third) source of com-
plications is in most cases negligible, as the weak nuclear interaction is much weaker [☞ discussion
on p. 67].

The two types of processes that are significant in hadronic experiments are production from
electron–positron annihilation,

(5.204)

and so-called deep inelastic lepton–hadron collisions,

(5.205)

In both cases, increasing collision energy (indicated by the dotted arrow) gives rise to the pro-
duction of a large number of outgoing hadrons. The strong nuclear interaction dominates this
“hadronization,” which in these diagrams is represented by the dark oval where the quark–
antiquark pair (i.e., the three quarks) bind into a palette of bound states (hadrons). However,
the electromagnetic part of the interaction may be separated as the interaction between the lepton
and the individual (anti)quarks. Thus, computations of the amplitudes from the previous sections
may be adapted also to these collisions, but the kinematic part of the analysis is significantly more
complicated. Herein, we consider only the part of this analysis that is determined by the symmetries
and general requirements.

5.4.1 Hadron production in electron–positron annihilation
Even with enough energy for the final collision results to include many hadrons, the electromag-
netic part of the process (5.204) primarily reduces to transforming a ��-pair, by way of a virtual
photon, into a qq-pair. That quark and antiquark then decay into lighter quarks, emit gluons
and so produce a palette of various hadrons. This second stage of the process contains all the
complications from strong interactions.

To describe the first stage, let m be the lepton and antilepton mass, M the mass of the pro-
duced quark and antiquark, and Q the electric charge of the quark (so −Q is the electric charge
of the antiquark) in units of elementary electric charge, e, so that Q(u) = + 2

3 , Q(d) = − 1
3 , etc.

Adapting the second term in the result (5.147b) we have

M��→qq =
Q g2

e
(p1 + p2)2 [v2γγγγ

μu1][U3γγγγμV4], (5.206)
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where u1, v2, U3 and V4 are Dirac spinors for the incoming lepton and antilepton, and outgoing
quark and antiquark, respectively. Averaging as in (5.132)–(5.137) we obtain〈

|M��→qq|2
〉

=
1
4

( Q g2
e

(p1 + p2)2

)2
Tr

[
γγγγμ(/p1 + mc)γγγγν(/p2 − mc)

]
× Tr

[
γγγγμ(/p4 − Mc)γγγγν(/p3 + Mc)

]
= 8

( Q g2
e

(p1 + p2)2

)2[
(p1·p3)(p2·p4) + (p1·p4)(p2·p3) + 2(mc)2(Mc)2

+ (mc)2(p3·p4) + (Mc)2(p1·p2)
]

= Q2g4
e

{
1 +

(mc2

E

)2
+

( Mc2

E

)2
+

[
1−

(mc2

E

)2][
1−

( Mc2

E

)2]
cos2 θ

}
, (5.207)

where E is the energy of the incoming lepton in the CM system and θ the angle between the
incoming lepton and the outgoing quark. Treating the outgoing quark–antiquark as if they were
free particles, the differential effective cross-section is given by the relation (3.127), whereupon
angular integration yields

σ =
π

3

(Qh̄cα
E

)2
√

1−(Mc2/E)2

1−(mc2/E)2

[
1+

1
2

(mc2

E

)2][
1+

1
2

( Mc2

E

)2]
. (5.208)

For energies below Mc2, the effective cross-section becomes imaginary, i.e., the process is kine-
matically forbidden: E < Mc2 is not enough energy to produce a quark–antiquark pair of mass M
each. In turn, if E > Mc2  mc2, expanding the square-roots and multiplying the factors yields

σ =
π

3

(Qh̄cα
E

)2
F(m, M, E), (5.209a)

F(m, M, E) = &e

√
1−(Mc2/E)2

1−(mc2/E)2

[
1+

1
2

(mc2

E

)2][
1+

1
2

( Mc2

E

)2]
≈ &e

[
1+

(mc2

E

)2
+

5
8

(mc2

E

)4
+ · · ·

][
1−3

8

( Mc2

E

)4
+ · · ·

]
. (5.209b)

In typical experiments mc2 ≪ E, so that the first factor in F(m, M, E) is negligibly different from 1.
The second factor, however, gives a significant contribution when the energy suffices to produce a
quark of mass M but is not much larger than Mc2. The behavior of the step-like function F(m, M, E)
near a threshold E ∼ Mc2, where the approximating condition E > Mc2 of the expansion (5.209b)
is not satisfied, is shown in Figure 5.2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

E/Mc2m/M

Figure 5.2 A sketch of the function &e
[
F(m, M, E)

]
near the value E ∼ Mc2.
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As the collision energy is increased, heavier and heavier quarks may be produced in the
process. These quarks are in fact virtual particles, in the sense that they cannot be observed di-
rectly in the detectors, since they decay, emit gluons and finally bind into hadrons – dominated by
strong interactions, and so very fast, ∼10−23 s. To avoid the need for estimating the details of this
“hadronization,” consider the ratio

R(E) :=
σ(e− + e+ → hadrons)
σ(e− + e+ → μ− + μ+)

≈
[
3 ∑

i
Q 2

i

]
Mi<E/c2

. (5.210)

Here the universal factors such as π
3 ( h̄ cα

E )2 cancel, and the contributions to the function
F(m, Mi, E) from individually created quarks give only small corrections to the result given. As a
function of the collision energy, R(E) is step-like,22 increasing suddenly when the energy E reaches
a threshold to produce a new quark, and is approximately constant between these thresholds. For
example,

R(E) ≈ 3[( 2
3 )2 + (− 1

3 )2] = 5
3 , E � Mu,dc2, (5.211a)

R(E) ≈ 3[( 2
3 )2 + (− 1

3 )2 + (− 1
3 )2] = 2, E � Msc2, (5.211b)

R(E) ≈ 3[( 2
3 )2 + (− 1

3 )2 + (− 1
3 )2 + ( 2

3 )2] = 10
3 , E � Mcc2, (5.211c)

and so forth. At energies between Mcc2 ≈ 1,270 MeV and about 2,000 MeV, a significant discrepancy
from this simple form of R(E) showed. However, it was soon discovered that this was due to res-
onance effects related to the production of the third (and mostly unexpected) electrically charged
lepton (mτ = 1,784 MeV/c2), which decays mostly into hadrons. Considering the simplicity of the
approximation and when the τ-lepton contributions are correctly accounted for, the agreement of
the simple relation (5.210) with experiments is very good.

Besides, the overall factor of 3 in the relation (5.210) stems from the fact that every quark
has three colors, i.e., that for every mass and electric charge there actually exist three quarks – one
of each color.

Conclusion 5.6 The very good agreement of the simple approximation (5.210) with exper-
iments is then the direct experimental proof of the existence of color – or at least the fact
that every quark exists in (otherwise unexplained) triplicate.

Digression 5.14 At least one curious Student asked why do quarks have to have
fractional electric charges, as they have been standardly assigned since 1974–5.

The original model by Han and Nambu indeed proposed quarks that were to
have integral charges, dependent on color. For example, we may choose, following
result (5.206),

Q(ur) = +1, Q(uy) = +1, Q(ub) = 0,

Q(dr) = 0, Q(dy) = 0, Q(db) = −1, (5.212a)

and similarly for the s-, c-, b- and t-quarks. Since the average electric charge for each
quark “flavor” equals the standard (fractional) charge, no process where the amplitude
is linearly proportional to the charges – such as hadron production from lepton col-
lisions (5.206) – can possibly distinguish between the integrally charged Han–Nambu
model and the fractionally charged Gell-Mann–Zweig model.

22 The shape of these “steps” is described by the function F(m, M, E), but it also exhibits resonant effects in the form of
very narrow peaks of large intensity  1, immediately above the E = Mc2 threshold, which is not shown in the sketch
in Figure 5.2 on p. 213 and the analysis of which is omitted herein.
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However, a process that depends on the square of the electric charge – such
as (5.185), which contributes to the renormalization and so ultimately to the dependence
of the interaction intensity on the interaction energy (5.197c) – can distinguish the in-
tegrally charged quarks from the fractionally charged quarks. Indeed, the “corrections”
under the square-root symbol are in the result (5.197c) given for a single electrically
charged particle – the electron – since we assumed that the virtual particle in the closed
loop in the diagram (5.185) is in fact the electron. However, with energies μc2, one must
add the contributions from all the quarks and charged leptons with masses not larger
than μ, and which are proportional to the cumulative factor[

∑
i

Q2
i ln

( μ
mi

)]
mi�μ

, (5.212b)

which grows differently for integrally charged quarks than for fractionally charged
ones, and which give (one possible) experimentally measurable difference. Similarly, the
results (5.211) would differ quantitatively for integrally charged quarks:

R̃(E)
∣∣
E�Mu,d c2 ≈ 3, R̃(E)

∣∣
E�Ms c2 ≈ 4, R̃(E)

∣∣
E�Mc c2 ≈ 6, etc. (5.212c)

In the early 1970s, such comparisons with experiments confirmed the fractional electric
charges of the quarks in the model of Gell-Mann and Zweig; see also Footnote 25 on
p. 220.

5.4.2 The electrodynamics contribution in lepton–hadron scattering
A lepton–hadron collision occurs, to a first approximation, between the lepton and one of the
(anti)quarks in the hadron, and by way of exchanging a single photon. Of course, when the hadron
is a baryon, one must sum over all three quarks in the baryon, and if the hadron is a meson, one
must sum the contributions from the interaction with the quark and with the antiquark. In this
process, the strong nuclear force field, which keeps the (anti)quark state bound, receives part of
the 4-momentum transfer, but this usually produces minor corrections to this initial approximation.

Elastic lepton–hadron scattering
If the proton were a point-like spin- 1

2 Dirac spinor with no additional structure, relations (5.131)
and (5.137) would be valid for elastic collisions

�

�
p3

p1 p2

p4

q

p+

p+

γ
(5.213)

with only the small change, mμ → M := mp in the function Xμν(2, 4; μ−) → Kμν(2, 4; p+):

〈
|M�p→�p|2

〉
=

g4
e

(p1 − p3)4 Xμν(1, 3; �) Kμν(2, 4; p+), (5.214)

Xμν(1, 3; �) = Tr
[
γγγγμ (/p1 + m�c1)γγγγν (/p3 + m�c1)

]
= 2

[
pμ1 pν3 + pν1 pμ3 + ημν[m2

� c2 − (p1·p3)]
]
. (5.215)
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The tensors Xμν and Xμν were computed for point-like (elementary) spin- 1
2 Dirac spinors,

but protons are not point-like (elementary) and their structure causes deviations from the re-
sults (5.136)–(5.140), which produce the function Kμν(2, 4; p+). These deviations reflect the
effects of strong interaction that bind the quarks into the proton. A description of that structure
in quantum chromodynamics [☞ Section 6.1] is too complex for a serious analysis here. However,
we do know that Kμν(2, 4; p+) is a rank-2 tensor, and may depend only on the 4-vectors p2, p4
and q := (p1 − p3) = (p4−p2) and, of course, the metric ημν. Following tradition, we’ll use the
following 4-vectors: incoming probe 4-momentum, p ≡ p2, and the transfer 4-momentum, q, and
write p4 = (p2+q). It is therefore possible to parametrize this corrected tensor as

Kμν(2, 4; p+) = −K1 ημν +
K2

M2c2 pμpν +
K4

M2c2 qμqν +
K5

M2c2 (pμqν+qμpν), (5.216)

where Ki are functions of the only scalar variable,23 q2 = (p4−p2)2. Since Xμν(1, 3; �) is a symmet-
ric tensor (5.139a), the antisymmetric part in Kμν(2, 4; p+) – if it even exists – does not contribute
to the expression (5.214). This restricts the expansion (5.216) to be symmetric with respect to the
μ↔ ν exchange.

Next, it may be shown [243, p. 277] and [257, Sections 8.2–8.3] that qμ Kμν = 0, so
that [☞ Exercise 5.4.1]

K4 =
M2c2

q2 K1 + 1
4 K2 and K5 = 1

2 K2. (5.217)

Thus, Kμν may be parametrized by only two form-factors:

Kμν(2, 4; p+) = −K1(q2)
(
ημν − qμqν

q2

)
+

K2(q2)
M2c2

(
pμ + 1

2 qμ
)(

pν + 1
2 qν

)
. (5.218)

Combining the results (5.214), (5.215) and (5.218), we arrive at〈
|M�p→�p|2

〉
=

(2g 2
e

q2

)2[
K1[(p1·p3) − 2m2

� c2] + K2

( (p1·p)(p3·p)
M2c2 +

q2

4

)]
(5.219)

≈ g 4
e c2

4EE′ sin4(θ/2)

(
2K1 sin2

(
θ

2

)
+ K2 cos2

(
θ

2

))
(5.220)

where we switched to the lab frame, where the proton is initially at rest, p = (Mc, 0, 0, 0), the
lepton has initial energy E and is deflected, with energy E′, at an angle θ from its initial direction
of motion. We have also assumed that E, E′  m�c2, and have approximated m� ≈ 0. Then p1 =
E(1, p̂i)/c, p3 = E(1, p̂ f )/c, and p̂i· p̂ f = cos θ.

The outgoing lepton energy E′ is kinematically determined:

E′ =
E

1 + (2E/Mc2) sin2( θ2 )
. (5.221)

Besides, in the approximation m� ≈ 0 we have the result (3.160), and so

dσ
dΩ

=
( αh̄

4ME sin2( θ2 )

)2 E′

E

(
2K1 sin2

(
θ

2

)
+ K2 cos2

(
θ

2

))
=

( αh̄

4ME sin2
(
θ
2

))2 2K1 sin2( θ2 ) + K2 cos2( θ2 )
1 + (2E/Mc2) sin2( θ2 )

, (5.222)

23 Indeed, p2
2 = p2

4 = M2c2 is a constant, and q·p2 = − 1
2 q2. Also, K3 is the standard notation for the term that appears in

the analysis of neutrino–proton collisions, but not for electrically charged leptons.
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which is the so-called (Marshall Nicholas) Rosenbluth formula from 1950. By measuring the an-
gular dependence of the electrons scattered elastically on initially stationary protons (or heavy
positive ions), one determines experimentally the form-factors K1(q2) and K2(q2), also known as
“structure functions.”

Deep inelastic (light) lepton–hadron scattering
In the case of the inelastic collisions

q q

p2

pn

p1

p3p4
p3

p1
p2

(5.223)

especially where more than one hadron emerges from the collision, the analysis must be adapted
more thoroughly. Fermi’s golden rule [☞ p. 113] yields

dσ =
h̄2

〈
|M|2�p→�X

〉
4
√

(p1·p2) − (m1m2c2)2

n

∏
i=3

( cd3�pi

(2π)32Ei

)
(2π)4δ4

(
p1 + p2 −

n

∑
j=3

pj

)
, (5.224a)

〈
|M|2�p→�X

〉
=

g 4
e

q4 Xμν(1, 3; � (lepton))Kμν(2, 4; X (hadrons)). (5.224b)

If collisions of this type are taken inclusively and we only measure the deflection angle of the
scattered lepton and its energy (and so effectively know p3), the result (5.224) must be summed
over all possible hadron results and their momenta, so we have

dσ =
4πMh̄2g 4

e Xμν(1, 3; �)
4q4

√
(p1·p2)2 − (m1m2c2)2

( cd3�p3

(2π)32E3

)
Wμν, (5.225)

Wμν :=
1

4πM ∑
X

∫
· · ·

∫ n

∏
i=4

( cd3�pi

(2π)32Ei

)
(2π)4δ4

(
p1 + p2 −

n

∑
j=3

pj

)
Kμν(2, 4; X). (5.226)

For an initially stationary proton, p2 ≡ p = (−Mc,�0) and the incoming lepton energy E, we have
p1 = (−E/c,�pi). Therefore,

(p1·p2) = ME, ⇒
√

(p1·p2)2 − (m1m2c2)2 =
√

M2(E2 − m 2
� c4) ≈ ME (5.227)

since, in typical experiments of this type and with � = e±, we have m� � E/c2. We therefore
approximate m� ≈ 0, so that p1 = E(−1, p̂i)/c and p3 = E′(−1, p̂ f )/c. Then,

d3�p f = |�p f |2d|�p f |dΩ ≈ c−3(E′)2 dE′dΩ, (5.228)

and

dσ
dE′ dΩ

=
( αh̄

cq2

)2 E′

E
Xμν(1, 3; �) Wμν. (5.229)

Unlike in elastic collisions, ptot = ∑n
i=4 pi with n > 4 in inelastic collisions where multiple hadrons

emerge, so p 2
tot \= M2c2 [☞ Tables C.7 on p. 529 and C.8 on p. 529]. There then exists no rela-

tion like (5.221) between E′ and E, θ for inelastic collisions; E′ is independent of E and θ. The
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result (5.229) then provides the differential effective cross-section in the span of outgoing lepton
energies [E′, E′+dE′], as is reasonable for a free and continuous variable E′.

The second consequence of p 2
tot \= M2c2 is that also q·p \=−q2/2, and one defines the variable

x := − q2

2q·p , x ∈ [0, 1]. (5.230)

The general dependence of the form-factor Wμν on the transfer 4-momentum q is parametri-
zed the same way as for Kμν(2, 4; p+), but we now have

Wμν = W1(q2, x)
(
− ημν +

qμqν

q2

)
+

W2(q2, x)
M2c2

(
pμ + 1

2x qμ
)(

pν + 1
2x qν

)
, (5.231)

dσ
dE′dΩ

=
( αh̄

2ME sin2( θ2 )

)2 E′

E

(
2W1 sin2

(
θ

2

)
+ W2 cos2

(
θ

2

))
. (5.232)

The Rosenbluth formula (5.222) is the special case obtained by substituting

Wi(q2, x) = −Ki(q2)
2Mq2 δ(x − 1), i = 1, 2. (5.233)

Note that the δ(x−1) factor not only formally fixes x = −q2/2q·p != 1, but also implies the
relation (5.221).

Finally, the Rosenbluth formula (5.222) may further be specialized to an ideally point-like
(elementary) proton by substituting

K1 → −q2 and K2 → 4M2c2. (5.234)

This idealization is not a bad approximation when the electron energy is sufficiently small and the
electron does not come too close to the proton (∼10−15 m), so that the proton internal structure
has negligible influence on the scattering.

Experimental verification of the parton model
For the elastic collision A + B → A′ + B′, we have in the lab frame

p1 = (−E/c,�pi), p2 = (−Mc,�0), p3 = (−E′/c,�p f ), p4 = (−E′′/c, �Pf ). (5.235)

Then, with mA = mA′ = m and mB = mB′ = M,

q = (p1 − p3) =
(
(E′−E)/c, (�pi−�p f )

)
= (p4 − p2) =

(
Mc−E′′/c, �Pf

)
, (5.236)

q·p2 = M(E−E′), (5.237)

q2 ≈ −4
EE′

c2 sin2
(
θ

2

)
when mc2 � E, E′. (5.238)

Note that q2/c2 is proportional to the Mandelstam variable t [☞ definitions (3.62)].
In the late 1960s, James Bjorken computed within the quark model that the expressions

F1(x) := M W1(q2, x) and F2(x) :=
−q2

2Mc2x
W2(q2, x) (5.239)

become asymptotically independent of q2 at very high energies (5.238). Here the values of both
|q2| and |q·p| are large (as compared to mc2), but their ratio (5.230) remains small; x ∈ [0, 1].
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This asymptotic independence from the magnitude of the 4-momentum transfer,
√

q2, is called
“Bjorken scaling,” and was soon confirmed in deep inelastic collisions, mostly of electrons and
protons. May it suffice here to mention that this phenomenon confirms that in the deep inelastic
collisions the 4-momentum transfer is mostly to one of the three quarks, that these quarks are
much smaller than the proton and that they may be treated as point-like particles.

In 1969, Curtis Callan and David Gross proved an additional relationship between Bjorken’s
functions:

2x F1(x) = F2(x). (5.240)

This relation was also quickly confirmed experimentally. Suffice it to say, this relation between
F1(x) and F2(x) depends on the quark spins, and the Callan–Gross relation (5.240) indicates that
quarks have spin 1

2 .

Digression 5.15 Both relations (5.239) and (5.240) may be derived [☞ Ref. [243],
str. 271–277] by treating the quarks as point-like particles, and writing fi(x) for the prob-
ability that the ith quark receives the xth fraction of the 4-momentum transfer. Using the
assumptions (5.233) and (5.234), write

Wi
1 :=

Q2
i

2mi
δ(xi−1), Wi

2 := −2mic2Q2
i

q2 δ(xi−1), xi := − q2

2q·pi
, (5.241a)

where mi is the mass of the ith quark, and pi its 4-momentum. Since the quarks mostly
move together as the proton, suppose that

pi =: zi p (5.241b)

is the 4-momentum of the ith quark, and equals the zith fraction of the 4-momentum of
the whole proton. It follows that

p 2
i = m 2

i c2 and p2 = M2c2 ⇒ mi = zi M. (5.241c)

So, if zi varies depending on the dynamics within the proton as a bound state of three
quarks, then so do the effective quark masses.24 Relation (5.241b) implies that xi = x/zi,
so that

Wi
1 =

Q2
i

2M
δ(x−zi) and Wi

2 = −2Mc2x2Q2
i

q2 δ
(

x−zi

)
. (5.241d)

From this, we have

W1 = ∑
i

∫ 1

0
dzi Wi

1 =
1

2M ∑
i

Q 2
i fi(x) ⇒ F1(x) =

1
2 ∑

i
Q 2

i fi(x), (5.241e)

W2 = ∑
i

∫ 1

0
dzi Wi

2 = −2Mc2

q2 x2 ∑
i

Q 2
i fi(x) ⇒ F2(x) = x ∑

i
Q 2

i fi(x), (5.241f)

which agrees with Bjorken’s assertion that F1(x) and F2(x) are independent of q2. Be-
sides, the results (5.241e)–(5.241f) clearly also imply the Callan–Gross relation (5.240).

24 This definition of the masses intuitively takes into account that quarks are bound within the proton, whereby their
inertia, i.e., their response to interaction, differs from what it would be were they free particles.
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Besides the facts that:

1. Bjorken (asymptotic) independence of the functions (5.239) from the magnitude of the 4-
momentum transfer,

√
q2, provides experimental confirmation that the proton consists of

three electrically charged point-like (elementary) “ingredients,”
2. the Callan–Gross relation (5.240) – also experimentally confirmed – indicates that these

“ingredients” have spin 1
2 ,

the analysis in Digression 5.15 also leads to the experimental confirmation of the existence of so-
called gluons, the particles that mediate the strong nuclear interaction and bind the quarks into
bound states, the hadrons.

Indeed, the relation (5.241c) is too naive: quarks are bound within the hadron and their
parameters are not directly measurable, whereby the quarks within the hadrons (and free ones do
not exist!) are virtual particles. As such, they need not satisfy the equations of motion, i.e., they are
not on the mass shell. However, the average fraction of 4-momentum carried by the u-quarks would
have to be about twice larger than the average fraction of 4-momentum carried by the d-quarks
simply because there are twice as many u-quarks as d-quarks in the proton, and their masses are
approximately the same. Therefore,∫ 1

0
dx x fu(x) = 2

∫ 1

0
dx x fd(x). (5.242)

Using the result (5.241f) as a first approximation, we obtain

F2(x) ≈ x
[
( 2

3 )2 fu(x) + (− 1
3 )2 fd(x)

] (5.242)=⇒
∫ 1

0
dx F2(x) ≈

∫ 1

0
dx x fd(x). (5.243)

However, the measured average values of the form-factor F2(x) give∫ 1

0
dx x fd(x) ≈ 0.18 and

∫ 1

0
dx x fu(x) ≈ 0.36. (5.244)

The sum of these average values – the fraction of the 4-momentum carried, on average, by either
one of the two u-quarks or the d-quark – adds up to 0.54. In other words, this analysis indicates
that the proton must also contain some electrically neutral “ingredients,” which carry 46% of the
transfer 4-momentum.

Quantum chromodynamics gives a much better estimate for the form-factors W1 and W2,
and then also of Bjorken’s functions F1(x) and F2(x), and thereby also the probabilities fu(x) and
fd(x). However, the essence of the conclusion remains unchanged: A non-negligible fraction of the
transfer 4-momentum is not carried by the quarks, but by electrically neutral “ingredients” of the
proton. These “ingredients” of the proton must interact with the quarks by means of the strong
nuclear interaction simply because that is the strongest type of interaction and, being electrically
neutral, they cannot interact electromagnetically. The transfer 4-momentum is thus equally fast
and uniformly shared among the three quarks, as well as these electrically neutral “ingredients.”

On the other hand, the strong nuclear interaction may be described analogously to electro-
magnetic interactions – by means of a mediating particle. Analogously to the exchange of photons
in electromagnetic interactions, strong nuclear interactions are mediated by gluons. As the strong
nuclear interaction is independent of the electromagnetic interaction and the electric charge of the
particles that interact with strong nuclear interactions, it follows that gluons must be electromag-
netically neutral. This then permits the electrically neutral “ingredients” of the proton that carry
about 46% of the transfer 4-momentum to be identified with gluons25 [☞ Section 6.1].
25 This additionally [☞ Digression 5.14 on p. 214] rules out the Han–Nambu model with integrally charged quarks: As

those charge assignments are color-dependent, the gluons of the Han–Nambu model must be electrically charged and
would also have to interact electromagnetically.
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Detailed estimates based on quantum chromodynamics indeed provide a very good agree-
ment with experimental data, and this then is the third significant result of deep inelastic
scattering: Besides the experimental confirmation that the proton consists of three point-like spin-
1
2 electrically charged quarks with charges Qu = 2

3 and Qd = − 1
3 , deep inelastic scattering also

confirms experimentally the existence of electromagnetically neutral gluons, which interact with
quarks by means of the strong nuclear interaction.

5.4.3 Exercises for Section 5.4

✎ 5.4.1 Derive the relation (5.217), using that q := (p1−p3) = (p4−p2) and p 2
2 = p 2

4 =
−M2c2, as well as that p := p2 and q are two linearly independent 4-vectors. (Hint: it should
prove useful to first prove that q2 = −2 q·p.)

✎ 5.4.2 Compare the result (5.229) with the Rutherford (5.160), Mott (5.159) and Rosen-
bluth (5.222) formulae, as well as the limiting (5.234) case of the latter, and its reduction
under the additional condition |q2| � M2c2. Exhibit the hierarchy of approximations (and
their physical meaning) that relate these results.

✎ 5.4.3 Derive equation (5.221).

✎ 5.4.4 Derive equation (5.241d).
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