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OPE for deep inelastic scattering

15.1 Introduction

Deep-inelastic scattering (DIS) are classical QCD processes playing an important rôle in
the understanding of perturbative QCD and of the nucleon structure function, where several
structure functions Fi (x, Q2)[x (fraction of proton momentum) and Q2 (squared of transfer
momentum)] can be predicted and measured from different targets and beams and different
polarizations. In the past DIS has been used for establishing the parton nature of quarks and
gluons and QCD as a theory of strong interactions.

At present (as we shall see later on), DIS provide quantitative tests of QCD (measurements
of quark and gluon densities in the nucleon, of αs(Q2), . . . ). The theory of scaling violations
for totally inclusive DIS processes are based on the operator product expansion (OPE) and
renormalization group equation.

The OPE has been introduced by Wilson [222] and was proven by Zimmermann [223]
in perturbation theory through the application of the BPHZ method. Let us consider the
time-ordered product of two scalar fields:

T φ(x)φ(0) (15.1)

which we can write, using the Wick’s theorem studied in Section (4.1), as:

T φ(x)φ(0) = 〈0|T (φ(x)φ(0)) |0〉+ : φ(x)φ(0) : (15.2)

The first term in the RHS is the scalar propagator:

〈0|T (φ(x)φ(0)) |0〉 = −i�(x) =
∫

d4 p

(2π )4
e−i px 1

p2 − m2 + iε
� i

(2π )2

1

x2 − i0
+ · · · ,

(15.3)

where · · · means less-singular terms. It is a c-number (unit operator) but singular for x → 0,
while the operator : φ(x)φ(0) : is regular. In general, any local operators J (x) and J ′(y)
can be expanded in a series of well-defined and regular operators Oi (x) multiplied with the
c-number Ci (x), the Wilson coefficients containing the singularity of the product J (x)J ′(y)
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152 IV Deep inelastic scatterings at hadron colliders

for x = y. This leads to the OPE or Wilson expansion:

J (x)J ′(y) =
∞∑

n=0

Cn(x − y)On

(
x + y

2

)
n = 0, 1, 2, . . . . (15.4)

15.2 The OPE for free fields at short distance

As an application, let us consider the neutral vector current:

Jµ(x) =: ψ̄(x)γµψ(x) : , (15.5)

which is a normal ordered product of two quark fields. Applying the Wick theorem studied
in Part 1, one can write:

T (Jµ(x)Jν(0)) = −T r{〈0|T (ψ(0)ψ̄(x))|0〉γµ〈0|T (ψ(x)ψ̄(0))|0〉γν}
+ : ψ̄(x)γµ〈0|T (ψ(x)ψ̄(0))|0〉γνψ(0) :

+ : ψ̄(0)γν〈0|T (ψ(0)ψ̄(x))|0〉γµψ(x) :

+ : ψ̄(x)γµψ(x)ψ̄(0)γνψ(0) : , (15.6)

where the free propagator:

〈0|T (ψ(x)ψ̄(0))|0〉 = −i S(x) =
∫

d4 p

(2π )4
e−i px i

p̂ − m + iε
, (15.7)

is singular at short distance (x → 0). Therefore, by inspecting Eq. (15.6), one can see that
the first term is more singular than the second . . . , i.e. Eq. (15.6) is a typical example of an
OPE. Relating the free fermion propagator to the scalar one:

S(x) = (i ∂̂ + m)�(x) , (15.8)

one can extract the leading singularity for x → 0 from Eq. (15.3), which is quark mass
independent. As the singularity behaves like x2 (but not like x), it is on the light cone
and called light-cone singularity. From the expression of the Fourier transform of the
propagator:

∫
dx eiqx 1

(x − iε)n
= 2π

ei nπ
2


(n)
θ (q)qn−1 , (15.9)

one can see that the dominant contribution of the T-product of the two currents comes from
the most singular part of the c-number coefficients. Therefore, near the light cone, one
obtains [224]:

T (Jµ(x)Jν(0)) = (x2gµν − 2xµxν)

π4(x2 − iε)4
− xλ

(2π2(x2 − iε)2

× [
iσµλνρOρ

V (x) + εµλνρOρ

A(x)
] + Oµν(x) , (15.10)
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15 OPE for deep inelastic scattering 153

where O(x) are regular operators:

Oµ,V (x) = : ψ̄(x)γµψ(0) − ψ̄(0)γµψ(x) : ,

Oµ,A(x) = : ψ̄(x)γµγ5ψ(0) + ψ̄(0)γµγ5ψ(x) : ,

Oµν(x) = : ψ̄(x)γµψ(x)ψ̄(0)γνψ(0) : , (15.11)

and:

σµλνρ = gµλgνρ + gµρgνλ − gµνgνρ . (15.12)

We have used the relation:

γµγλγν = (σµλνρ + iεµλνργ5)γ ρ , (15.13)

where εµλνρ is the totally anti-symmetric rank 4 tensor with the properties defined in
Appendix D. Analogous expression can be derived for the current commutator:

T [Jµ(x), Jν(0)] , (15.14)

by using:

1

x2 − iε
= P

x2
+ iπδ(x2) , (15.15)

where P denotes principal value. Differentiating this expression, it is easy to obtain:

1

(x2 − iε)n
− 1

(x2 + iε)n
= 2iπ

(−1)n−1

(n − 1)!
δ(n)(x2) . (15.16)

Therefore:

T [Jµ(x)Jν(0)] − T [Jµ(x)Jν(0)]† ≡ ε(x0)[Jµ(x), Jν(0)]

= − i

3π3
δ(3)(x2)(x2gµν − 2xµxν)

− 1

π
xλδ(1)

[
iσµλνρOρ

V (x) + εµλνρOρ

A(x)
]

+Oµν(x) − Oνµ(x) , (15.17)

where:

ε(x0) = x0

|x0| , (15.18)

is the sign function.

15.3 Application of the OPE for free fields: parton model and Bjorken scaling

For simplicity, we consider the unpolarized process:

e + p → e + X (15.19)
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154 IV Deep inelastic scatterings at hadron colliders
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Fig. 15.1. Kinematics of the e + p → e + X process.

which we have anticipated in Section 2.3. Here, we shall derive explicitly the structure
functions W1,2(Q2, ν) using OPE for free fields. The kinematics of the process is given in
Fig. 15.1.

There are three independent kinematic variables:

s = (p + k)2 , q2 = (k − k ′)2, W 2 = (p + q)2 , (15.20)

where k and k ′ are momenta of the initial and final electrons, p and q are respectively the
proton and photon momenta. In the laboratory frame (proton rest frame) and neglecting the
electron mass, one can rewrite:

s = Mp(2E + Mp) ,

q2 ≡ −(Q2 > 0) = −4E E ′ sin2 θ

2
,

W 2 = M2
p + 2Mp(E − E ′) + q2 , (15.21)

where E = k0, E ′ = k ′
0 are the energies of the incident and scattered electrons in the proton

rest frame, and θ is the scattering angle of the electron. The physical region is:

s ≥ M2
p , q2 ≤ 0 , W 2 ≥ (Mp + mπ )2 , (15.22)

mπ being the pion mass. It is usual to introduce:

ν ≡ p · q = Mp(E − E ′) , (15.23)

where ν/Mp is the energy transfer in the proton rest frame, in terms of which the physical
region condition on W 2 reads:

2ν + q2 ≥ mπ (2Mp + mπ ) . (15.24)

The inclusive differential cross-section of the unpolarized process can be written as:

E ′ dσ

d3k ′ = 1

32(2π )3

1

k · p

∑
σ,σ ′,λ

∑
X

(2π )4δ4(pX + k ′ − k − p)|〈eX |T |eN 〉|2 , (15.25)
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15 OPE for deep inelastic scattering 155

where σ ′, σ, λ are the spin components of the scattered, initial electrons and the target
proton. The amplitude is:

〈eX |T |eN 〉 = ūσ ′ (k ′)(eγµ)uσ (k)
1

q2
〈X |(−e)Jµ(0)|p, λ〉 . (15.26)

This leads to the expression of the cross-section as a convolution of the leptonic and
hadronic tensors:

E ′ dσ

d3k ′ = α2

4(k · p)q4
LµνW µν , (15.27)

where α = e2/(4π ) is the QED fine structure constant. The leptonic tensor is:

Lµν = 1

4
Tr{(k̂ + me)γ µ(k̂ ′ + me)γ ν}

= 4(k ′µkν + k ′νkµ) + (
2q2 + 4m2

e

)
gµν . (15.28)

The hadronic tensor can be written as:

Wµν = 1

2π

∫
d4x eiqx 1

2

∑
λ

〈p; λ|Jµ(x)Jν(0)|λ; p〉 . (15.29)

Using the property: ∫
d4x eiqx

∑
λ

〈p; λ|Jµ(0)Jν(x)|λ; p〉 = 0 , (15.30)

for physical process, which can be shown by using:∫
d4x eiqx

∑
λ

〈p; λ|Jµ(0)Jν(x)|λ; p〉

=
∑

X

(2π )4δ4(q − p + pX )
∑

λ

〈p; λ|Jµ(0)|X〉〈X |Jν(x)|λ; p〉 . (15.31)

The assumption that q − p + pX = 0 in the physical region (Eq. (15.22)) would lead to
the contradiction q0 ≥ 0. Therefore, one obtains:

Wµν = 1

2π

∫
d4x eiqx 1

2

∑
λ

〈p; λ|[Jµ(x), Jν(0)]|λ; p〉 . (15.32)

Causality requires that the commutator vanishes for x2 < 0, such that the integral is only
non-zero for x2 > 0. Using the optical theorem, one can relate the hadronic tensor to the
absorptive part of the forward Compton scattering amplitude:

Tµν =
∫

d4x eiqx 1

2

∑
λ

〈p; λ|T Jµ(x)Jν(0)|λ; p〉 , (15.33)

by the relation:

Wµν = 1

π
ImTµν , (15.34)
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156 IV Deep inelastic scatterings at hadron colliders

which corresponds to the discontinuity of Tµν across the cut along the line q0 ≥ 0 in the
complex q0 plane:

ImTµν = 1

2i
[Tµν(q0 + iε) − Tµν(q0 − iε)] . (15.35)

Using the general Lorentz decomposition, one can express Wµν in terms of the invariants
Wi (so-called structure functions) introduced in Section 2.3:

Wµν = −
(

gµν − qµqν

q2

)
W1(Q2, ν) + 1

M2
p

(
pµ − p · q

q2
qµ

) (
pν − p · q

q2
qν

)
W2(Q2, ν)

+ iεµνρσ

pρqσ

2M2
p

W3(Q2, ν) . (15.36)

For unpolarized process, only W1,2 are relevant. Then, the differential cross-section has
the form:

dσ

d Q2dν
= πα2

4Mp E2 sin4 θ E E ′

{
2 sin2 θ

2
W1(Q2, ν) + cos2 θ

2
W2(Q2, ν)

}
. (15.37)

Coming back to the OPE of Wµν given in Eq. (15.17) between two proton states, one
can notice that the last term is less singular than the two former terms, such that we can
neglect it to a first approximation. The first term can also be omitted as it corresponds to a
disconnected diagram. Also noticing that the operators O are regular and finite for x → 0,
one can Taylor-expand the quark fields:

ψ(x) = ψ(0) + xµ[∂µψ(x)]x=0 + 1

2!
[∂µ1∂µ2ψ(x)]x=0 + · · · (15.38)

and write:

Oρ

V/A(x) =
∞∑
0

1

n!
xµ1 · · · xµnOρ

V/A,µ1···µn
(0) , (15.39)

where:

Oρ

V,µ1···µn
(x) = : [∂µ1 · · · ∂µn ψ̄(x)]γ ρψ(x) − ψ̄(x)γ ρ[∂µ1 · · · ∂µn ψ(x)] :

Oρ

A,µ1···µn
(x) = : [∂µ1 · · · ∂µn ψ̄(x)]γ ργ5ψ(x) + ψ̄(x)γ ργ5[∂µ1 · · · ∂µn ψ(x)] : (15.40)

For the unpolarized process which we discuss here, the operator Oρ

A will not also con-
tribute. One can express the matrix element:

〈p|Oρ

V,µ1···µn
(0)|p〉 = Ôn pρ pµ1 · · · pµn + terms containing gµν . (15.41)

where Ô is a Lorentz invariant constant reduced matrix element which depends on p2 = M2
p

and on quark masses. We have used the fact that the matrix element only depends on pµ

and is symmetric in the indices µ1, µ2, · · · µn . The terms containing gµν in Eq. (15.41) are
of the form pρ p2gµ1µ2 pµ3 · · · pµn and so on, which are less singular in x2 because gµ1µ2
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15 OPE for deep inelastic scattering 157

gives rise to x2, and can therefore be neglected. Therefore, the relevant part of Eq. (15.17)
for our process can be written as:

Wµν = − 1

2π2
σµλνρ pρ

∫
d4x eiqx xλε(x0)δ(1)(x2) f (p · x) , (15.42)

with:

f (z) =
∞∑

n=0

Ôn
zn

n!
, (15.43)

where one can also notice that due to the form of Oρ

V,µ1···µn
, Ôn vanishes for n even and the

summation in Eq. (15.43) only runs for n odd. Taking the Fourier transform:

f (z) =
∫ +∞

−∞
dζ eizζF(ζ ) , (15.44)

one can rewrite:

Wµν = − i

2π2
σµλνρ pρ ∂

∂qλ

∫ +∞

−∞
dζF(ζ )

∫
d4x ei(q+pζ )xε(x0)δ(1)(x2) . (15.45)

Using:

In ≡
∫

d4x eiqxδ(n)(x2) = iπ2

4n−1(n − 1)!
(q2)n−1ε(q0)θ (q2) , (15.46)

one obtains:

Wµν =
∫ +∞

−∞
dζF(ζ )

[ −(
p · q + ζ M2

p

)
gµν + 2ζ pµ pν + pµqν + pνqµ

]
× ε(q0 + ζ p0)δ

(
q2 + 2ζ p · q + ζ 2 M2

p

)
. (15.47)

In the Bjorken limit:

p · q → ∞, − q2 → ∞ and ζ ≡ x = −q2/(2p · q) fixed , (15.48)

one can neglect p2 = M2
p, and deduce:

Wµν = 1

2
F(x)

(
−gµν − q2

(p · q)2
pµ pν + pµqν + pνqµ

p · q

)
, (15.49)

which one can rewrite in terms of W1,2 defined in Eq. (15.36) with:

W1(ν, Q2) = 1

2
F(x) ≡ F1(x) ,

ν

M2
p

W2(ν, Q2) = x

2
F(x) ≡ F2(x) , (15.50)

as given in Eq. (2.83) in terms of the Bjorken scaling function F1,2(x). This result shows that
the assumption of free-field light-cone structure is equivalent to that of the parton model.
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15.4 Light-cone expansion in φ3
6(x) theory and operator twist

For simplifying our discussions, we shall work in φ3
6(x) theory with a mass m. The hadronic

current is:

J (x) = φ2(x) , (15.51)

and the OPE has the form given in Eq. (15.4). In the previous sections, we have used the
OPE at short distance x → 0, i.e. large q , such that we can neglect terms of order p · q
compared with q2. For instance, in this case, the tree level amplitude of a forward Compton
scattering reads:

1

(q + p)2 − m2
= 1

q2
+ O

(
1

q4

)
. (15.52)

In deep inelastic scatterings, the light-cone region x2 → 0 corresponds to the Bjorken
limit in Eq. (15.48). In this region, the tree level Compton amplitude reads:

F0(q, p) ≡ 1

(q + p)2 − m2
= 1

q2

1

1 + 2p·q
q2

� 1

q2
− 2p · q

q4
+ (2p · q)2

q6
+ · · · + O

(
1

q4

)
, (15.53)

which expresses that the dominant term of the amplitude in the Bjorken limit is due to an
infinite number of ‘composite operators’. This can be seen by taking the Fourier transform
of Eq. (15.53): ∫

d6q e−iqx F0(q, p) ∼ 1

x4
+ i

px

x4
− (px)2

8x4
+ · · · (15.54)

Its k-th term can be written as:

1

x4
xµ1 · · · xµk 〈p|Oµ1···µk |p〉 . (15.55)

In general the OPE near the light cone has the form (light-cone expansion):

J (x)J ′(0) =
∑
i,k

C (i)
k (x2)xµ1···µkO(i)

µ1···µk
(0) , (15.56)

where the index i specifies the type of composite operators. Identifying with Eq. (15.4), the
coefficient functions are:

Cn(x) ≡ C (i)
k (x2)xµ1...µk . (15.57)

In free-field theory, in order to match the mass dimension of both sides of Eq. (15.56),
the coefficient function should behave as:

C (i)
k (x2) ∼ (x2)−(dJo +dJ ′

o
+k−d (i)

o,k )/2
, (15.58)

where dJo , dJ ′
o

and d (i)
o are canonical dimensions of the current J, J ′ and of the operator

O(i)
µ1···µk

. This naı̈ve power counting is valid for free-field theory as no other mass scale is
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15 OPE for deep inelastic scattering 159

present in the OPE. The index:

τk ≡ d (i)
o,k − k ≡ dimension − spin (15.59)

which governs the strength of the singularity of the coefficient function is called the twist
of the composite operator O(i)

µ1···µk
[225]. k is called the spin of the operator and d is its

dimension. The operators of lowest twist dominate in the light-cone expansion. The scalar
field φ, the fermion field ψ and the gauge field Gµν have twist one. Taking the derivative
of these fields cannot reduce the twist as the derivative increases the dimension by one unit
but changes the spin by 1 or 0. Therefore, the minimum twist of an operator involving n
fields is n. In the light-cone expansion the dominant operators have twist 2. In the presence
of external field, the symmetric traceless tensors of rank k and twist 2 are e.g. of the form:

O(i)
s,µ1···µk

= φ∗ Dµ1 · · · Dµk φ ,

O(i)
f,µ1···µk

= i k−1

k!
{ψ̄γµ1 Dµ2 · · · Dµk ψ + permutations} ,

O(i)
g,µ1···µk

= 2
i k−2

k!
Tr{Gµ1α Dµ1 · · · Dµk Gα

µk
+ permutations} . (15.60)

where Dµ is the covariant derivative which is half the difference of the derivative acting to
the right and to the left. In the presence of an external field the scale dimension counting does
not hold. In the case of a theory with an UV fixed point, the scale invariance is recovered
with the anomalous dimension, and the canonical dimensions are replaced by the scale
dimensions dJ and d (i)

k . Therefore, the light-cone singularity reads for x2 → 0 [222]:

C (i)
k (x2) ∼ (x2)−(dJ +dJ ′ +k−d (i)

k )/2 . (15.61)

In QCD, this expression will only be modified by logarithmic corrections as we shall see
later on.
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