BULL. AUSTRAL. MATH. SOC. VOL. 31 (1985), 329-338.

ON THE DISCREPANCY OF THE SEQUENCE FORMED FROM MULTIPLES OF AN IRRATIONAL NUMBER

TONY VAN RAVENSTEIN

This paper demonstrates a connection between two measures of discrepancy of sequences which arise in the theory of uniform distribution modulo one. The sequence formed from the non-negative integer multiples of an irrational number ξ is investigated and, by an application of the "Steinhaus Conjecture", some values of the two discrepancies are obtained using continued fractions.

1. Introduction

Let $v = (x_1, x_2, x_3, \ldots)$ be an infinite sequence of real numbers located in the unit interval. We define the *standard* discrepancy of the first N terms of v as

(1.1)
$$D_{N}(\nu) = \sup_{0 \le \alpha \le \beta \le 1} \left| \frac{A([\alpha, \beta]; \nu; N)}{N} - (\beta - \alpha) \right|$$

where $A([\alpha, \beta]; \nu; N)$ counts the number of the first N elements of ν which belong to $[\alpha, \beta]$.

The discrepancy is a measure of how closely the first N elements of ν approximate a uniform distribution. A related measure (the *extreme*

Received 30 October 1984. The author is most grateful to Dr Keith Tognetti of the University of Wollongong for helpful discussions.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 \$A2.00 + 0.00.

discrepancy where $\alpha = 0$) is given by

(1.2)
$$D_N^{\star}(v) = \sup_{0 \leq \beta \leq 1} \left| \frac{A([0,\beta];v;N)}{N} - \beta \right| .$$

In this paper we first demonstrate an interesting relationship between these two measures. In particular, we consider the sequence ω formed by the fractional parts of non-negative integer multiples of ξ , where ξ is an irrational number. $D_N(\omega)$ and $D_N^*(\omega)$ are then evaluated for some particular values of N based on the continued fraction expansion of ξ . The formula largely derives from a result related to the "Steinhaus Conjecture" (see Section 5). An upper bound of $\lim_{N\to\infty} ND_N(\omega)$ is offered $N\to\infty$

as a corollary.

330

2. Representation of ν on a circle

Suppose that the sequence ν is represented on the circle *C* of unit circumference, rather than on the unit interval. Let $[\alpha : \beta]$ denote the arc from α to β ($0 \le \alpha, \beta < 1$) on the circle in the direction of increasing co-ordinate. That is,

(2.1)
$$[\alpha : \beta] = \begin{cases} [\alpha, \beta], & 0 \le \alpha \le \beta < 1, \\ \\ C - (\beta, \alpha), & 0 \le \beta < \alpha < 1. \end{cases}$$

Note that the length of such an arc is equal to $~\{\beta{-}\alpha\}$, the fractional part of $~\beta-\alpha$.

With respect to this representation, the discrepancy of $\,\nu\,$ may be given by

(2.2)
$$\hat{D}_{N}(v) = \sup_{0 \le \alpha, \beta \le 1} \left| \frac{A([\alpha:\beta]; v; N)}{N} - \{\beta - \alpha\} \right| .$$

LEMMA. $D_N(v) = \hat{D}_N(v)$.

Proof. Let

(2.3)
$$R(\alpha, \beta) = \frac{A([\alpha:\beta];\nu;N)}{N} - \{\beta-\alpha\}$$

Clearly

Multiples of an irrational number

$$\hat{D}_{N}(\nu) = \sup \left(\sup_{0 \le \alpha, \beta \le 1} R(\alpha, \beta), \sup_{0 \le \alpha, \beta \le 1} -R(\alpha, \beta) \right).$$

But $-R(\alpha, \beta) \leq R(\beta, \alpha)$ since $A([\alpha : \beta]; \nu; N) + A([\beta : \alpha]; \nu; N) \geq N$ and $\{-x\} = 1 - \{x\}$ for real x. Hence

(2.4)
$$\hat{D}_{N}(\nu) = \sup_{0 \leq \alpha, \beta < 1} \left(\frac{A([\alpha:\beta];\nu;N)}{N} - \{\beta - \alpha\} \right),$$

or

(2.5)
$$\hat{D}_{N}(\nu) = \sup \left(\sup_{0 \le \alpha \le \beta \le 1} R(\alpha, \beta), \sup_{0 \le \beta \le \alpha \le 1} R(\alpha, \beta) \right).$$

From (2.1),

$$R(\alpha, \beta) = \begin{cases} \frac{A([\alpha, \beta]; \nu; N)}{N} - (\beta - \alpha) , & 0 \le \alpha \le \beta \le 1 , \\ \\ \alpha - \beta - \frac{A([\beta, \alpha]; \nu; N)}{N} , & 0 \le \beta < \alpha \le 1 . \end{cases}$$

Replacing $R(\alpha, \beta)$ in (2.5) by this expression completes the proof. Thus if the sequence is represented on the unit interval or the circle of unit circumference, the measure of discrepancy is the same.

3. A relation between $D_N^*(v)$ and $D_N(v)$

The following proposition relates the two functions $D_N^\star(\nu)$ and $D_N^{}(\nu)$.

PROPOSITION.
$$D_N(v) = D_N^*(v) + \inf \left(D_N^+(v), D_N^-(v) \right)$$
, where
 $D_N^+(v) = \sup_{0 \le \beta < 1} \left(\frac{A([0,\beta];v;N)}{N} - \beta \right)$,
 $D_N^-(v) = \sup_{0 \le \beta < 1} \left(\beta - \frac{A([0,\beta];v;N)}{N} \right)$,
 $D_N^*(v) = \sup \left(D_N^+(v), D_N^-(v) \right)$.

Proof. We need only show that $D_N(v) = D_N^+(v) + D_N^-(v)$. Without loss of generality assume that the elements x_j , $1 \le j \le N$, are arranged in ascending order of magnitude. For notational convenience, let $x_0 = 0$ and

 x_{N+1} = 1 . Then the numbers $x_0^{},\,x_1^{},\,\ldots,\,x_{N+1}^{}$ partition the unit interval so that

$$D_N^+(v) = \sup_{\substack{x_j \leq \beta < x_{j+1} \\ j=0,1,2,\dots,N}} \left(\frac{A([0,\beta];v;N)}{N} - \beta \right) .$$

Evaluating the supremum over each sub-interval $[x_j, x_{j+1})$ gives

$$(3.1) D_N^+(v) = \sup_{j=1,2,\ldots,N} \left(\frac{j}{N} - x_j \right)$$

Similarly

(3.2)
$$D_N^{-}(v) = \sup_{j=1,2,\ldots,N} \left\{ x_j - \frac{j-1}{N} \right\}$$

From (2.4) and the fact that $R(\alpha, \beta) \leq R(x_i, x_j)$ where $x_i \leq \alpha < x_{i+1}$, $x_j \leq \beta < x_{j+1}$ (for suitable *i* and *j*) yields

$$D_{N}(v) = \sup_{0 \leq i, j \leq N} \left(\frac{A\left(\left[x_{i} : x_{j} \right] ; v; N \right)}{N} - \left\{ x_{j} - x_{i} \right\} \right) .$$

Alternatively

$$D_{N}(v) = \sup_{\substack{0 \leq i, j \leq N \\ 0 \leq j \leq N}} \left(\frac{j - i + 1}{N} - x_{j} + x_{i} \right)$$
$$= \sup_{\substack{0 \leq j \leq N \\ 0 \leq j \leq N}} \left(\frac{j}{N} - x_{j} \right) + \sup_{\substack{0 \leq i \leq N \\ 0 \leq i \leq N}} \left(x_{i} - \frac{i - 1}{N} \right)$$
$$= D_{N}^{+}(v) + D_{N}^{-}(v) .$$

This follows from (3.1) and (3.2).

4. The sequence formed from multiples of ξ

We now turn to evaluating the discrepancies $D_N^*(\omega)$ and $D_N^{}(\omega)$ for some particular values of N related to the simple continued fraction expansion of ξ , where ω is the sequence of fractional parts of consecutive non-negative integer multiples of the irrational number ξ . The following notation is used. Write $t_0 = \xi$ and express (for n = 0, 1, 2, ...),

$$a_n = [t_n] ,$$

$$t_{n+1} = \frac{1}{\{t_n\}} ,$$

where [] is the truncation operator.

In this way the continued fraction expansion of ξ is identified by the expression

$$\xi = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$
$$= \{a_0; a_1, a_2, a_3, \dots\}.$$

The partial convergents to ξ are defined as

..

$$\frac{p_{n+1,i}}{q_{n+1,i}} = \{a_0; a_1, a_2, \dots, a_n, i\}, \quad i = 1, 2, \dots, a_{n+1}.$$

Note that

$$\frac{p_{n+1,i}}{q_{n+1,i}} = \frac{p_{n-1} + ip_n}{q_{n-1} + iq_n} , \quad p_{-2} = q_{-1} = 0 , \quad q_{-2} = p_{-1} = 1 ,$$

$$\frac{p_{n+1,k}}{q_{n+1,k}} = \frac{p_{n+1}}{q_{n+1}} ,$$

where $k = a_{n+1}$.

The total convergents p_n/q_n , n = 0, 1, 2, ..., are important in Diophantine approximation theory since they provide the unique sequence of best rational approximations to ξ in the sense that

$$||q_n\xi|| < ||q\xi|| , 0 < q < q_{n+1} , q \neq q_n ,$$

where

$$||q\xi|| = |q\xi-p|$$
, $p = [q\xi+\frac{1}{2}]$.

(That is, $||q\xi||$ is equal to the absolute difference between $q\xi$ and its nearest integer. Note that $p_n = [q_n\xi + \frac{1}{2}]$.) We quote some results from the theory of continued fractions which we will need later:

(4.1)
$$q_n p_{n+1,i} - p_n q_{n+1,i} = (-1)^n$$
;

(4.2)
$$q_{n+1,i} \|q_n \xi\| + q_n \|q_{n+1,i} \xi\| = 1 ;$$

(4.3)
$$p_{n+1,i} \|q_n \xi\| + p_n \|q_{n+1,i} \xi\| = \xi$$

5. The three gap theorem (the Steinhaus conjecture)

This theorem, originally conjectured by H. Steinhaus states that any N consecutive elements of ω partition C (or the unit interval) into sub-intervals or gaps of at most three different lengths and at least two if ξ is irrational. Various proofs have appeared in the literature (see, for example, references [1], [5]-[9]). The theorem is also related to the ordering of the first N elements of ω . Let $\{\{u_j\xi\}\}$,

j = 1, 2, ..., N, be that ordered sequence. That is, $\{u_1, u_2, \ldots, u_N\} = \{0, 1, \ldots, N-1\} \text{ where } \{u_j\xi\} < \{u_{j+1}\xi\} \text{ . It may be found from references [5] and [6] that the elements } u_j \text{ are obtained by the following relation,}$

(5.1)
$$u_{j+1} = \begin{cases} u_j + u_2, & 0 \le u_j \le N - u_2, \\ u_j + u_2 - u_N, & N - u_2 < u_j < u_N, \\ u_j - u_N, & u_N \le u_j \le N, \end{cases}$$

for j = 1, 2, ..., N, $u_{1} = 0$, where

(5.2)
$$\begin{cases} u_2 = \begin{cases} q_n, & n \text{ even} \\ q_{n+1,i-1}, & n \text{ odd} \\ u_N = \begin{cases} q_{n+1,i-1}, & n \text{ even}, \\ q_n, & n \text{ odd} \\ \end{cases}$$

which holds for $q_{n+1,i-1} < N \le q_{n+1,i}$, $2 \le i \le a_{n+1}$ $(n \ge 1)$. For $q_n < N \le q_{n+1,i}$ $(n \ge 1)$,

https://doi.org/10.1017/S000497270000928X Published online by Cambridge University Press

334

(5.3)
$$\begin{cases} u_2 = \begin{cases} q_n, & n \text{ even,} \\ q_{n-1}, & n \text{ odd ,} \\ u_N = \begin{cases} q_{n-1}, & n \text{ even,} \\ q_n, & n \text{ odd .} \end{cases}$$

THEOREM. The first $u_2 + u_N = q_{n+1,i}$ ($i = 1, 2, ..., a_{n+1}$, $n \ge 1$) elements of ω partition the circle into gaps of two different lengths. In this case

$$D_{q_{n+1,i}}^{*}(\omega) = \begin{cases} \frac{1}{q_{n+1,i}} + (q_{n+1,i}^{-1}) \left(\frac{p_{n+1,i}}{q_{n+1,i}} - \xi \right), & n \text{ even,} \\\\ \sup \left(\frac{1}{q_{n+1,i}}, (q_{n+1,i}^{-1}) \left(\xi - \frac{p_{n+1,i}}{q_{n+1,i}} \right) \right), & n \text{ odd,} \end{cases}$$
$$D_{q_{n+1,i}}(\omega) = \frac{1}{q_{n+1,i}} + (q_{n+1,i}^{-1}) \left| \frac{p_{n+1,i}}{q_{n+1,i}} - \xi \right|.$$

Proof. With $N = u_2 + u_N = q_{n+1,i}$, (5.1) becomes

(5.4)
$$u_{j+1} = \begin{cases} u_j + u_2 , & 0 \le u_j < u_N , \\ u_j - u_N , & u_N \le u_j \le N , \end{cases}$$

for j = 1, 2, ..., N $(u_1 = 0)$. Hence, for this value of N, there are only two gap lengths $||u_2\xi||$ and $||u_N\xi||$. From (5.1) note that if $N \neq u_1 + u_2$, the circle is partitioned into gaps of three different lengths.

(5.4) is equivalent to

(5.5)
$$u_j = ((j-1)u_2) \mod N$$
, $j = 1, 2, ..., N$.

Substituting (5.2) and (5.3) into (5.5) yields

(5.6)
$$u_j = \left((-1)^n (j-1)q_n \right) \mod q_{n+1,i}, \quad j = 1, 2, \ldots, q_{n+1,i}.$$

It is seen that there exists a non-negative integer k so that

(5.7)
$$u_{j} = (-1)^{n} (j-1)q_{n} - (-1)^{n} kq_{n+1,i} .$$

Solving this linear Diophantine equation by use of (4.1) yields

(5.8)
$$j - 1 = q_{n+1,i} \left\{ \frac{u_j p_{n+1,i}}{q_{n+1,i}} \right\},$$

(5.9)
$$k = u_{j}p_{n} - \left[\frac{u_{j}p_{n+1,i}}{q_{n+1,i}}\right]q_{n}$$

From (5.7) it follows that

(5.10)
$$\{u_{j}\xi\} = (j-1) \|q_{n}\xi\| + k \|q_{n+1}, i\xi\| .$$

Substituting expressions for j and k from (5.8), (5.9) and using (4.2) and (4.3) yields

(5.11)
$$\{u_{j}\xi\} = u_{j}\xi - \left[\frac{u_{j}p_{n+1,i}}{q_{n+1,i}}\right] .$$

That is

(5.12)
$$\left[u_{j}\xi\right] = \left[\frac{u_{j}p_{n+1,i}}{q_{n+1,i}}\right] .$$

Substitution of (5.8) into (3.2) with the inclusion of (5.11) yields

$$\begin{split} D_{q_{n+1},i}^{-}(\omega) &= \sup_{j=1,2,\ldots,q_{n+1},i} u_{j} \left[\xi - \frac{p_{n+1},i}{q_{n+1},i} \right] \\ &= \sup_{u_{j}=0,1,\ldots,q_{n+1},i^{-1}} u_{j} \left[\xi - \frac{p_{n+1},i}{q_{n+1},i} \right] \\ &= \begin{cases} 0, & n \text{ even}, \\ (q_{n+1,i}-1) \left[\xi - \frac{p_{n+1},i}{q_{n+1},i} \right], & n \text{ odd.} \end{cases} \end{split}$$

This follows from the fact that $\xi - p_{n+1,i}/q_{n+1,i}$ is negative for even n and positive otherwise.

To determine $D_{q_{n+1},i}^+(\omega)$ note that

336

$$D_{q_{n+1},i}^{+}(\omega) = \frac{1}{q_{n+1},i} - \inf_{j=1,2,\ldots,q_{n+1},i} \left\{ \{u_{j}\xi\} - \frac{j-1}{q_{n+1},i} \right\} .$$

Following the same procedure as above, it is found that

$$D_{q_{n+1},i}^{+}(\omega) = \begin{cases} \frac{1}{q_{n+1,i}} + (q_{n+1,i}^{-1}) \left(\frac{p_{n+1,i}}{q_{n+1,i}} - \xi \right), & n \text{ even}, \\ \\ \frac{1}{q_{n+1,i}}, & n \text{ odd}. \end{cases}$$

The theorem now follows from the proposition. \Box

COROLLARY.
$$1 \leq \liminf_{N \to \infty} ND_N(\omega) \leq 1 + \frac{1}{\sqrt{5}}$$
.

Proof. The lower bound is easily found. (See Kuipers and Neiderreiter [4], page 90.) For the upper bound, first note that

$$\liminf_{N \to \infty} N D_N(\omega) \leq \liminf_{n \to \infty} q_n D_{q_n}(\omega) .$$

From the theorem,

$$\lim_{n \to \infty} \inf q_n \frac{D}{q_n} (\omega) = \lim_{n \to \infty} \inf 1 + (q_n - 1) \|q_n \xi\|$$
$$= 1 + \lim_{n \to \infty} \inf q_n \|q_n \xi\| .$$

From a theorem of Hurwitz (see, for example, Hardy and Wright [2], Theorem 194),

$$\sup_{\xi} \lim_{q \to \infty} \inf_{\substack{q \in \mathbb{Z} \\ \xi = \frac{1}{\sqrt{5}}}} \sup_{n \to \infty} \lim_{n \to \infty} \inf_{n \in \mathbb{Z} \\ n \to \infty} \|q_n\|_{q_n} \xi \|$$

The supremum occurs at all values of ξ which have $t_j = (1+\sqrt{5})/2$ for some non-negative integer j.

Thus the corollary follows.

References

- [1] J.H. Halton, "The distribution of the sequence {nξ} (n = 0, 1, 2, ...) ", Proc. Cambridge Philos. Soc. 61 (1965), 665-670.
- [2] G.H. Hardy and E.M. Wright, An introduction to the theory of numbers,
 4th ed. (Clarendon Press, Oxford, 1960; reprinted 1971).
- [3] A.Y. Khintchine, Continued fractions (translated by P. Wynn. Noordhoff, Groningen, 1963).
- [4] L. Kuipers and H. Neiderreiter, Uniform distribution of sequences (John Wiley and Sons, New York, London, 1974).
- [5] A. Révuz, "Sur la repartition des points $e^{i\theta}$ ", C.R. Acad. Sci. 228 (1949), 1966-1967.
- [6] N.B. Slater, "Gaps and steps for the sequence nθ mod 1 ", Proc. Cambridge Philos. Soc. 63 (1967), 1115-1122.
- [7] V.T. Sós, "On the theory of Diophantine approximations, I", Acta Math. Acad. Sci. Hungar. 8 (1957), 461-472.
- [8] V.T. Sós, "On the distribution mod l of the sequence na", Ann. Univ. Sci. Pudapest. Eötvös Sect. Math. 1 (1958), 127-134.
- [9] S. Świerckowski, "On successive settings of an arc on the circumference of a circle", Fund. Math. 46 (1958), 187-189.

Department of Mathematics, University of Wollongong, Wollongong, New South Wales 2500, Australia.