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On functoriality of Zelevinski involutions

Kaoru Hiraga

Abstract

In this paper, we present a conjecture on a relation between the Zelevinski involutions
for reductive groups over a p-adic field and the conjectural A-packets. As evidence for
this conjecture, we prove that the Zelevinski involutions, which are regarded as operators
on the space of virtual characters, commute with the endoscopic transfers under the
assumption of the fundamental lemma for groups and for Lie algebras.

1. Introduction

Let F be a p-adic field and G a connected reductive algebraic group defined over F . We denote by
WF the Weil group of F . Let LG = Ĝ � WF be the L-group of G. We denote by LG the set of
standard Levi subgroups of G. For M ∈ LG, we denote by r(M) the semisimple split F -rank of M .
Let Π(G) be the set of equivalence classes of irreducible admissible representations of G(F ) and let
C[Π(G)] be the space of virtual characters of G(F ). The parabolic induction defines a homomor-
phism iGM : C[Π(M)] −→ C[Π(G)] and the (normalized) Jacquet functor defines a homomorphism
rGM : C[Π(G)] −→ C[Π(M)]. Following Kato [Kat93], we define the Zelevinski involution DG by

DG =
∑
M∈LG

(−1)r(M)iGM ◦ rGM .

Let {M} be the set of associate standard Levi subgroups of M . We say that π ∈ Π(G) is of type
{M} if rGM (π) is a non-zero linear combination of supercuspidal representations of M(F ). If π is of
type {M}, then we put rπ = r(M). For π ∈ Π(G), we define

dG(π) = (−1)rπDG(π).

Aubert [Aub95, Aub96] proved that dG(π) is irreducible. Thus the Zelevinski involution preserves
the irreducibility. It seems natural to consider the relation between the Zelevinski involution and the
conjectural Langlands functoriality. Nevertheless, the Zelevinski involution does not preserve
the L-packets. We consider the A-packets conjectured by Arthur [Art89, Conjecture 6.1]. (In this
paper, we follow the formulation of [Art89, Conjecture 6.1], although we can find a modified
conjecture due to Vogan in [Vog93]). For a Langlands parameter φ : WF × SU2(C) −→ LG,
we denote by Πφ(G) the corresponding conjectural L-packet. Although SU2(C) is isomorphic to
SL2(C), we denote the second factor of this group by SU2(C) in order to distinguish it from the
factor SL2(C) used to define the Arthur parameters in [Art89]. Let

ψ : WF × SU2(C) × SL2(C) −→ LG

be an Arthur parameter. We put

Sψ = Cent(ψ, Ĝ),

Sψ = Sψ/S
0
ψ,
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where S0
ψ is the identity component of Sψ. Let Πψ(G) be the conjectural A-packet of ψ and ρ =

ρψ : Sψ −→ C× the conjectural normalizing function. For s ∈ Sψ and π ∈ Πψ(G), we define 〈s, π|ρ〉
as in [Art89, Conjecture 6.1]. Then it is conjectured that

s −→ 〈s, π|ρ〉
is a virtual character of Sψ. We say that a virtual character θ ∈ C[Π(G)] is stable if θ is stable as a
distribution on G(F ). Let C[Π(G)]st be the space of stable virtual characters of G(F ) and C[Πψ(G)]
the subspace of C[Π(G)] generated by Πψ(G). We put C[Πψ(G)]st = C[Π(G)]st ∩ C[Πψ(G)].

In the case that G is quasi-split, we put

S∗
ψ = Sψ/S

0
ψ · ZΓ

Ĝ
,

where ZΓ
Ĝ

is the subgroup of the center ZĜ of Ĝ consisting of the elements fixed by Γ = Gal(F/F ).
We fix Whittaker data χ for G (see [KS99, § 5.3]). We determine the base point πχ ∈ Πφψ(G) as
in [Art89, § 6], where Πφψ(G) is the L-packet corresponding to ψ. We define 〈s, π|πχ〉 as in [Art89,
Conjecture 6.1]. Then it is conjectured that 〈·, π|πχ〉 is an irreducible character of Sψ. As F is a
p-adic field, the following hypothesis is believed.

Hypothesis 1.1. We have

dimC[Πψ(G)]st = 1.

In the following, we assume the Arthur conjecture [Art89, Conjecture 6.1] and Hypothesis 1.1.
Now we turn to the Zelevinski involution. We identify SU2(C) with SL2(C) and define d(ψ) by

d(ψ)(w × t× u) = ψ(w × u× t), w × t× u ∈WF × SU2(C) × SL2(C).

Then d(ψ) is the Arthur parameter constructed from ψ by interchanging the role of SU2(C) and
SL2(C).

Conjecture 1.2. We have

dG(Πψ(G)) = Πd(ψ)(G).

Since Sψ = Sd(ψ), we may identify Sψ with Sd(ψ). Let ρd be the conjectural normalizing function
of d(ψ). In the case that G is quasi-split, we denote the base point in Πφd(ψ)

(G) by πd,χ.

Conjecture 1.3. There exists a one-dimensional character µ of Sψ such that

〈s,dG(π)|ρd〉 = µ(s)〈s, π|ρ〉
for all s ∈ Sψ.

If G is quasi-split, then the above formula is equal to

〈s,dG(π)|πd,χ〉 = µ(s)〈s, π|πχ〉.
(In the general case, the character µ may not be determined by the above relation.) The following
conjecture is a special case of Conjecture 1.2.

Conjecture 1.4. If G is quasi-split and if S∗
ψ = {1}, then

dG(Πψ(G)) = Πd(ψ)(G).

As F is a p-adic field, it is believed that the conditionG = G∗ and S∗
ψ = {1} implies that Πψ(G) =

{πχ} and Πd(ψ)(G) = {πd,χ}. If we assume this, then Conjecture 1.4 asserts that dG(πχ) = πd,χ.
In general, nevertheless, dG(πχ) may not be equivalent to πd,χ. In fact, even in the case that
G = SL2, there exists ψ such that S∗

ψ �= {1} and that dG(πχ) �= πd,χ (see [LL79]).
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In the case that G = GLn, Conjecture 1.2 follows from the results of Moeglin and Waldspurger
[MW86].

Recently, Takuya Konno and Kazuko Konno checked that Conjecture 1.2 is compatible with
their candidates for the A-packets on the quasi-split unitary group in four variables in [Kon03].

Conjecture 1.3 implies that the Zelevinski involutions behave well under the endoscopic transfers.
In this paper, we discuss the relation between the Zelevinski involutions and the endoscopic
transfers. By Corollary 3.4, we have

DG(C[Π(G)]st) = C[Π(G)]st.

Let (H,H, s, ξ) be a set of (standard) endoscopic data. For the sake of brevity, we assume that
H ∼= LH. Unfortunately the existence of the endoscopic transfer is still hypothetical. In this paper,
we assume the fundamental lemma for groups [Art96, Hypothesis 3.1] and for Lie algebras
[Wal97, Conjecture 1.3] to define the endoscopic transfer

TranGH : C[Π(H)]st −→ C[Π(G)]

of virtual characters (see Proposition 4.6). Let A0 be a maximal split torus of G and let AH,0 be
a maximal split torus of H. We put a(G) = dim(A0) and a(H) = dim(AH,0). Then we have the
following theorem (see Theorem 6.6).

Theorem 1.5. Assume the fundamental lemma for groups and for Lie algebras. Then we have

DG ◦ TranGH = (−1)a(G)−a(H) TranGH ◦DH .

(In the case that H � LH, we take a z-pair (H1, ξH1) as in [KS99, § 2.2]; see the formula in
Theorem 6.7.)

By using this theorem, we can reduce Conjecture 1.2 to Conjecture 1.4 (see Lemma 7.2).
Moreover, if G is quasi-split, then by using Theorem 1.5, we can show that Conjecture 1.4
implies the following formula (see Proposition 7.4):

〈s,dG(π)|πd,χ〉 = 〈s,dG(πχ)|πd,χ〉〈s, π|πχ〉,
where 〈·,dG(πχ)|πd,χ〉 is a one-dimensional character of Sψ. This is Conjecture 1.3. In the case that
G is not quasi-split, Conjecture 1.4 implies the following formula:

〈1, π|ρ〉 = 〈1,dG(π)|ρd〉.

In the theory of endoscopy, some relations are defined modulo inner automorphisms. To avoid
this ambiguity, we fix endoscopic data, an inner twisting and splittings in the following way.
Let ϕ : G −→ G∗ be a quasi-split inner twisting of G and A∗

0 a maximal split torus of G∗.
We fix an F -splitting (B∗

0 , T
∗
0 , {Xα}) of G∗, an F -splitting (BH,0, TH,0, {Yα}) of H, a Γ-splitting

(B,T , {Xα̌}) of Ĝ and a Γ-splitting (BH ,TH , {Yα̌}) of Ĥ. Then we may identify T̂ ∗
0 with T and

T̂H,0 with TH . We may assume that A∗
0 ⊂ T ∗

0 and that AH,0 ⊂ TH,0. We say that a subtorus of A∗
0

is standard if it is equal to the split component of the center of a standard Levi subgroup of G∗.
We assume that s ∈ T , ξ(TH) = T and ξ(BH) ⊂ B. Let i∗0 : TH,0 −→ T ∗

0 be the dual homomorphism
of ξ−1 : T −→ TH . We may assume that i∗0(AH,0) is a standard subtorus of A∗

0 (see § 4). We choose
an inner twisting ϕ such that ϕ(A0) is a standard subtorus of A∗

0. We define a positive root system
of G by the pullback of the positive root system of G∗. For M ∈ LG, we have ϕ(M) ∈ LG∗

.
In § 2, we collect the properties of double cosets of Weyl groups with respect to endoscopic

groups and standard Levi subgroups, which is a generalization of [Car93, § 2.7]. The proofs of the
results in § 2 are contained in the Appendix. Assume that G = G∗. Let

Ω(G) = Norm(A0, G)/Cent(A0, G),
Ω(H) = Norm(AH,0,H)/Cent(AH,0,H),
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be the Weyl groups. We denote the set of roots of (G,A0) by R(G) = R(G,A0) and the set of
roots (H,AH,0) by R(H) = R(H,AH,0). We identify AH,0 with the image i∗0(AH,0) in A0 = A∗

0.
By Lemma 4.3, we may regard Ω(H) as a subgroup of Ω(G). For M ∈ LG, we put

Ω(G)M,H = {ω ∈ Ω(G) | ω(AH,0) ⊃ AM},
where AM is the split component of the center of M . Let

D̃M = {ω ∈ Ω(G)−1
M,H | ω(R+(M)) > 0}.

Then by Lemma 2.1, we can define DM,H by

DM,H = {ω ∈ D̃−1
M | ω(R+(H)) > 0}.

Proposition 2.2 asserts that DM,H is a system of representatives for

Ω(M)\Ω(G)M,H/Ω(H).

For ω ∈ DM,H , let R = R(H) ∩ resAH,0(ω
−1(R(M))), then by Lemma 2.3, R is a root system of a

standard Levi subgroup Mω of H. For L ∈ LH , we put

DM,H,L = {ω ∈ DM,H |Mω = L}
and

aM,H,L = 
DM,H,L.

Then we have the following formula, which is a generalization of [Car93, Proposition 2.7.7]:∑
M∈LG

(−1)r(M)aM,H,L = (−1)a(G)−a(H) · (−1)r(L). (1.1)

We turn to the general G. For M ∈ LG, let M∗ = ϕ(M) and DM,H = DM∗,H . For ω ∈ DM,H ,
we put Mω = (M∗)ω. Let LMω be the L-group of Mω. Then we may regard LMω as a standard
Levi subgroup of LH. We choose a representative n̂ω ∈ Norm(T , Ĝ) for

ω ∈ Ω(G∗) ⊂ Ω(G∗, T ∗
0 ) ∼= Ω(Ĝ,T ).

We put s′ω = Int n̂ω(s) and ξω = Int n̂ω ◦ ξ. Then Lemma 5.1 asserts that (Mω,
LMω, s

′
ω, ξω) is a set

of endoscopic data for M . The following formula in Theorem 5.6 is an analogue of the formula of
Bernstein and Zelevinski [BZ77, Lemma 2.12]:

rGM ◦ TranGH =
∑

ω∈DM,H

TranMMω
◦ rHMω

. (1.2)

Note that DM,H depends on the choice of a set of endoscopic data, an inner twisting and splittings.
In §§ 4 and 5, we prove this formula. In § 6, we prove Theorem 1.5 by using (1.1) and (1.2). In § 7,

we discuss the conjectural relation between the Zelevinski involutions and the Arthur conjecture.

2. Cosets of Weyl groups

Properties of the double cosets of Weyl groups with respect to standard Levi subgroups are well
known [Car93, § 2.7]. In this section, we collect results on the double cosets of Weyl groups with
respect to endoscopic groups and standard Levi subgroups. Proofs of the results in this section are
contained in the Appendix.

Let aG be a finite-dimensional vector space over the real number field R and let (aG)′ be the
vector space of linear forms of aG. In this paper, we allow a root system to have a center. Therefore, a
subset R ⊂ (aG)′ is called a root system on aG if R is a (non-reduced) root system in the vector space
generated by R. Let R(G) be a root system on aG. We denote by Ω(G) the Weyl group of R(G).
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We fix a positive definite Ω(G)-invariant symmetric bilinear form ( , ) on (aG)′. This defines an
isomorphism from (aG)′ to aG and a positive definite symmetric bilinear form on aG. For α̃ ∈ R(G),
we denote the corresponding reflection on aG by sα̃. We fix a positive root system. We denote the
set of positive roots by R+(G) and the set of negative roots by R−(G). The set of simple roots
is denoted by S(G). For a subset S(M) of S(G), we denote the corresponding subroot system by
R(M). We put R+(M) = R(M) ∩R+(G) and

aM = {a ∈ aG | α̃(a) = 0 for all α̃ ∈ S(M)}.

Let Ω(M) be the Weyl group of R(M). We have

R(M) = {α̃ ∈ R(G) | α̃(a) = 0 for all a ∈ aM},
Ω(M) = {ω ∈ Ω(G) | ω(a) = a for all a ∈ aM}.

We say that a subroot system R ⊂ R(G) is standard if there exists S(M) ⊂ S(G) such that
R = R(M) and a subspace a ⊂ aG is standard if there exists S(M) ⊂ S(G) such that a = aM .
For a subspace a ⊂ aG, we put

Ω(G)a = {ω ∈ Ω(G) | ω(a) = a}.

We denote the restriction of α̃ ∈ R(G) to a by resa(α̃). If ω ∈ Ω(G)a, then we denote the restriction
of ω to a by resa(ω). For a standard subspace aM ⊂ aG, we put

R(G; aM ) = {resaM (α̃) | α̃ ∈ R(G)} − {0}.

For α ∈ R(G; aM ), we denote by sα the reflection on aM corresponding to α with respect to the
restriction of the bilinear form ( , ) to aM . In general, R(G; aM ) may not be a root system on aM .
In this paper, we say that α ∈ R(G; aM ) is R(G)-symmetric if there exists ω ∈ Ω(G)aM such that
resaM (ω) = sα. If there exists a simple root α̃ such that α = resaM α̃, then Lemma 4 asserts that α
is R(G)-symmetric if and only if we have ωα−α̃ = −α̃, where ωα− is the longest element in the Weyl
group of S(M) ∪ {α̃}. We denote by R(G; aM )sym the subset consisting of the R(G)-symmetric
roots on aM . We put R+(G; aM ) = {resaM (α̃) | α̃ ∈ R+(G)} − {0} and R−(G; aM ) = −R+(G; aM ).
Since aM is a standard subspace, the intersection of R+(G; aM ) and R−(G; aM ) are empty. We put
R+(G; aM )sym = R+(G; aM ) ∩ R(G; aM )sym. We write α̃ > 0 if α̃ is a positive root and α̃ < 0 if α̃
is a negative root. Moreover, for a subset R ⊂ R(G), we write R > 0 if R ⊂ R+(G) and R < 0 if
R ⊂ R−(G).

Until the end of this section, we fix S(MH) ⊂ S(G). We put aH = aMH . We abbreviate resaH to
resH and Ω(G)aH to Ω(G)H . We also fix a root system R(H) ⊂ R(G; aH )sym on aH . Let R+(H) =
R(H)∩R+(G; aH )sym, then R+(H) is a positive system of R(H). For S(M) ⊂ S(G) and ω ∈ Ω(G),
we put

lM (ω) = 
{α̃ ∈ R+(M) | ωα̃ < 0}.
We denote by Ω(H) the Weyl group of R(H) acting on aH . Since α ∈ R(H) is R(G)-symmetric, there
exists a unique s̃α ∈ Ω(G)H such that resH s̃α = sα and lMH (s̃α) = 0. Therefore, for each ω ∈ Ω(H),
there exists a unique ω̃ ∈ Ω(G)H such that resH(ω̃) = ω and lMH (ω̃) = 0. The homomorphism
ω −→ ω̃ allows us to regard Ω(H) as a subgroup of Ω(G). We put

D̃M = {ω ∈ Ω(G) | lM (ω) = 0 and ω(aM ) ⊂ aH}.

We write R×
+ for {x ∈ R | x > 0}.

Lemma 2.1. Let ω ∈ D̃−1
M and ω′ ∈ Ω(G)H . Let α̃ ∈ R+(G) be a positive root satisfying resH(α̃) �= 0.

If ωω′α̃ > 0, then for any α̃′ ∈ R+(G) satisfying resH(α̃′) ∈ R×
+ resH(α̃), we have ωω′α̃′ > 0 and if

ωω′α̃ < 0, then for any α̃′ ∈ R+(G) satisfying resH(α̃′) ∈ R×
+ resH(α̃), we have ωω′α̃′ < 0.
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Let ω ∈ D̃−1
M and α ∈ R+(G; aH ), then we say that ωα is positive if we have ωα̃ > 0 for all

α̃ ∈ R+(G) satisfying resH(α̃) ∈ R×
+α and ωα is negative if we have ωα̃ < 0 for all α̃ ∈ R+(G)

satisfying resH(α̃) ∈ R×
+α. We write ωα > 0 if ωα is positive and ωα < 0 if ωα is negative.

For ω ∈ D̃−1
M , we define lH(ω) by

lH(ω) = 
{α ∈ R+(H) | ωα < 0}.
We put

DM,H = {ω ∈ D̃−1
M | lH(ω) = 0}.

We also put

Ω(G)M,H = {ω ∈ Ω(G) | ω(aH) ⊃ aM},
then Ω(G)M,H is invariant under the left and right action of Ω(M), Ω(H), respectively.

Proposition 2.2. The subset DM,H ⊂ Ω(G)M,H is a system of representatives for the set of double
cosets Ω(M)\Ω(G)M,H/Ω(H).

The set of standard subroot systems {R(M) | S(M) ⊂ S(G)} of R(G) is denoted by LG.
We write LH for the set of standard subroot systems of R(H).

Lemma 2.3. Let ω ∈ DM,H , then

R(H) ∩ resH(ω−1(R(M))) ∈ LH .

For R(M) ∈ LG and R(L) ∈ LH , we put

DM,H,L = {ω ∈ DM,H | R(H) ∩ resH(ω−1(R(M))) = R(L)},
aM,H,L = 
DM,H,L.

We write r(M) for 
S(M) and r(L) for 
S(L). The following theorem is the main result of this
section.

Theorem 2.4. We have ∑
R(M)∈LG

(−1)r(M)aM,H,L = (−1)r(M
H) · (−1)r(L).

The following lemma will be used in § 6.

Lemma 2.5. Let R(M), R(M0) ∈ LG. Assume that R(M0) has no other associate standard subroot
system than R(M0) itself. If R(M) satisfies ω(aM ) ⊂ aM0 for some ω ∈ Ω(G), then we have

R(M) ⊃ R(M0).

3. Zelevinski involutions

Let G be a connected reductive linear algebraic group defined over a p-adic field F . We denote
by Γ the Galois group Gal(F/F ) of F . We fix a minimal parabolic subgroup P0 of G defined
over F . We also fix a Levi subgroup M0 ⊂ P0 defined over F and a maximal torus T0 ⊂ M0

defined over F . We denote by A0 the split component of T0. Let G∗ be a quasi-split inner form
of G and let ϕ : G −→ G∗ be an inner twisting. We fix a Borel subgroup B∗

0 of G∗ defined over
F and a maximal torus T ∗

0 ⊂ B∗
0 defined over F . Let R(G∗, T ∗

0 ) be the set of roots of (G∗, T ∗
0 ),

R+(G∗, T ∗
0 ) the set of positive roots corresponding to B∗

0 and S(G∗, T ∗
0 ) the set of simple roots.

We write LG∗
for the set of standard Levi subgroups of G∗. Let A∗

0 be the split component of T ∗
0 .

1630

https://doi.org/10.1112/S0010437X04000892 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000892


On functoriality of Zelevinski involutions

For M∗ ∈ LG∗
, we denote by AM∗ the split component of the center ZM∗ of M∗. We say

that a subtorus A ⊂ A∗
0 is standard if there exists a standard Levi subgroup M∗ ∈ LG∗

such
that A = AM∗ . For a subtorus A ⊂ A∗

0, we put M∗
A = Cent(A,G∗). We may assume that ϕ satisfies

ϕ(T0) = T ∗
0 and that ϕ(A0) is a standard subtorus of A∗

0. Moreover, we assume that ϕ(P0) ⊃ B∗
0 .

Therefore, we can define a set of positive roots R+(G,T0) by the pullback of R+(G∗, T ∗
0 ). Let LG

be the set of standard Levi subgroups of G, then for any M ∈ LG, we have ϕ(M) ∈ LG∗
. Moreover,

it is easy to see that the restriction of ϕ to M is an inner twisting of M to the quasi-split inner
form ϕ(M). We put r(M) = 
S(M,A0). We denote by Ω(G,T0) the Weyl group of (G,T0) and
by Ω(G,T0)F the subgroup consisting of the elements defined over F . We write R(G,A0) for the
set of relative roots of (G,A0). We define the set of positive roots R+(G,A0) by the restriction
of R+(G,T0). Let S(G,A0) be the set of simple roots and Ω(G,A0) the Weyl group of (G,A0).
We define R(G∗, A∗

0), R
+(G∗, A∗

0), S(G∗, A∗
0), Ω(G∗, A∗

0) and r(M∗) similarly. For a maximal torus
T ⊂ G defined over F , we denote by AT the split component of T . Therefore, AT is conjugate to a
standard subtorus of A0. Let Ω(G(F ), T ) = Norm(T,G(F ))/T (F ), then Ω(G(F ), T ) is a subgroup
of Ω(G,T )F . Since G∗ is quasi-split, we have

Ω(G∗(F ), T ∗
0 ) = Ω(G∗, T ∗

0 )F ∼= Ω(G∗, A∗
0).

We identify Ω(G∗, A∗
0) with Ω(G∗, T ∗

0 )F . We determine a Haar measure on T (F ) by the condition
that the volume of the maximal compact subgroup of T (F ) is 1. Let Greg be the set of strongly
regular semisimple elements in G(F ) and Gell the set of elliptic elements in Greg. We denote by Π(G)
the set of equivalence classes of irreducible admissible representations of G(F ). We write C[Π(G)]
for the space of virtual characters. Then C[Π(G)] consists of the finite linear combinations of Π(G).
For M ∈ LG, let

iGM : C[Π(M)] −→ C[Π(G)]
be the homomorphism corresponding to the (normalized) induction and

rGM : C[Π(G)] −→ C[Π(M)]

the homomorphism corresponding to the (normalized) Jacquet functor. Let π ∈ Π(G), then by the
theorem of Harish-Chandra [Har78], the distribution character of π can be represented by a locally
constant function chπ on Greg. We define a function IG(π) on Greg by

IG(π, γ) = ∆G(γ) chπ(γ),

where γ ∈ Greg and ∆G(γ) = |
∏
α(α(γ)− 1)|1/2F is the Weyl denominator. We extend this definition

to θ ∈ C[Π(G)]. We denote by C∞
c (G) the space of locally constant compactly supported functions

on G(F ). For f ∈ C∞
c (G), we define

I(γ, f) = ∆G(γ)
∫
G(F )/Gγ(F )

f(gγg−1) dg,

where γ ∈ Greg and Gγ = Cent(γ,G). Let {γ}st be the set of conjugacy classes in the stable
conjugacy class of γ. We define

Ist(γ, f) =
∑

γ′∈{γ}st

I(γ′, f).

Put C∞
c (G)− = {f ∈ C∞

c (G) | Ist(γ, f) = 0 for all γ ∈ Greg}. We say that a distribution D on
G(F ) is stable if D satisfies D(f) = 0 for all f ∈ C∞

c (G)−. We also say that a virtual character
θ ∈ C[Π(G)] is stable if θ is stable as a distribution on G(F ). Then θ is stable if and only if
IG(θ, γ) = IG(θ, γ′) holds for all γ ∈ Greg and γ′ ∈ {γ}st. We denote by C[Π(G)]st the subspace of
stable virtual characters. For a maximal torus TM of M and a maximal torus TG of G, we put

IG,Mconj (TM , TG) = {i : TM −→ TG | i = Int g for some g ∈ G(F )}.
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Then Ω(G(F ), TG) and Ω(M(F ), TM ) act on IG,Mconj (TM , TG) from the left and right, respectively.
Let T G

conj be a system of representatives for the conjugacy classes of maximal tori of G. We choose
a Haar measure on M(F ) in such a way that the following formula holds.

IG(iGM (θ), γ) =
∑

TM∈T Mconj

∑
i∈IG,Mconj (TM ,Gγ)/Ω(M(F ),TM )

IM (θ, i−1(γ)), γ ∈ Greg. (3.1)

We put MG-reg = M(F ) ∩ Greg. We denote by A−
M the set of a ∈ AM (F ) satisfying |α(a)|F < 1

for all α ∈ R+(G,A0) − R+(M,A0). In this paper, we use Casselman’s character formula in the
following form.

Lemma 3.1. Let M ∈ LG and a ∈ A−
M , then for each m ∈MG-reg, we can choose a positive number

n0 such that

IG(θ, anm) = IM (rGM (θ), anm)
holds for any θ ∈ C[Π(G)] and n � n0.

Proof. Let P be the standard parabolic subgroup with Levi factor M . For each m ∈ MG-reg

we can choose an M -conjugate m′ ∈ M(F ) and a positive number n0 so that for all n � n0

the parabolic subgroup Panm′ in [Cas77] is a standard parabolic subgroup contained in P and
anm′ ∈ Greg. Let L ∈ LG be the standard Levi subgroup of Panm′ . Then by [Cas77, Theorem 5.2],
we have IG(θ, anm′) = IL(rGL (θ), anm′) for all n � n0 and θ ∈ C[Π(G)]. On the other hand,
by applying [Cas77, Theorem 5.2] to rGM (θ), we have IM (rGM (θ), anm′) = IL(rML ◦ rGM (θ), anm′).
Thus IG(θ, anm′) = IM (rGM (θ), anm′). Since anm and anm′ are M -conjugate, this completes the
proof of the lemma.

Let θ ∈ C[Π(M)], m ∈Mreg and a ∈ AM , then

n ∈ Z −→ IM (θ, anm)

is a finite linear combination of quasi-characters of Z. Hence, we have the following lemma.

Lemma 3.2. Let θ, θ′ ∈ C[Π(M)], m,m′ ∈ Mreg and a, a′ ∈ AM . If there exists a positive number
n0 such that

IM (θ, anm) = IM (θ′, a′nm′)

holds for all n � n0, then we have

IM (θ,m) = IM (θ′,m′).

Lemma 3.3. We have

iGM (C[Π(M)]st) ⊂ C[Π(G)]st,

rGM (C[Π(G)]st) ⊂ C[Π(M)]st.

Proof. Let m,m′ ∈ MG-reg, θ ∈ C[Π(G)]st and a ∈ A−
M . Suppose that m and m′ are stably

M -conjugate. Then anm and anm′ are stably G-conjugate. Therefore, by using Lemma 3.1, we
have IM (rGM (θ), anm) = IM (rGM (θ), anm′) for sufficiently large n. Hence, by Lemma 3.2, we have
the required relation for rGM . The relation for iGM is well known.

We define the Zelevinski involution DG by

DG =
∑
M∈LG

(−1)r(M)iGM ◦ rGM .
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(See [Kat93] and [Aub95].) It is known that DG ◦ DG = id and that DG ◦ iGM = iGM ◦ DM .
If π ∈ Π(G), then Aubert [Aub95, Aub96] has shown that either DG(π) or −DG(π) is irreducible.
Now, Lemma 3.3 implies the following corollary.

Corollary 3.4. We have

DG(C[Π(G)]st) = C[Π(G)]st.

4. Endoscopy
We denote by WF the Weil group of F . We write Ĝ for the dual group of G and write LG for
the L-group Ĝ � WF of G. We fix a Γ-splitting (B,T , {Xα̌}) of Ĝ. We also fix an F -splitting
(B∗

0 , T
∗
0 , {Xα}) containing the pair (B∗

0 , T
∗
0 ). Then we may identify T with the dual group T̂ ∗

0 of
T ∗

0 . Let (H,H, s, ξ) be a set of endoscopic data for G. In this paper, we say that (H,H, s, ξ) and
(H ′,H′, s′, ξ′) are equivalent endoscopic data if there exists g ∈ Ĝ such that gξ(H)g−1 = ξ′(H′)
and gsg−1 ∈ s′ ·ZĜ. We fix an F -splitting (BH,0, TH,0, {Yα}) of H and a Γ-splitting (BH ,TH , {Yα̌})
of Ĥ. We identify TH with T̂H,0. By replacing the endoscopic data by equivalent data, we may
assume that s ∈ T , ξ(TH) = T and ξ(BH) ⊂ B. Let

i∗0 : TH,0 −→ T ∗
0

be the dual homomorphism of

ξ−1 : T̂ ∗
0
∼= T −→ TH ∼= T̂H,0.

We also write i∗0 for the corresponding morphism R(H,TH,0) −→ R(G,T ∗
0 ). We denote by AH,0 the

split component of TH,0.

Lemma 4.1. There exists ω ∈ Ω(G∗, T ∗
0 ) such that ω ◦ i∗0(AH,0) is a standard subtorus of A∗

0 and
that

ω ◦ i∗0(R+(H,TH,0)) ⊂ R+(G∗, T ∗
0 ).

Proof. Choose an admissible embedding Int g ◦ i∗0 : TH,0 −→ T ∗ = Int g(T ∗
0 ) of TH,0, where g ∈

G∗(F ). We may assume that AT ∗ is a standard subtorus of A∗
0. Put M∗ = MAT∗ . Then there exists

m ∈M∗(F ) such that mg ∈ Norm(T ∗
0 , G

∗). Let ω′ ∈ Ω(G∗, T ∗
0 ) be the image of mg. Put

R′+(H,TH,0) = {α ∈ R(H,TH,0) | ω′ ◦ i∗0(α) ∈ R+(G∗, T ∗
0 )}.

Then R′+(H,TH,0) is preserved by Γ. Therefore, there exists an element ωH ∈ Ω(H,TH,0)F such
that ωH(R+(H,TH,0)) = R′+(H,TH,0). Since i∗0 ◦ Ω(H,TH,0) ◦ i∗0−1 ⊂ Ω(G∗, T ∗

0 ), we have ω′ · (i∗0 ◦
ωH ◦ i∗0−1) ∈ Ω(G∗, T ∗

0 ). Put ω = ω′ · (i∗0 ◦ ωH ◦ i∗0−1). Then ω satisfies the required properties.

We identify Ω(G∗, T ∗
0 ) with Ω(Ĝ,T ). We also identify Ω(H,TH) with Ω(Ĥ,TH). Let n̂ω ∈

Norm(T , Ĝ) be a representative for ω ∈ Ω(Ĝ,T ). Since (H,H, s, ξ) and (H,H, Int n̂ω(s), Int n̂ω ◦ ξ)
are equivalent endoscopic data, we may assume that i∗0(AH,0) is a standard subtorus of A∗

0 and that

s ∈ T ,
ξ(TH) = T ,
ξ(BH) ⊂ B.

We put AH = i∗0(AH,0) and MH = Cent(AH , G∗). Then MH ∈ LG∗
.

Lemma 4.2. Let A1 and A2 be subtori of A∗
0. If g ∈ G∗(F ) satisfies Int g(A1) = A2, then there

exists ω ∈ Ω(G∗, T ∗
0 )F such that ω(A1) = A2 and resA1(ω

−1 ◦ Int g) = idA1 .

Proof. Put M∗
2 = Cent(A2, G

∗). Then M∗
2 is quasi-split and T ∗

0 is a maximally split torus of M∗
2 .

Since A1 and A2 are split tori, we have resA2(Intσ(g)g−1) = idA2 for any σ ∈ Γ. This implies
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that σ(g)g−1 ∈ M∗
2 (F ). Hence, by [Kot82, Corollary 2.2], there exists m ∈ M∗

2 (F ) such that the
torus T ∗ = Intmg(T ∗

0 ) is defined over F and that the homomorphism Intmg : T ∗
0 −→ T ∗ is defined

over F . This implies that T ∗ is also a maximally split torus of M∗
2 . Therefore, we may assume that

T ∗ = T ∗
0 . Then mg ∈ Norm(T ∗

0 , G
∗). Let ω ∈ Ω(G∗, T ∗

0 )F be the image of mg, then it is immediate
that ω(A1) = A2 and resA1(ω

−1 ◦ Int g) = idA1 .

Lemma 4.3. Let ω ∈ Ω(H,AH,0), then there exists a unique ωG ∈ Ω(G∗, A∗
0) satisfying the following

conditions:

1) ωG(AH) = AH ;

2) resAH,0(i
∗
0
−1 ◦ ωG ◦ i∗0) = ω;

3) ωG(R+(MH , T ∗
0 )) ⊂ R+(G∗, T ∗

0 ).

Proof. Let ω′ = i∗0 ◦ ω ◦ i∗0
−1, then we have ω′ ∈ Ω(G∗, T ∗

0 ). Put A1 = A2 = AH and g = nω′ .
Then apply Lemma 4.2.

We define a homomorphism

i∗ : Ω(H,AH,0) −→ Ω(G∗, A∗
0)

by putting i∗(ω) = ωG.
Let R(G∗, AH)sym be the subset of resH(R(G∗, A∗

0)) − {0} consisting of the R(G)-symmetric
roots on AH . By applying Lemma 4.3 to the reflection sα of α ∈ R(H,AH,0), we have the following
corollary.

Corollary 4.4. We have

i∗0(R(H,AH,0)) ⊂ R(G∗, AH)sym.

For the sake of brevity, we assume that H = LH until the end of this section. We denote
by HG-reg the set of strongly G-regular elements in H(F ). For γH ∈ HG-reg and γG ∈ Greg, let
∆G,H(γH , γG) be the Langlands–Shelstad transfer factor. Since we normalized the orbital integral,
we define ∆G,H by the product of ∆I, ∆II and ∆III in this paper. Because we have to define the
transfer of virtual characters, we assume the fundamental lemma for groups [Art96, Hypothesis 3.1]
and for Lie algebras [Wal97, Conjecture 1.3] in this paper. Then [Wal97, Corollary 1.7] asserts that
for each fG ∈ C∞

c (G), there exists fH ∈ C∞
c (H) such that

Ist(γH , fH) =
∑

γ∈Γ(G)

∆G,H(γH , γ)I(γ, fG),

holds for all γH ∈ HG-reg, where Γ(G) is the set of conjugacy classes in Greg. Hence, for θH ∈
C[Π(H)]st, we can define a linear form TranGH(θH) on C∞

c (G) by the relation

TranGH(θH)(fG) = θH(fH).

Let X be a subset of Greg. We say that θ ∈ C[Π(G)] is stable on X if we have IG(θ, γ) = IG(θ, γ′)
for all γ, γ′ ∈ X that are stably conjugate.

Lemma 4.5. Let L be a standard Levi subgroup of H. If θL ∈ C[Π(L)] is invariant under the adjoint
action of Norm(L,H(F )) and if iHL (θL) is stable on Lell ∩Hreg, then θL is stable on Lell.

Proof. Let γ ∈ Lell ∩ Hreg and T = Cent(γ,H). Let T ′ be a maximal torus of L such that
IH,Lconj (T

′, T ) �= ∅. Let i ∈ IH,Lconj (T
′, T ), then there exists h ∈ H(F ) such that i = Inth. Since γ ∈

Lell ∩ Hreg, we have L = Cent(AT ,H). Therefore, L is determined by γ. Since i−1(γ) ∈ Lell, L is
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also determined by i−1(γ). Hence, we have Inth(L) = L. Thus h ∈ Norm(L,H(F )). Therefore, by
(3.1), we have

IH(iHL (θL), γ) =
∑

h∈Norm(L,H(F ))/L(F )

IL(θL, Inth−1(γ)).

Since θL is Norm(L,H(F ))-invariant, this shows that

IH(iHL (θL), γ) = n · IL(θL, γ),

where n = 
Norm(L,H(F ))/L(F ). Since iHL (θL) is stable on Lell ∩ Hreg, this implies that θL is
stable on Lell.

Proposition 4.6. Assume the fundamental lemma for groups and for Lie algebras. Then for θH ∈
C[Π(H)]st, we have

TranGH(θH) ∈ C[Π(G)].

Proof. For L ∈ LH , we write T̃ell(L) for the set of orbits of (essential) elliptic triplets as in [Art96,
p. 530]. We also define T̃ell(L)C as in [Art96, p. 530]. We denote by C[T̃ell(L)] the subspace of
C[Π(L)] generated by the virtual characters attached to T̃ell(L) and by C[T̃ell(L)C] the subspace
of C[Π(L)] generated by the virtual characters attached to T̃ell(L)C. Choose a subset L̃H of LH so
that each standard Levi subgroup ofH has one and only one associate standard Levi subgroup in L̃H .
Since θH is a virtual character, we can write θH as θH =

∑
L∈L̃H i

H
L (σL) with σL ∈ C[T̃ell(L)C].

Moreover, we may assume that σL is invariant under the action of Norm(L,H(F )). We claim that
σL ∈ C[Π(L)]st. We prove this by induction on r(H) − r(L). Let L ∈ L̃H . Then by the inductive
assumption,

θH −
∑
L′∈L̃H

r(L′)>r(L)

iHL′(σL′) =
∑
L′∈L̃H

r(L′)�r(L)

iHL′(σL′)

is a stable virtual character. We see that iHL (σL) is the only term which is not zero on Lell ∩Hreg

in the right-hand side. Thus iHL (σL) is stable on Lell ∩Hreg. Therefore, Lemma 4.5 asserts that σL
is stable on Lell. Since σL is a finite linear combination of virtual characters attached to T̃ell(L)C,
[Art96, Theorem 6.1] implies that σL is a stable virtual character. We have thus proved the claim.
So, it is enough to show that TranGH ◦ iHL (σL) ∈ C[Π(G)]. Put C[T̃ell(L)]st = C[T̃ell(L)] ∩ C[Π(L)]st.
It is not difficult to see that if TranGH ◦ iHL is not zero, then there exist a standard Levi subgroup M
of G, a set of elliptic endoscopic data (L, LL, sL, ξL) for M and a non-zero constant c such that

TranGH ◦ iHL = c · iGM ◦ TranML .

(Note that the transfer factor is defined up to a constant factor.) By applying [Art96, Theorem 6.2]
to the set of endoscopic data (L, LL, sL, ξL), we can show that

TranGH ◦ iHL (C[T̃ell(L)]st) ⊂ C[Π(G)].

(By using [Art96, Lemma 5.2], we can show that the linear form f −→ f ′gr(φ′) in [Art96, Theo-
rem 6.2] is a virtual character.) It is easy to extend this to C[T̃ell(L)C]st = C[T̃ell(L)C]∩C[Π(L)]st.

Let TH be a maximal torus of H and TG a maximal torus of G. We say that an isomorphism
i : TH −→ TG is admissible if i is defined over F and if there exist h ∈ H(F ) and g ∈ G(F ) such
that Int g(T0) = TG, Inth(TH,0) = TH and

i = Int g ◦ ϕ−1 ◦ i∗0 ◦ Inth−1.

We denote by IG,H(TH , TG) the set of admissible isomorphisms from TH to TG. Then Ω(H,TH)F
and Ω(G,TG)F act on IG,H(TH , TG) from the right and left, respectively. Let γH ∈ TH(F ) be a
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strongly G-regular element and γG ∈ TG(F ) a strongly regular element. Then we say that γH is
an image (or a (G,H)-image) of γG if there exists an admissible isomorphism i ∈ IG,H(TH , TG)
such that i(γH) = γG. In this paper, we also say that TH is an image of TG if there exists an
admissible isomorphism TH −→ TG. Let T H be a system of representatives for the stable conjugacy
classes of maximal tori of H. Since TranGH(θH) is a virtual character, we can consider a function
IG(TranGH(θH)) on Greg. By a routine calculation, we can prove the following formula from the
definition of TranGH .

Lemma 4.7. For γ ∈ Greg and θH ∈ C[Π(H)]st, we have

IG(TranGH(θH), γ) =
∑

TH∈T H

∑
i∈IG,H(TH ,Gγ)/Ω(H,TH )F

∆G,H(i−1(γ), γ)IH (θH , i−1(γ)).

5. Analogue of the formula of Bernstein–Zelevinski

In this section, we fix M ∈ LG. We put M∗ = ϕ(M). By Corollary 4.4, we have i∗0(R(H,AH,0)) ⊂
R(G∗, AH)sym. Therefore, we can define

DM∗,H ⊂ Ω(G∗, A∗
0)

as in § 2. We put DM,H = DM∗,H . Recall that we defined a homomorphism

i∗ : Ω(H,AH,0) −→ Ω(G∗, A∗
0)

by putting i∗(ω) = ωG, where ωG is the element in Lemma 4.3. Thus i∗(Ω(H,AH,0)) is the subgroup
Ω(H) in § 2 corresponding to the root system R(H) = i∗0(R(H,AH,0)). Therefore, Proposition 2.2
asserts that DM,H is a system of representatives for

Ω(M∗, A∗
0)\Ω(G∗, A∗

0)M,H/i
∗(Ω(H,AH,0)),

where
Ω(G∗, A∗

0)M,H = {ω ∈ Ω(G∗, A∗
0) | ω ◦ i∗0(AH,0) ⊃ AM∗}.

For ω ∈ DM,H , we put
Mω = Cent((ω ◦ i∗0)−1(AM∗),H).

Then it is easy to see that

i∗0(R(Mω, AH,0)) = i∗0(R(H,AH,0)) ∩ resH ω−1(R(M∗, A∗
0)).

Thus Lemma 2.3 asserts that Mω is a standard Levi subgroup of H. It is also easy to see that

Ω(Mω, TH,0) = Ω(H,TH,0) ∩ (ω ◦ i∗0)−1 ◦ Ω(M∗, T ∗
0 ) ◦ (ω ◦ i∗0).

Let M̂ω be the dual group of Mω. Since Mω is a standard Levi subgroup, we can regard M̂ω as
a standard Levi subgroup of Ĥ. Let n̂ω ∈ Norm(T , Ĝ) be a representative for ω ∈ Ω(G∗, T ∗

0 ) =
Ω(Ĝ,T ). We put

ξω = Int n̂ω ◦ ξ,
s′ω = Int n̂ω(s).

By using ω ◦ i∗0(R(Mω, TH,0)) = ω ◦ i∗0(R(H,TH,0)) ∩R(M∗, T ∗
0 ), we have ξω(M̂ω) = Cent(s′ω, M̂ )0,

where 0 denotes the identity component. We can choose aω ∈ (ZΓ
M̂

)0 such that Cent(aωs′ω, Ĝ)0 = M̂ω.
We put sω = aωs

′
ω. Let c : WF −→ H be a continuous splitting of

1 −→ Ĥ −→ H −→ WF −→ 1.

By the proof of [KS99, Lemma 2.2.A], we may assume that Int c(WF ) preserves the pair (BH ,TH).
We put Mω = M̂ω · c(WF ). Then Mω is a subgroup of H.
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Lemma 5.1. The sets (Mω,Mω, s
′
ω, ξω) and (Mω,Mω, sω, ξω) are equivalent endoscopic data for M ,

and (Mω,Mω, sω, ξω) is a set of endoscopic data for G.

Proof. Let w ∈WF and let σ ∈ Γ be the image of w. We denote by σH the action of σ on TH,0 and
by σG∗ the action of σ on T ∗

0 . Then there exists ω′ ∈ Ω(G∗, T ∗
0 ) such that i∗0 ◦ σH ◦ i∗0−1 = ω′ ◦ σG∗ .

Put ω′′ = ωω′ω−1. Then we have (ω ◦ i∗0) ◦ σH ◦ (ω ◦ i∗0)−1 = ω′′ ◦ σG∗ . By ω ∈ DM,H , we have
ω ◦ i∗0(AH,0) ⊃ AM∗ . Since AH,0 and A∗

0 are split tori, this shows that the action of ω′′ on AM∗ is
trivial. Thus ω′′ ∈ Ω(M∗, T ∗

0 ). Since Int c(w) preserves the pair (BH ,TH), the action of Int c(w) on
TH is equal to the action of σH on TH ∼= T̂H,0. Therefore, we have

ξω(c(w)) ∈ Norm(T , M̂) � σ ⊂ LM.

Hence, ξω(Mω) ⊂ LM . The other parts of the proof are easily verified.

It is easy to see that the equivalence classes of the endoscopic data do not depend on the choice
of n̂ω and c. We put BMω = BH ∩ M̂ω. Then the restriction (BMω ,TH , {Yα̌}) of the Γ-splitting
of H is a Γ-splitting of M̂ω. We have sω ∈ T and ξω(TH) = T . Moreover, since ω ∈ DM,H , we
have ω ◦ i∗0(R+(H,TH,0)) ⊂ R+(G∗, T ∗

0 ). This implies that ξω(BMω) ⊂ B. Let (H1, ξH1) be a z-pair
(see [KS99, § 2.2]). Let (BH1 ,TH1, {Yα̌}) be the Γ-splitting of Ĥ1 obtained from the Γ-splitting
(BH ,TH , {Yα̌}). Then ξH1 ◦ c(WF ) preserves the pair (BH1 ,TH1). Let Mω,1 be the standard Levi
subgroup of H1 corresponding to Mω. Then the restriction of the L-group data for H1 defines an
L-group data for Mω,1. Let LMω,1 ↪→ LH1 be the natural embedding. Then it is easy to see that
ξH1(Mω) is contained in LMω,1 ⊂ LH1. Therefore, (Mω,1, ξH1) is a z-pair for Mω.

For the sake of brevity, we assume that H = LH until the end of § 6. Then Mω is the image of
the natural embedding LMω ↪→ LH. We identify Mω with LMω. Let (M∗ ∩ B∗

0 , T
∗
0 , {Xα}) be the

restriction of the F -splitting (B∗
0 , T

∗
0 , {Xα}) to M∗ and let (Mω∩BH,0, TH,0, {Yα}) be the restriction

of the F -splitting (BH,0, TH,0, {Yα}) to Mω. We write iMω
0 for ω ◦ i∗0. Then iMω

0 is the dual of ξ−1
ω .

We put

Γ(Mω,M) = {(γMω , γM ) ∈Mω,G-reg ×MG-reg | γMω is an (M,Mω)-image of γM}.
We denote by ∆M,Mω the Langlands–Shelstad transfer factor of Mω. Note that ∆M,Mω is defined
up to a constant factor.

Lemma 5.2. There exists c ∈ C× such that

∆G,H(γMω , γM ) = c · ∆M,Mω(γMω , γM )

for all (γMω , γM ) ∈ Γ(Mω,M).

Proof. We write ∆′
G,H for the Langlands–Shelstad transfer factor of the set of endoscopic data

(H, LH, s′ω, ξω). Since the relative transfer factor of (H, LH, s′ω, ξω) is equal to the relative transfer
factor of (H, LH, s, ξ), it is enough to show that

∆′
G,H(γMω , γM ; γMω , γM ) = ∆M,Mω(γMω , γM ; γMω , γM )

for all (γMω , γM ), (γMω , γM ) ∈ Γ(Mω,M). We remark that ξω(BH) ⊂ B. Put TMω = Cent(γMω ,Mω)
and TM = Cent(γM ,M). Fix a maximal torus T ∗ ⊂ M∗ such that TMω is an image of T ∗

and fix i ∈ IM
∗,Mω(TMω , T ∗). We regard i as an admissible embedding of TMω ⊂ H into G∗.

Choose h ∈ Mω(F ) and m ∈ M∗(F ) such that Inth(BH,0, TH,0) and Intm(B∗
0 , T

∗
0 ) determine i.

Then Inth(Mω ∩ BH,0, TH,0) and Intm(M∗ ∩ B∗
0 , T

∗
0 ) also determine i. Choose a-data {aα} for

R(G∗, T ∗). Define a-data for R(M∗, T ∗) by the restriction of {aα} to R(M∗, T ∗). Let {χα} be
χ-data for R(G∗, T ∗). If α ∈ R(G∗, T ∗)−R(M∗, T ∗), then α is asymmetric. Therefore, we can choose
{χα} such that χα ≡ 1 for all α ∈ R(G∗, T ∗) − R(M∗, T ∗) (see [Art96, p. 521]). Define χ-data for
R(M∗, T ∗) by the restriction of {χα} to R(M∗, T ∗). We also fix data for γMω and γM similarly.
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Now, by using a similar argument to the proof of [Wal97, Lemma 6.5], we can show the required
identities for ∆I, ∆II and ∆III1 . Therefore, it remains to show the identity for ∆III2 . Define aG ∈
H1(WF , T̂

∗) for (H, LH, s′ω, ξω) and aM ∈ H1(WF , T̂
∗) for (Mω,

LMω, s
′
ω, ξω) as in [LS87, § 3.5].

By the choice of splittings, χ-data, pairs and i, we can easily show that aG = aM . Let ∆G
III2

be the
∆III2 factor of (H, LH, s′ω, ξω) and ∆M

III2
the ∆III2 factor of (Mω,

LMω, s
′
ω, ξω), then the above identity

implies that ∆G
III2

(γMω , γM ) = ∆M
III2

(γMω , γM ). This completes the proof.

We replace ∆M,Mω by c · ∆M,Mω . Then we have

∆G,H(γMω , γM ) = ∆M,Mω(γMω , γM ) (5.1)

for all (γMω , γM ) ∈ Γ(Mω,M).
Fix a maximal torus TG of M . Assume that ATG is a standard subtorus of A0. Let {TH1 , . . . , THr }

be a system of representatives for the stable conjugacy classes of maximal tori of H that are images
of TG. We may assume that ATH1 , . . . , ATHr are standard subtori of AH,0. For i = 1, . . . , r and
ω ∈ DM,H , let {Tωi1, . . . , Tωirω,i} be a system of representatives for the stable conjugacy classes of
maximal tori of Mω that are stably H-conjugate to THi . For each Tωij , fix zωij ∈ H(F ) such that
Int zωij(T

H
i ) = Tωij and that

Int zωij : THi −→ Tωij

is defined over F . We put

Y =
⋃
i

IH,G(THi , T
G)/Ω(H,THi )F .

Then we may regard Y as the set

{(THi , ı̃H) | 1 � i � r, ı̃H ∈ IH,G(THi , T
G)/Ω(H,THi )F }.

For ω ∈ DM,H , we put

Ỹω =
⋃
i,j

IMω,M (Tωij , T
G)/Ω(Mω, T

ω
ij )F .

We also put

Ỹ =
⋃

ω∈DM,H

Ỹω.

Then Ỹ can be regarded as the set of (ω, Tωij , ı̃
ω), where ω ∈ DM,H , 1 � i � r, 1 � j � rω,i and

ı̃ω ∈ IMω,M (Tωij , T
G)/Ω(Mω, T

ω
ij )F . It is easy to see that THi is stably H-conjugate to Tωi′j if and only

if i = i′. Moreover, if (i, j) �= (i′, j′), then Tωij is not stably Mω-conjugate to Tωi′j′ . We say that
(THi′ , ı̃

H) ∈ Y corresponds to (ω, Tωij , ı̃
ω) ∈ Ỹ if i′ = i and if there exist a representative iH for ı̃H , a

representative iω for ı̃ω and ωH ∈ Ω(H,THi′ )F such that

iH = iω ◦ Int zωij ◦ ωH .

Proposition 5.3. The above correspondence is a one-to-one correspondence between Y and Ỹ .

It is enough to prove the one-to-one correspondence for each i = 1, . . . , r. Thus we fix i ∈
{1, . . . , r}. Put TH = THi , Tωj = Tωij , z

ω
j = zωij and rω = rω,i. Put MTH = Cent(ATH ,H) and MTG =

Cent(ATG , G). Then, by TG ⊂ M , we have MTG ⊂ M . Since ATH is a standard subtorus of AH,0,
we have TH,0 ⊂MTH . Let iH ∈ IH,G(TH , TG), then there exist g ∈ G(F ) and h ∈MTH (F ) ⊂ H(F )
such that Inth(TH,0) = TH , Int g(T0) = TG and

iH = Int g ◦ ϕ−1 ◦ i∗0 ◦ Inth−1,
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since ATH is a standard subtorus of AH,0. Fix m ∈ MTG(F ) such that TG = Intm(T0). Then we
have ATG ⊂ Intm(A0).

Lemma 5.4. There exists ω′ ∈ Ω(G∗, A∗
0) such that

iH |A
TH

= Intm ◦ ϕ−1 ◦ ω′ ◦ i∗0 ◦ Inth−1|A
TH

and

ω′ ◦ i∗0(AH,0) ⊃ AM∗ .

Proof. Put
φ = ϕ ◦ Intm−1 ◦ iH ◦ Inth ◦ i∗0−1 : T ∗

0 −→ T ∗
0 .

Since φ ◦ i∗0(ATH ) = ϕ(ATG), we have φ ◦ i∗0(ATH ) ⊂ A∗
0. Put A1 = i∗0(ATH ) ⊂ A∗

0 and A2 =
φ ◦ i∗0(ATH ) ⊂ A∗

0. Since φ = Int(ϕ(m−1g)), Lemma 4.2 asserts that there exists ω′ ∈ Ω(G∗, A∗
0)

such that ω′(A1) = A2 and ω′|A1 = φ|A1 . This implies the first relation. Since

AM∗ ⊂ ϕ(ATG) = A2 = φ ◦ i∗0(ATH ) = ω′ ◦ i∗0(ATH ),

ω′ satisfies the second property.

Proposition 2.2 asserts that the intersection of DM,H and Ω(M∗, A∗
0) ·ω′ · i∗(Ω(H,AH,0)) consists

of a single element ω. We have ωΩ(MH , T ∗
0 )ω−1 ⊂ Ω(M∗, T ∗

0 ). Recall that we have

i∗(ωH) ◦ i∗0 ◦ ω−1
H ◦ i∗0−1 ∈ Ω(MH , T ∗

0 )

for any ωH ∈ Ω(H,AH,0) = Ω(H,TH,0)F .

Lemma 5.5. There exist ωH ∈ Ω(H,TH,0)F and ωM∗ ∈ Ω(M∗, T ∗
0 ) such that

iH = Intm ◦ ϕ−1 ◦ ωM∗ · ω ◦ i∗0 ◦ ωH ◦ Inth−1.

Proof. It is easy to see that there exists g′ ∈ Norm(TG, G(F )) such that

iH ◦ (Intm ◦ ϕ−1 ◦ ω′ ◦ i∗0 ◦ Inth−1)−1 = Int g′.

Since iH |A
TH

= (Intm ◦ ϕ−1 ◦ ω′ ◦ i∗0 ◦ Inth−1)|A
TH

, we have g′ ∈ Cent(ATG , G(F )). This implies
that

ϕ(m−1g′m) ∈ Norm(T ∗
0 ,M

∗(F )).
Let ω′

M∗ ∈ Ω(M∗, T ∗
0 ) be the image of ϕ(m−1g′m), then

iH = Intm ◦ ϕ−1 ◦ ω′
M∗ · ω′ ◦ i∗0 ◦ Inth−1.

Now, Proposition 2.2 asserts that there exists ωH ∈ Ω(H,TH,0)F such that

ω′
M∗ · ω′ ∈ Ω(M∗, A∗

0) · ω · i∗(ωH).

Since Ω(M∗, A∗
0) ·ω · i∗(ωH) = Ω(M∗, T ∗

0 )ω ◦ i∗0 ◦ ωH ◦ i∗0−1, there exists ωM∗ ∈ Ω(M∗, T ∗
0 ) such that

ω′
M∗ · ω′ = ωM∗ · ω ◦ i∗0 ◦ ωH ◦ i∗0−1.

Put
φ = ωH ◦ Inth−1 ◦ iH−1

= i∗0
−1 ◦ ω−1ω−1

M∗ ◦ ϕ ◦ Intm−1.

Then φ is a homomorphism from TG to TH,0. By φ = ωH ◦ Inth−1 ◦ iH−1, we have

σ(φ) ◦ φ−1 = ωH ◦ Intσ(h)−1h ◦ ω−1
H
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for any σ ∈ Γ. Thus
σ(φ) ◦ φ−1 ∈ Ω(H,TH,0).

On the other hand, by using φ = i∗0
−1◦ ω−1ω−1

M∗ ◦ ϕ◦ Intm−1, we have φ(AM ) = i∗0
−1◦ ω−1(AM∗) ⊂

AH,0. Since AM and AH,0 are split tori, the restriction of σ(φ)◦ φ−1 to i∗0
−1 ◦ ω−1(AM∗) is identity.

Thus
σ(φ) ◦ φ−1 ∈ (ω ◦ i∗0)−1 ◦ Ω(M∗, T ∗

0 ) ◦ (ω ◦ i∗0).
Consequently, we have

σ(φ) ◦ φ−1 ∈ Ω(Mω, TH,0).
Therefore [Kot82, Corollary 2.2] asserts that there exists z ∈Mω(F ) such that the homomorphism
Int z ◦ φ from TG to Int z(TH,0) is defined over F . Since this implies that TH is stably H-conjugate
to Int z(TH,0), we may assume that Int z(TH,0) is equal to Tωj ∈ {Tω1 , . . . , Tωrω}. Now, put

iω = φ−1 ◦ Int z−1.

Then we have

iω = Intm ◦ ϕ−1 ◦ ωM∗ω ◦ i∗0 ◦ Int z−1 = Intm ◦ ϕ−1(ωM∗) ◦ ϕ−1 ◦ iMω
0 ◦ Int z−1.

This implies that iω ∈ IMω,M (Tωj , T
G). Since

iω−1 ◦ iH = Int z ◦ ωH ◦ Inth−1 ∈ Int zωj ◦ Ω(H,TH)F ,

we conclude that (TH , ı̃H) ∈ Y corresponds to (ω, Tωj , ı̃
ω) ∈ Ỹω. Conversely, let (ω, Tωj , ı̃

ω) be an
element of Ỹ and iω a representative for ı̃ω. If we put iH = iω◦ Int zωj , then (TH , ı̃H) ∈ Y corresponds
to (ω, Tωj , ı̃

ω).

So, it remains to show that for each element in Y , there exists only one element in Ỹ that
corresponds to it and vice-versa. Suppose that (TH , ı̃H) ∈ Y and (TH , ı̃′H) ∈ Y correspond to the
same (ω, Tωj , ı̃

ω) ∈ Ỹ . Then it is easy to see that ı̃H = ı̃′H . Conversely, suppose that (ω, Tωj , ı̃
ω) ∈ Ỹ

and (ω′, Tω
′

j′ , ı̃
′ω′

) ∈ Ỹ correspond to the same (TH , ı̃H) ∈ Y . Let iω be a representative for ı̃ω and
iH a representative for ı̃H , then there exist m ∈M(F ) and h ∈Mω(F ) such that Inth(TH,0) = Tωj ,
Intm(T0) = TG and

iω = Intm ◦ ϕ−1 ◦ ω ◦ i∗0 ◦ Inth−1,

and there exists ωH ∈ Ω(H,TH)F such that

iH = iω ◦ Int zωj ◦ ωH .

Choose i′ω
′
, m′, h′ and ω′

H similarly. Then we have

i∗0
−1 ◦ ω′−1 ◦ ϕ ◦ Intm′−1

m ◦ ϕ−1 ◦ ω ◦ i∗0 = Inth′−1
zω

′
j′ ◦ ω′

Hω
−1
H ◦ Int zωj

−1h. (5.2)

Therefore,

Inth′−1
zω

′
j′ ◦ ω′

Hω
−1
H ◦ Int zωj

−1h ◦ (ω ◦ i∗0)−1(AM∗) = (ω′ ◦ i∗0)−1(AM∗).

Put A1 = (ω ◦ i∗0)−1(AM∗) and A2 = (ω′ ◦ i∗0)−1(AM∗). Then ω, ω′ ∈ DM,H implies that A1, A2 ⊂
AH,0. Since H is quasi-split and since

Inth′−1
zω

′
j′ ◦ ω′

HωH
−1 ◦ Int zωj

−1h ∈ IntH(F ),

Lemma 4.2 asserts that there exists ω′′
H ∈ Ω(H,AH,0) such that

Inth′−1
zω

′
j′ ◦ ω′

Hω
−1
H ◦ Int zωj

−1h|A1 = ω′′
H |A1.

Then
i∗0

−1 ◦ ω′−1 ◦ ϕ ◦ Intm′−1
m ◦ ϕ−1 ◦ ω ◦ i∗0|A1 = ω′′

H |A1.
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Since m,m′ ∈ M(F ), this shows that i∗0
−1 ◦ ω′−1ω ◦ i∗0|A1 = ω′′

H |A1 . Therefore, we have i∗0 ◦ ω′′
H ◦

i∗0
−1|ω−1(AM∗ ) = ω′−1ω|ω−1(AM∗ ). Now, by using ω−1(AM∗) ⊂ i∗0(AH,0) and i∗(ω′′

H)|i∗0(AH,0) = i∗0 ◦
ω′′
H ◦ i∗0−1|i∗0(AH,0), we have

i∗(ω′′
H)|ω−1(AM∗) = i∗0 ◦ ω′′

H ◦ i∗0−1|ω−1(AM∗ ).

Hence, ω′ · i∗(ω′′
H) · ω−1|AM∗ = idAM∗ . This implies that

ω′ · i∗(ω′′
H) · ω−1 ∈ Ω(M∗, A∗

0).

Therefore, Proposition 2.2 asserts that ω = ω′. Now, by (5.2), we have

Inth′−1
zω

′
j′ ◦ ω′

HωH
−1 ◦ Int zωj

−1h ∈ (ω ◦ i∗0)−1 ◦ Ω(M∗, T ∗
0 ) ◦ (ω ◦ i∗0).

On the other hand, we have Inth′−1zω
′

j′ ◦ ω′
HωH

−1 ◦ Int zωj
−1h ∈ Ω(H,TH,0). Therefore, we have

Inth′−1zω
′

j′ ◦ ω′
HωH

−1 ◦ Int zωj
−1h ∈ Ω(Mω, TH,0). This implies that

Int zω
′

j′ ◦ ω′
HωH

−1 ◦ Int zωj
−1 ∈ IntMω(F ). (5.3)

Since Int zω
′

j′ ◦ ω′
HωH

−1 ◦ Int zωj
−1 is an isomorphism from Tωj to Tωj′ defined over F , this shows

that Tωj is stably Mω-conjugate to Tωj′ . Hence we have Tωj = Tωj′ and zωj = zωj′ . By using (5.3) and
iH = iω ◦ Int zωj ◦ ωH = i′ω ◦ Int zωj ◦ ω′

H , we have

i′
ω−1 ◦ iω ∈ Ω(H,Tωj )F ∩ IntMω(F ) = Ω(Mω, T

ω
j )F .

This implies that ı̃′ω = ı̃ω. Thus we have shown that

(ω, Tωj , ı̃
ω) = (ω′, Tω

′
j′ , ı̃

′ω′
).

This completes the proof of Proposition 5.3.
The following theorem is an analogue of [BZ77, Lemma 2.12].

Theorem 5.6. Assume the fundamental lemma for groups and for Lie algebras. Then we have

rGM ◦ TranGH =
∑

ω∈DM,H

TranMMω
◦ rHMω

.

Proof. Let γG ∈ MG-reg. Put TG = Cent(γG, G). We may assume that ATG is a standard subtorus
of A0. Let Y and Ỹ be as above. Then Y and Ỹ are finite sets. Let (ω, Tωij , ı̃

ω) ∈ Ỹ , then (5.1) asserts
that ∆G,H(iω−1(γG), γG) = ∆M,Mω(iω−1(γG), γG), where iω is a representative for ı̃ω. On the other
hand, if (THi , ı̃

H) ∈ Y corresponds to (ω, Tωij , ı̃
ω), then iω−1(γG) is stably H-conjugate to iH−1(γG),

where iH is a representative for ı̃H . Therefore,

∆G,H(iH
−1

(γG), γG) = ∆M,Mω(iω−1(γG), γG).

Fix a ∈ A−
M . Put a∗ = ϕ(a). Then a∗ ∈ A−

M∗ . For ω ∈ DM,H , we have iω−1(a) = (ω ◦ i∗0)−1(a∗) ∈
A−
Mω

. Let θH ∈ C[Π(H)]st, then by Lemmas 3.1 and 4.7, we have

IM (TranMMω
◦ rHMω

(θH), anγG) =
∑

(Tωij ,̃ı
ω)∈Ỹω

∆M,Mω(iω−1(anγG), anγG) · IMω(rHMω
(θH), iω−1(anγG))

=
∑

(Tωij ,̃ı
ω)∈Ỹω

∆M,Mω(iω−1(anγG), anγG) · IH(θH , iω−1(anγG))

for sufficiently large n. Since iω−1(anγG) is stably H-conjugate to iH−1(anγG), we have

IH(θH , iω−1(anγG)) = IH(θH , iH
−1

(anγG)).
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Therefore, by Lemmas 3.1 and 4.7 and Proposition 5.3, we have

IM (rGM ◦ TranGH(θH), anγG) = IG(TranGH(θH), anγG),

=
∑

(THi ,̃ıH)∈Y

∆G,H(iH
−1

(anγG), anγG) · IH(θH , iH
−1

(anγG)),

=
∑

ω∈DM,H

∑
(Tωij ,̃ı

ω)∈Ỹω

∆M,Mω(iω−1(anγG), anγG) · IH(θH , iω−1(anγG)),

=
∑

ω∈DM,H

IM (TranMMω
◦ rHMω

(θH), anγG),

for sufficiently large n. It is then immediate from Lemma 3.2 that

IM (rGM ◦ TranGH(θH), γG) =
∑

ω∈DM,H

IM (TranMMω
◦ rHMω

(θH), γG).

6. Commutativity

By Corollary 3.4 and Proposition 4.6, we can define DG ◦ TranGH and TranGH ◦DH . By Lemma 5.1,
we may regard (Mω,Mω, sω, ξω) as a set of endoscopic data for G. Let ∆G,Mω be the Langlands–
Shelstad transfer factor. If Γ(Mω,M) = ∅, then we can show that ∆G,Mω ≡ 0. If Γ(Mω,M) �= ∅,
then we normalize ∆G,Mω so that

∆G,Mω(γMω , γM ) = ∆M,Mω(γMω , γM ),

for all (γMω , γM ) ∈ Γ(Mω,M). (As in Lemma 5.2, we can show that the relative transfer factors
∆G,Mω and ∆M,Mω are equal on Γ(Mω,M).) Then it is not difficult to show that

iGM ◦ TranMMω
= TranGMω

and that

TranGH ◦ iHMω
= TranGMω

.

Thus we have the following lemma.

Lemma 6.1. We have

iGM ◦ TranMMω
= TranGH ◦ iHMω

.

Recall that M0 is a minimal Levi subgroup of G. We put M∗
0 = ϕ(M0) ∈ LG∗

.

Lemma 6.2. The standard Levi subgroup M∗
0 itself is the only associate standard Levi subgroup

of M∗
0 .

Proof. Put X∗(AM∗
0
) = Hom(Gm, AM∗

0
) and aM∗

0
= X∗(AM∗

0
) ⊗Z R. Let ω ∈ Ω(G,A0), then

Lemma 4.2 asserts that there exists ω∗ ∈ Ω(G∗, A∗
0) such that ω = resA0(ϕ

−1 ◦ ω∗ ◦ ϕ). This implies
that for each chamber C of aM∗

0
, there exists

ω∗ ∈ Ω(G∗, A∗
0)aM∗

0
= {ω′ ∈ Ω(G∗, A∗

0) | ω′(aM∗
0
) = aM∗

0
}

such that ω∗(C) = C+
M∗

0
and ω∗(S(M∗

0 )) = S(M∗
0 ). Hence Lemma 2 shows that M∗

0 itself is the only
associate standard Levi subgroup of M∗

0 .

Therefore, Lemma 2.5 implies the following lemma.
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Lemma 6.3. If M∗ ∈ LG∗
satisfies ω(AM∗) ⊂ AM∗

0
for some ω ∈ Ω(G∗, A∗

0), then we have

M∗ ⊃M∗
0 .

Lemma 6.4. Let L ∈ LH and γH ∈ LG-reg. If γH is an image of γG ∈ Greg, then there exists
ω ∈ Ω(G∗, A∗

0) such that

ω ◦ i∗0(AL) ⊂ ϕ(A0) = AM∗
0
.

Proof. Let TH = Cent(γH ,H) and TG = Cent(γG, G). We may assume that ATH is a standard
subtorus of AH,0 and ATG is a standard subtorus of A0. Put MTH = Cent(ATH ,H) ∈ LH and
M = MTG = Cent(ATG , G) ∈ LG. Since γH is an image of γG, there exists iH ∈ IG,H(TH , TG)
such that iH(γH) = γG. Then Lemma 5.5 asserts that there exist ωH ∈ Ω(H,TH,0)F , ω ∈ DM,H ,
ωM ∈ Ω(M,T0), m ∈M(F ) and h ∈MTH (F ) such that Intm(T0) = TG, Inth(TH,0) = TH and

iH = Intm ◦ ωM ◦ ϕ−1 ◦ ω ◦ i∗0 ◦ ωH ◦ Inth−1.

Hence, we have ATG = iH(ATH ) = ϕ−1 ◦ ω ◦ i∗0 ◦ ωH(ATH ). By using i∗0 ◦ ωH ◦ i∗0−1 ∈ i∗(ωH) ·
Ω(MH , T ∗

0 ) and i∗0(ATH ) ⊂ i∗0(AH,0), we have ϕ−1 ◦ ω ◦ i∗0 ◦ ωH(ATH ) = ϕ−1 ◦ ω · i∗(ωH)◦ i∗0(ATH ).
Thus

ω · i∗(ωH) ◦ i∗0(AL) ⊂ ω · i∗(ωH) ◦ i∗0(ATH ) = ϕ(ATG) ⊂ ϕ(A0).

For M∗ ∈ LG∗
and L ∈ LH , we define DM∗,H,L as in § 2.

Corollary 6.5. Let M∗ ∈ LG∗
. If DM∗,H,L �= ∅ and if there exists γH ∈ LG-reg that is an image

of an element γG ∈ Greg, then we have

M∗ ⊃M∗
0 .

Proof. Let ω ∈ DM∗,H,L, then we have ω−1(AM∗) ⊂ i∗0(AL). On the other hand, Lemma 6.4 asserts
that there exists ω′ ∈ Ω(G∗, A∗

0) such that ω′ ◦ i∗0(AL) ⊂ AM∗
0
. Thus we have ω′ω−1(AM∗) ⊂ AM∗

0
.

It is then immediate from Lemma 6.3 that M∗ ⊃M∗
0 .

We put a(G) = dimA0, a(G∗) = dimA∗
0 and a(H) = dimAH,0. Then for M ∈ LG, we have

r(ϕ(M)) − r(M) = a(G∗) − a(G). We put

aM∗,H,L = 
DM∗,H,L

as in § 2.

Theorem 6.6. Assume the fundamental lemma for groups and for Lie algebras. Then we have

DG ◦ TranGH = (−1)a(G)−a(H) TranGH ◦DH .

Proof. By Theorem 5.6, we have

DG ◦ TranGH =
∑
M∈LG

(−1)r(M)iGM ◦ rGM ◦ TranGH

=
∑
M∈LG

∑
ω∈DM,H

(−1)r(M)iGM ◦ TranMMω
◦ rHMω

.
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Since iGM ◦ TranMMω
= TranGH ◦ iHMω

, this is equal to∑
M∈LG

∑
ω∈DM,H

(−1)r(M) TranGH ◦ iHMω
◦ rHMω

,

= (−1)a(G)−a(G∗)
∑

M∗∈LG∗
M∗⊃M∗

0

(−1)r(M
∗)

∑
L∈LH

∑
ω∈DM∗,H,L

TranGH ◦ iHL ◦ rHL ,

= (−1)a(G)−a(G∗)
∑

M∗∈LG∗
M∗⊃M∗

0

(−1)r(M
∗)

∑
L∈LH

aM∗,H,LTranGH ◦ iHL ◦ rHL .

By using Corollary 6.5 and Theorem 2.4, we can show that this is equal to

(−1)a(G)−a(G∗)
∑
L∈LH

∑
M∗∈LG∗

(−1)r(M
∗)aM∗,H,LTranGH ◦ iHL ◦ rHL

= (−1)a(G)−a(G∗)(−1)a(G
∗)−a(H)

∑
L∈LH

(−1)r(L) TranGH ◦ iHL ◦ rHL

= (−1)a(G)−a(H) TranGH ◦DH .

Now, we treat the general case. Let (H1, ξH1) be a z-pair for the set of endoscopic data (H,H, s, ξ)
as in § 5. Then for ω ∈ DM,H , we can define a z-pair (Mω,1, ξH1) for (Mω,Mω, sω, ξω) as in § 5. Let Z1

be the kernel of the morphism H1 −→ H and λH1 the quasi-character of Z1(F ) defined in [KS99,
§ 2.2]. Let Π(H1, λH1) be the set of equivalence classes of irreducible admissible representations of
H1(F ) whose central characters on Z1(F ) are equal to λH1. We denote by C[Π(H1, λH1)] the sub-
space of C[Π(H1)] generated by Π(H1, λH1). We put C[Π(H1, λH1)]

st = C[Π(H1, λH1)]∩C[Π(H1)]st.
Then we have

TranGH1
(C[Π(H1, λH1)]

st) ⊂ C[Π(G)],

as in Proposition 4.6. On the other hand, by [KS99, Lemma 5.1.C] we have

∆G,H1(zγ
H1 , γG) · IH1(θH1, zγ

H1) = ∆G,H1(γ
H1 , γG) · IH1(θH1 , γ

H1),

for all z ∈ Z1(F ) and θH1 ∈ C[Π(H1, λH1)]
st. Therefore, by arguments similar to the proofs of

Theorems 5.6 and 6.6, we have the following theorem.

Theorem 6.7. Assume the fundamental lemma for groups and for Lie algebras. Then we have

rGM ◦ TranGH1
=

∑
ω∈DM,H

TranMMω,1
◦ rH1

Mω,1
,

DG ◦ TranGH1
= (−1)a(G)−a(H) TranGH1

◦DH1 .

7. Functoriality

In this section, we discuss the relation between the Zelevinski involutions and the Arthur conjecture
[Art89, Conjecture 6.1]. So we assume [Art89, Conjecture 6.1], Hypothesis 1.1 and the fundamental
lemma for groups and for Lie algebras in this section. Let

ψ : WF × SU2(C) × SL2(C) −→ LG

be an Arthur parameter and let Πψ(G) be the A-packet of ψ. We denote the second factor by
SU2(C) in order to distinguish this from the third factor SL2(C), which is used to define the Arthur
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parameters in [Art89]. We put

Sψ = Cent(ψ, Ĝ),

Sψ = Sψ/S
0
ψ.

Let sψ = ψ(1× 1× (−1)) ∈ Sψ. We denote by C[Πψ(G)] the subspace generated by Πψ(G). We put
C[Πψ(G)]st = C[Πψ(G)] ∩ C[Π(G)]st. For the set of endoscopic data (H,H, s, ξ) corresponding to a
semisimple element s ∈ Sψ, we choose a z-pair (H1, ξH1). Then ξH1◦ ψ is an Arthur parameter onH1,
which we also denote by ψ. Let θH1

ψ ∈ C[Πψ(H1)]st be the distribution ψH in [Art89, Conjecture 6.1].
As in [Art89, Conjecture 6.1], we define the function δ. Then

TranGH1
(θH1
ψ ) =

∑
π∈Πψ(G)

δ(sψs, π) · π,

where H is the endoscopic group corresponding to s ∈ Sψ. Let ρ = ρψ be the normalizing function
in [Art89, Conjecture 6.1]. Then

〈s, π|ρ〉 = δ(s, π)ρ(s)−1,

where s ∈ Sψ is the image of s ∈ Sψ. We identify SU2(C) with SL2(C). We define d(ψ) by

d(ψ)(w × t× u) = ψ(w × u× t), w × t× u ∈WF × SU2(C) × SL2(C).

Then d(ψ) is the Arthur parameter constructed from ψ by interchanging the role of SU2(C) and
SL2(C). We have Sψ = Sd(ψ) and Sψ = Sd(ψ). If G is quasi-split, then we put G∗ = G and

S∗
ψ = Sψ/S

0
ψ · ZΓ

Ĝ
.

We fix Whittaker data χ for G∗ (see [KS99, § 5.3]). Let φψ be the corresponding Langlands
parameter on G∗ and Πφψ(G∗) the L-packet of φψ. We determine the base point πχ ∈ Πφψ(G∗) as in
[Art89, § 6]. Let (H,H, s, ξ) be the set of endoscopic data corresponding to s ∈ Sψ. If z ∈ ZΓ

Ĝ
, then

(H,H, s, ξ) and (H,H, sz, ξ) are equivalent endoscopic data. Therefore, Hypothesis 1.1 implies that
for π ∈ Πψ(G∗),

〈s, π|πχ〉 = δ(s, π)δ(s, πχ)−1

depends only on the image of s in S∗
ψ. (We also write s for the image of s in S∗

ψ.) Thus we may
regard 〈·, π|πχ〉 as an irreducible character of S∗

ψ.
Let {M} be the set of associate standard Levi subgroups of M . We say that π ∈ Π(G) is of type

{M} if rGM (π) is a non-zero linear combination of supercuspidal representations of M(F ). If π is of
type {M}, then we put rπ = r(M). For π ∈ Π(G), we define dG(π) by

dG(π) = (−1)rπDG(π).

Then we have rπ = rdG(π). The following proposition, which is conjectured by Kato [Kat93], is
proved by Aubert [Aub95, Aub96].

Proposition 7.1. For π ∈ Π(G), we have dG(π) ∈ Π(G).

Lemma 7.2. Conjecture 1.4 implies Conjecture 1.2.

Proof. First, we treat the case that G is quasi-split. Put G = G∗. We prove

dG∗(Πψ(G∗)) = Πd(ψ)(G
∗)

by induction on r(G∗). If S∗
ψ = {1}, then there is nothing to prove. Suppose that S∗

ψ �= {1}.
Let π ∈ Πψ(G∗), then since 〈·, π|πχ〉 is an irreducible character, there exists s ∈ S∗

ψ such that
s �= 1 and 〈s, π|πχ〉 �= 0. Let (H,H, s, ξ) be the set of endoscopic data corresponding to s ∈ Sψ.
Choose a z-pair (H1, ξH1). Then the coefficient of π in TranG

∗
H1

(θH1
ψ ) is not zero. On the other
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hand, by the inductive assumption, we have dH1(Πψ(H1)) = Πd(ψ)(H1). Hence, Corollary 3.4 asserts
that DH1(θ

H1
ψ ) ∈ C[Πd(ψ)(H1)]st. Therefore, Hypothesis 1.1 implies that there exists cH1

ψ ∈ C×

such that
DH1(θ

H1
ψ ) = cH1

ψ θH1

d(ψ).

By Theorem 6.7, we have

DG∗ ◦ TranG
∗

H1
(θH1
ψ ) = (−1)a(G

∗)−a(H)cH1
ψ TranG

∗
H1

(θH1

d(ψ)).

Since the coefficient of π in TranG
∗

H1
(θH1
ψ ) is not zero, this shows that the coefficient of dG∗(π) in

TranG
∗

H1
(θH1

d(ψ)) is not zero. Therefore, dG∗(π) ∈ Πd(ψ)(G∗). Thus we have dG∗(Πψ(G∗)) = Πd(ψ)(G∗).

Now, we turn to the general case. Let π ∈ Π(G), then [Art89, Conjecture 6.1(iii)] shows that we
have π ∈ Πψ(G) if and only if the coefficient of π in TranGG∗(θG

∗
ψ ) is not zero. By Theorem 6.6,

we have
DG ◦ TranGG∗(θG

∗
ψ ) = (−1)a(G

∗)−a(G)cG
∗

ψ TranGG∗(θG
∗

d(ψ)).
Therefore, dG(Πψ(G)) = Πd(ψ)(G).

Now, we assume Conjecture 1.4. By comparing the coefficient of dG(π) in

DG ◦ TranGH1
(θH1
ψ ) = (−1)a(G)−a(H)cH1

ψ TranGH1
(θH1

d(ψ)),

we have
δ(sψs, π)(−1)rπ = (−1)a(G)−a(H)cH1

ψ δd(sd(ψ)s,dG(π)), (7.1)
where δd = δd(ψ). We assume that G = G∗. By dividing the formula (7.1) by that of πχ, we have

〈sψs, π|πχ〉(−1)rπ−rπχ = 〈sd(ψ)s,dG∗(π)|πd,χ〉〈sd(ψ)s,dG∗(πχ)|πd,χ〉−1, (7.2)

where πd,χ is the base point in Πd(ψ)(G∗). Since δ(sψs, πχ) �= 0, we have δd(sd(ψ)s,dG∗(πχ)) �= 0 and

〈sd(ψ)s,dG∗(πχ)|πd,χ〉 �= 0

for all s ∈ Sd(ψ). If we put s = sψ and π = dG∗(πd,χ), then we have

〈1,dG∗(πd,χ)|πχ〉(−1)rπd,χ−rπχ = 〈sd(ψ)sψ,dG∗(πχ)|πd,χ〉−1.

Since sd(ψ)sψ is an element of order 1 or 2 contained in the center of Sd(ψ), this implies that

〈1,dG∗(πd,χ)|πχ〉 = 〈1,dG∗(πχ)|πd,χ〉 = 1.

Thus we have the following lemma.

Lemma 7.3. The character 〈·,dG∗(πχ)|πd,χ〉 is a one-dimensional character of Sd(ψ).

Moreover, since
〈s, π|πχ〉 = ±〈s,dG∗(π)|πd,χ〉〈s,dG∗(πχ)|πd,χ〉−1,

we have the following proposition.

Proposition 7.4. Let G = G∗. Assume the fundamental lemma for groups and for Lie algebras,
the Arthur conjecture [Art89, Conjecture 6.1], Hypothesis 1.1 and Conjecture 1.4. Then

〈s, π|πχ〉 = 〈s,dG∗(π)|πd,χ〉〈s,dG∗(πχ)|πd,χ〉−1.

This is the formula in Conjecture 1.3. By an easy calculation, we have

DG∗

( ∑
π∈Πψ(G∗)

〈sψ, π|πχ〉 · π
)

= (−1)rπχ 〈sd(ψ),dG∗(πχ)|πd,χ〉−1

( ∑
π∈Πd(ψ)(G∗)

〈sd(ψ), π|πd,χ〉 · π
)
.
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Since θG
∗

ψ =
∑

π∈Πψ(G∗) δ(sψ, π) · π, the relation DG∗(θG
∗

ψ ) = cG
∗

ψ θG
∗

d(ψ) implies that

cG
∗

ψ = (−1)rπχ δ(sψ, πχ)δd(sd(ψ), πd,χ)
−1〈sd(ψ),dG∗(πχ)|πd,χ〉−1.

Therefore, by using |δ(sψ, πχ)| = 1 and |δd(sd(ψ), πd,χ)| = 1 (see [Art89, Conjecture 6.1 (iv)]), we
have |cG∗

ψ | = 1.
By dividing (7.1) by ρ(sψs), we have

〈sψs, π|ρ〉(−1)rπ = (−1)a(G)−a(H)cH1
ψ ρ(sψs)−1ρd(sd(ψ)s)〈sd(ψ)s,dG(π)|ρd〉.

Hence, by |cH1
ψ | = 1 and [Art89, Conjecture 6.1 (iii)], we have

〈1, π|ρ〉 = 〈1,dG(π)|ρd〉.

Appendix. Proofs of the results in § 2

In this section, we prove the results in § 2. We keep the notation in § 2. We begin with the following
lemma.

Lemma A.1. If α ∈ R+(G; aM ) is R(G)-symmetric, then there exist

α̃1, . . . , α̃r ∈ R+(G)

satisfying the following conditions:

1) (α̃i, α̃j) = 0, if i �= j;

2) resaM (α̃i) ∈ R×
+α, i = 1, . . . , r;

3) sα̃1 · · · sα̃r ∈ Ω(G)aM ;

4) sα = resaM (sα̃1 · · · sα̃r).

Before proving Lemma 1, we prepare some lemmas. For S(M ′) ⊂ S(G), we put

C+
M ′ = {a ∈ aM ′ | α̃(a) > 0 for all α̃ ∈ S(G) − S(M ′)}.

We denote by C+
M ′ the closure of C+

M ′ . For S(M ′), S(M ′′) ⊂ S(G), we put

Ω(M ′,M ′′) = {ω ∈ Ω(G) | ω(S(M ′′)) = S(M ′)}.
Each connected component of

aM ′ −
( ⋃
α∈R(G)−R(M ′)

kerα
)

is called a chamber of aM ′ . The following lemma is [Cas74, Proposition 1.2.2].

Lemma A.2. If C is a chamber of aM ′ , then there exist unique S(M ′′) and ω ∈ Ω(M ′,M ′′) such
that

ω(C+
M ′′) = C.

Lemma A.3. Let α ∈ R+(G; aM ). If kerα ∩ C+
M contains a non-empty open subset of kerα, then

there exists a simple root α̃ ∈ S(G) such that

resaM (α̃) ∈ R×
+α.

Proof. Put S(M ′) = {β̃ ∈ S(G) | β̃(a) = 0 for all a ∈ Cα}, where Cα = kerα∩C+
M . Since Cα ⊂ C+

M ,
we have β̃(a) � 0 for all a ∈ Cα and β̃ ∈ S(G). Thus

R(M ′) = {β̃ ∈ R(G) | β̃(a) = 0 for all a ∈ Cα}.
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Since this shows that a root α̃′ satisfying resaM (α̃′) = α is contained in R(M ′), we have R(M ′) �

R(M). Thus S(M ′) � S(M). Take a simple root α̃ ∈ S(M ′) − S(M). Then α̃ satisfies resaM (α̃) ∈
R×

+α.

Let C be a chamber of aM whose closure C contains a non-empty open subset of kerα.
Then Lemma 2 asserts that there exist unique S(M ′) and ω ∈ Ω(M,M ′) such that ω(C+

M ′) = C.
By Lemma 3, we can choose a simple root α̃ such that

resaM′ (α̃) = R×
+ω

−1α.

Since we may replace S(M) by S(M ′) and α by ω−1α, it is enough to prove Lemma 1 under
the condition α ∈ resaM (S(G)). Therefore we assume that there exists a simple root α̃ such that
α = resaM (α̃). Put S(Mα) = S(M) ∪ {α̃}. We denote by ωα− the longest element of Ω(Mα).

Lemma A.4. Let α and α̃ be as above, then α is R(G)-symmetric if and only if

ωα−α̃ = −α̃.
Moreover, if α is R(G)-symmetric, then we have

resaM (ωα−) = sα.

Proof. The condition for ω ∈ Ω(G) to satisfy resaM (ω) = sα is that ω(R(M)) = R(M), ωα̃ < 0
and ω(R(Mα)) = R(Mα). It is easy to see that such an element ω exists if and only if we have
ωα−α̃ = −α̃. Moreover, if ωα−α̃ = −α̃, then the condition for ω to satisfy resaM (ω) = sα is that
ω ∈ ωα− · Ω(M). So the lemma is proved.

Let R be a root system and ω− the longest element of the Weyl group of R with respect to a
positive root system R+. Then it is not hard to check that there exist mutually orthogonal roots
α̃1, . . . , α̃p ∈ R+ such that

sα̃1 · · · sα̃p = ω−.

Now, we prove Lemma 1. Suppose that α is R(G)-symmetric. By Lemma 4, we have

resaM (ωα−) = sα.

For R = R(Mα) and ω− = ωα−, take α̃1, . . . , α̃p as above. We may arrange the index so that α̃1, . . . , α̃r
are not contained in R+(M) and that α̃r+1, . . . , α̃p are contained in R+(M). Then we have

resaM (sα̃1 · · · sα̃r) = resaM (ωα−) = sα,

resaM α̃1, . . . , resaM α̃r ∈ R×
+α.

This proves Lemma 1.
Until the end of this section, we fix S(MH), R(H) as in § 2.

Lemma A.5 (Lemma 2.1). Let ω ∈ D̃−1
M and ω′ ∈ Ω(G)H . Let α̃ ∈ R+(G) be a positive root

such that resH(α̃) �= 0. If ωω′α̃ > 0, then for any α̃′ ∈ R+(G) satisfying resH(α̃′) ∈ R×
+ resH(α̃),

we have ωω′α̃′ > 0 and if ωω′α̃ < 0,then for any α̃′ ∈ R+(G) satisfying resH(α̃′) ∈ R×
+ resH(α̃), we

have ωω′α̃′ < 0.

Proof. Take a+ ∈ C+
M . Suppose that α̃′ ∈ R+(G) satisfies resH(α̃′) = c · resH(α̃), where c ∈ R×

+.
Then we have (c · α̃ − α̃′)(aH) = 0. By the definition of D̃M , we have ω′−1ω−1(aM ) ⊂ aH . Thus,
ωω′(c · α̃− α̃′)(aM ) = 0. Therefore,

c · ωω′α̃(a+) = ωω′α̃′(a+).

Now, suppose that ωω′α̃ > 0. If ωω′α̃(a+) > 0, then ωω′α̃′(a+) > 0. This implies that
ωω′α̃′ > 0. If ωω′α̃(a+) = 0, then ωω′α̃′(a+) = 0. Thus ωω′α̃, ωω′α̃′ ∈ R(M). Since ω ∈ D̃−1

M and
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since ωω′α̃ ∈ R+(M), we have ω′α̃ > 0. This implies that c−1 ·resH(ω′α̃′) = resH(ω′α̃) ∈ R+(G; aH ).
Therefore, ω′α̃′ > 0. Since ω ∈ D̃−1

M and since ωω′α̃′ ∈ R(M), this shows that ωω′α̃′ > 0.

In the following, we prove Proposition 2.2. Obviously, we have ω ∈ Ω(G)M,H if and only if
ωΩ(MH)ω−1 ⊂ Ω(M).

Lemma A.6. Let ω ∈ Ω(G)M,H , then we have

Ω(M)ωΩ(H) ∩DM,H �= ∅.
Proof. It is easy to see that D̃−1

M is a system of representatives for Ω(M)\Ω(G)M,H . Therefore,
we may assume that ω ∈ D̃−1

M . Put R̃+(H) = {α̃ ∈ R(G) | resH(α̃) ∈ R+(H)}. By Lemma 2.1, we
can choose ω0 ∈ ωΩ(H) such that ω0(R̃+(H)) > 0. Now, we prove that Ω(M)ω0 ∩ DM,H �= ∅ by
induction on lM (ω−1

0 ) under the condition ω0(R̃+(H)) > 0. If lM (ω−1
0 ) = 0, then we have ω0 ∈ DM,H

and the lemma is proved. Suppose that lM (ω−1
0 ) > 0. Then there exists a simple root α̃ ∈ S(M) such

that ω−1
0 α̃ < 0. Since ω0(R̃+(H)) > 0, we have resH(ω−1

0 α̃) /∈ R(H). Therefore, ω0(R̃+(H)) > 0
implies that sα̃ω0(R̃+(H)) > 0. Since lM (ω−1

0 sα̃) < lM (ω−1
0 ), we have Ω(M)sα̃ω0 ∩DM,H �= ∅, by

the inductive assumption. Because sα̃ ∈ Ω(M), this shows that Ω(M)ω0 ∩DM,H �= ∅.
Proposition A.7 (Proposition 2.2). The subset DM,H ⊂ Ω(G)M,H is a system of representatives
for Ω(M)\Ω(G)M,H/Ω(H).

Proof. It is enough to show that


(Ω(M)ω0Ω(H) ∩DM,H) = 1

for ω0 ∈ DM,H . Let ω ∈ Ω(M)ω0Ω(H) ∩DM,H , then we can write ω as ω = ωMω0ωH with ωM ∈
Ω(M) and ωH ∈ Ω(H). We claim that ω ∈ ω0Ω(H)Ω(MH). We prove this by induction on lM (ω−1

M ).
If lM (ω−1

M ) = 0, then ωM = 1. Thus ω ∈ ω0Ω(H). Suppose that lM (ω−1
M ) > 0 and lH(ωH) = 0,

then we have resH(ωH) = 1. Thus, ω0(aH) ⊃ aM implies that ω0ωHω
−1
0 ∈ Ω(M). Combining this

with lM (ω−1
0 ) = lM (ω−1) = 0 and ω = ωM · (ω0ωHω

−1
0 ) · ω0, we have ωM · (ω0ωHω

−1
0 ) = 1. Thus,

ω = ω0. Suppose that lM (ω−1
M ) > 0 and lH(ωH) > 0. Then there exists a positive root α ∈ R+(H)

such that ωHα < 0. Then, by Lemma 2.1, we have ω0ωH α̃ < 0 for any α̃ ∈ R+(G) satisfying
resH α̃ ∈ R×

+α. On the other hand, since ω ∈ DM,H , we have ωMω0ωH α̃ > 0. Because ωM changes
the positivity of ω0ωH α̃, we have ω0ωHα̃ ∈ R(M). Put α̃′ = ωH α̃ and α′ = ωHα. Since resH(α̃′) is
R(G)-symmetric, we can choose α̃′

1, . . . , α̃
′
r ∈ R+(G) as in Lemma 1. For i = 1, . . . , r, put β̃i = ω0α̃

′
i.

Since resH(ω−1
H α̃′

i) ∈ R×
+α, the above argument shows that β̃i ∈ R−(M) and that ωM β̃i ∈ R+(M).

Put s̃α′ = sα̃′
1
· · · sα̃′

r
= ω−1

0 sβ̃1
· · · sβ̃rω0. Then we have s̃α′ ∈ Ω(H)Ω(MH) and

ω = ωMω0ωH = ωMsβ̃1
· · · sβ̃r · ω0 · s̃α′ωH .

Since lM (s−1

β̃r
· · · s−1

β̃1
ω−1
M ) < lM (ω−1

M ), we have

ω ∈ ω0Ω(H)Ω(MH)

by the inductive assumption. Now, we can write ω as ω = ω0ω
′
H with ω′

H ∈ Ω(H)Ω(MH).
Since lH(ω) = lH(ω0) = 0, we have ω′

H ∈ Ω(MH). Thus, ω0ω
′
Hω

−1
0 ∈ Ω(M). Therefore, lM (ω−1) =

lM (ω−1
0 ) = 0 shows that ω0ω

′
Hω

−1
0 = 1, since ω = ω0ω

′
Hω

−1
0 · ω0. Hence, ω = ω0.

We denote by C[Ω(G)] the group ring of Ω(G). We define ξ̃M ∈ C[Ω(G)] by

ξ̃M =
∑
ω∈D̃M

ω.

In the following, we prove that∑
R(M)∈LG

(−1)r(M)ξ̃M = (−1)r(M
H )ωM

H

− ωG−,
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where ωG− is the longest element of Ω(G) and ωM
H

− is the longest element of Ω(MH). We have
ω ∈ D̃M if and only if R+(MH) ⊂ ω(R+(M)) ⊂ R+(G). Therefore, we have∑

R(M)∈LG
(−1)r(M)ξ̃M =

∑
R(M)∈LG

(−1)r(M)

( ∑
ω∈Ω(G)

R+(MH)⊂ω(R+(M))⊂R+(G)

ω

)

=
∑

ω∈Ω(G)

( ∑
R(M)∈LG

ω−1(R+(MH))⊂R+(M)⊂ω−1(R+(G))

(−1)r(M)

)
ω.

For ω ∈ Ω(G), put

Jω = {α̃ ∈ S(G) | ωα̃ > 0, and nβ̃α̃ = 0 for all β̃ ∈ S(MH)},
Iω = {α̃ ∈ S(G) | nβ̃α̃ �= 0 for some β̃ ∈ S(MH)},

where nβ̃α̃ is defined by ω−1β̃ =
∑

α̃∈S(G) nβ̃α̃ · α̃.

Lemma A.8. Let ω ∈ Ω(G), then we have

Iω = ω−1(S(MH))

if and only if we have

ω−1(R+(MH)) ⊂ R+(M) ⊂ ω−1(R+(G))
for some R(M) ∈ LG.

Proof. Suppose that there exists R(M) ∈ LG such that

ω−1(R+(MH)) ⊂ R+(M) ⊂ ω−1(R+(G)).

Then by ω−1(R+(MH)) ⊂ R+(M), we have Iω ⊂ S(M). Therefore, R+(M) ⊂ ω−1(R+(G)) shows
that Iω ⊂ ω−1(R+(G)). Thus, we have ω−1(R+(MH)) > 0 and ω(Iω) > 0. Now, by considering
the definition of Iω, we can easily show that ω−1(S(MH)) ⊂ S(G). Conversely, assume that Iω =
ω−1(S(MH)). Let R(MIω) be the standard subroot system of R(G) corresponding to Iω. Then we
have

ω−1(R+(MH)) ⊂ R+(MIω) ⊂ ω−1(R+(G)).

If Iω = ω−1(S(MH)), then we have Iω ∪ Jω = {α̃ ∈ S(G) | ωα̃ > 0}.

Lemma A.9. If ω ∈ Ω(G) satisfies Iω = ω−1(S(MH)), then we have

∑
R(M)∈LG

ω−1(R+(MH))⊂R+(M)⊂ω−1(R+(G))

(−1)r(M) =

{
0, if Jω �= ∅,
(−1)r(M

H ), if Jω = ∅.

Proof. Since Iω is the set of simple roots of the smallest standard subroot system of R(G) containing
ω−1(R+(MH)), the left-hand side of the formula is equal to∑

R(M)∈LG
Iω⊂S(M)⊂(Iω∪Jω)

(−1)r(M) =
∑
J⊂Jω

(−1)	Iω (−1)	J .

The above argument shows that∑
R(M)∈LG

(−1)r(M)ξ̃M = (−1)r(M
H )

∑
ω,
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where the sum in the right-hand side runs over ω ∈ Ω(G) satisfying Iω = ω−1(S(MH)) and Jω = ∅.
We have Iω = ω−1(S(MH)) and Jω = ∅ if and only if ω(Iω) = S(MH) and ω(S(G) − Iω) < 0.
Now, it is easy to see that ω = ωM

H

− ωG− is the only element that satisfies this condition. Thus, we
have proved the following lemma.

Lemma A.10. We have ∑
R(M)∈LG

(−1)r(M)ξ̃M = (−1)r(M
H )ωM

H

− ωG−.

For

ξ =
∑

ω∈Ω(G)

aω · ω ∈ C[Ω(G)],

we define [ξ]H ∈ C[Ω(G)H ] by

[ξ]H =
∑

ω∈Ω(G)H

aω · ω.

For R(L) ∈ LH , set R̃(L) = {α̃ ∈ R(G) | resH(α̃) ∈ R(L)} and R̃+(L) = R̃(L)∩R+(G; aH ). We put

DL = {ω ∈ Ω(G) | ω(R̃+(L)) > 0},
ξL =

∑
ω∈DL

ω.

For ω ∈ Ω(G)H , put JHω = {α ∈ S(H) | ωα > 0}. Then,∑
R(L)∈LH

(−1)r(L)[ξL]H =
∑

ω∈Ω(G)H

∑
R(L)∈LH
ω(S(L))>0

(−1)r(L) · ω =
∑

ω∈Ω(G)H

∑
S(L)⊂JHω

(−1)r(L) · ω =
∑

ω∈Ω(G)H
JHω =∅

ω.

Thus we have ∑
R(L)∈LH

(−1)r(L)[ξL]H =
∑

ω∈Ω(G)H
ω(R+(H))<0

ω.

Lemma A.11. We have

[ωM
H

− ωG−ξH ]H =
∑

R(L)∈LH
(−1)r(L)[ξL]H .

Proof. We have

[ωG−ξH ]H =
∑

ω∈Ω(G)H
ω(R+(H))<0

ω,

since ω ∈ Ω(G)H satisfies (ωG−)−1ω ∈ DH if and only if ω(R+(H)) < 0. On the other hand, the
action of ωM

H

− ∈ Ω(G)H on ω(R(H)) is trivial. Hence we have

[ωM
H

− ωG−ξH ]H = ωM
H

− [ωG−ξH ]H = ωM
H

− ·
∑

ω∈Ω(G)H
ω(R+(H))<0

ω =
∑

ω∈Ω(G)H
ω(R+(H))<0

ω.

Lemma A.12 (Lemma 2.3). Let ω ∈ DM,H , then

R(H) ∩ resH(ω−1(R(M))) ∈ LH .

Proof. For αi ∈ S(H), fix α̃i ∈ R+(G) such that resH(α̃i) = αi. Let α ∈ R+(H). Choose α̃ ∈ R+(G)
such that resH(α̃) = α. Write α =

∑
αi∈S(H) ni ·αi. Then resω(aH)(ωα̃) =

∑
αi∈S(H) ni ·resω(aH)(ωα̃i).
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Since ω ∈ DM,H , we have ωαi > 0. Thus, ωα̃i =
∑

β̃j∈S(G)mij · β̃j , where mij � 0. Hence, by
ω(aH) ⊃ aM , we have

resaM (ωα̃) =
∑
i

ni · resaM (ωα̃i) =
∑
i,j

nimij · resaM (β̃j).

Assume α̃ ∈ ω−1(R(M)), then we have nimij = 0 for any β̃j ∈ S(G) − S(M) and αi ∈ S(M).
Therefore, for each α̃i satisfying ni �= 0, we have α̃i ∈ R̃(H) ∩ ω−1(R(M)). Hence, R(H) ∩
resH(ω−1(R(M))) is standard.

In the following, we prove that∑
R(M)∈LG

(−1)r(M)aM,H,L = (−1)r(M
H )(−1)r(L).

We prove this by imitating the proof in [Car93, § 2.7]. Let Ω(L) ⊂ Ω(H) be the Weyl group of
R(L), which we regard as a subgroup of Ω(G). We put aL = {a ∈ aH | α(a) = 0 for all α ∈ S(L)}.
If ω ∈ DM,H,L, then we have

Ω(H) ∩ ω−1Ω(M)ω = Ω(L).

For α ∈ R+(H), put ext(α) = {α̃ ∈ R+(G) | resH(α̃) = α}. Let ω ∈ Ω(G). In the following
lemma, we say that lL(ω) can be defined if either ω(ext(α)) ⊂ R+(G) or ω(ext(α)) ⊂ R−(G) holds
for each α ∈ R+(L). We write ωα > 0 if ω(ext(α)) ⊂ R+(G) and ωα < 0 if ω(ext(α)) ⊂ R−(G).
If lL(ω) can be defined, then we put

lL(ω) = 
{α ∈ R+(L) | ωα < 0}.
Since lL(ω−1) can be defined for any ω ∈ Ω(H), we have

Ω(H) ∩D−1
L = {ω ∈ Ω(H) | lL(ω−1) = 0}.

Lemma A.13. For ω ∈ DM,H,L, we have

Ω(M)ωΩ(H) = {ωMωωH | ωM ∈ Ω(M), ωH ∈ Ω(H) ∩D−1
L }.

Moreover, if lH(ωMωωH) can be defined, then we have

lH(ωMωωH) � lH(ωH).

Proof. Let ωM ∈ Ω(M) and ωH ∈ Ω(H). By induction on lL(ω−1
H ), we prove that

ωMωωH ∈ Ω(M)ω(Ω(H) ∩D−1
L ).

If lL(ω−1
H ) = 0, then nothing remains to be proved. Suppose that lL(ω−1

H ) > 0. Then there exists
α ∈ S(L) such that ω−1

H α < 0. Choose α̃ ∈ ω−1(R(M)) such that resH(α̃) = α. Since α is R(G)-
symmetric, we can take α̃1, . . . , α̃r as in Lemma 1. Then for i = 1, . . . , r, we have resω−1(aM )(α̃i) ∈
R×

+ resω−1(aM )(α̃), since aH ⊃ ω−1(aM ). This implies that α̃i(ω−1(aM )) = α̃(ω−1(aM )) = 0. Thus
α̃i ∈ ω−1(R(M)). Put s̃α = sα̃1 · · · sα̃r . Then we have ω · s̃α = sωα̃1 · · · sωα̃r · ω. Let ω′ = s̃αs

−1
α ∈

Ω(MH), then
ωMωωH = ωMωs̃αs̃αωH = ωMsωα̃1 · · · sωα̃r · ωω′ω−1 · ω · sαωH .

Since lL(ω−1
H s−1

α ) = lL(ω−1
H ) − 1 and since sωα̃1 · · · sωα̃r and ωω′ω−1 are contained in Ω(M), this

shows that ωMωωH ∈ Ω(M)ω(Ω(H) ∩D−1
L ) by the inductive assumption.

Next, suppose that lH(ωMωωH) can be defined. Since ωH ∈ Ω(H) ∩D−1
L , we have

lH(ωH) = {α ∈ R+(H) − ω−1
H (R+(L)) | ωHα < 0}

and
ωH(R+(H) ∩ ω−1

H resH(ω−1(R(M)))) = R+(L).
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On the other hand, let α ∈ R+(H) − resH(ω−1(R(M))). Then we have ωα > 0. Since ωα /∈
resω(aH)(R(M)), we have ωα̃ /∈ R(M) for any α̃ ∈ R(G) satisfying resH(α̃) = α. This implies that
ωMωα > 0, since ωM ∈ Ω(M). Therefore, we have shown that if α ∈ ωH(R+(H) − ω−1

H (R+(L))) =
ωH(R+(H) − ω−1

H resH(ω−1(R(M)))) is positive, then ωMωα is positive and if it is negative, then
ωMωα is negative. Thus we have proved that

lH(ωMωωH) = lH(ωH) + 
{α ∈ R+(L) | ωMωα < 0}.

Corollary A.14. If ω ∈ DM,H , then

DH ∩ Ω(M)ωΩ(H) ⊂ Ω(M)ω.

Proof. Let ω ∈ DM,H,L and ωMωωH ∈ DH ∩ Ω(M)ωΩ(H), where ωM ∈ Ω(M) and ωH ∈ Ω(H) ∩
D−1
L . Since ωMωωH ∈ DH , lH(ωMωωH) can be defined. Moreover, we have

0 = lH(ωMωωH) � lH(ωH).

Thus, lH(ωH) = 0. Since ωH ∈ Ω(H), this shows that ωH = 1.

Let x ∈ Ω(G)H and ω ∈ DM,H . Since xω−1 ∈ Ω(G)−1
M,H , we can write xω−1 as xω−1 = dMωM

with dM ∈ D̃M and ωM ∈ Ω(M). Then dM and ωM are uniquely determined by x and ω.

Lemma A.15. We have

D̃−1
M x ∩DH ∩ Ω(M)ωΩ(H) =

{
{d−1
M x}, if d−1

M x ∈ DH ,

∅, otherwise.

Proof. Suppose that d ∈ D̃M satisfies d−1x ∈ DH ∩ Ω(M)ωΩ(H). Then Corollary 14 asserts
that there exists ω′

M ∈ Ω(M) such that d−1x = ω′
Mω. This implies that xω−1 = dω′

M and
shows that d = dM . Therefore, D̃−1

M x∩DH∩Ω(M)ωΩ(H) is equal to {d−1
M x} or ∅. Since d−1

M x = ωMω,
the element d−1

M x is contained in D̃−1
M x ∩DH ∩ Ω(M)ωΩ(H) if and only if d−1

M x ∈ DH .

Put

R(L) = R(H) ∩ resH(ω−1(R(M))).

Then ω ∈ DM,H,L.

Lemma A.16. We have d−1
M x ∈ DH if and only if x ∈ DL.

Proof. Since aH ⊃ ω−1(aM ), we have R̃+(L) = R̃+(H) ∩ ω−1(R(M)). Because d−1
M xω−1 = ωM

preserves R(M), this implies that

d−1
M x(R̃+(L)) = d−1

M x(R̃+(H)) ∩R(M).

Now, suppose d−1
M x ∈ DH , then we have d−1

M x(R̃+(L)) ⊂ R+(M). Therefore, x(R̃+(L)) ⊂ R+(G).
Conversely, suppose that x(R̃+(L)) ⊂ R+(G). Then we have d−1

M x(R̃+(L)) ⊂ R+(G). Now, we
consider d−1

M x(R̃+(H)−R̃+(L)). Since d−1
M x = ωMω, this is equal to ωMω(R̃+(H)−R̃+(L)). Because

ω ∈ DM,H,L, we have ω(R̃+(H) − R̃+(L)) ⊂ R+(G) − R+(M). Since ωM preserves the positivities
of the roots in R+(G) − R+(M), this shows that d−1

M x(R̃+(H) − R̃+(L)) ⊂ R+(G). Thus, d−1
M x ∈

DH .

Lemma A.17. Let x ∈ Ω(G)H , then we have


(D̃−1
M x ∩DH) =

∑
aM,H,L,

where the sum in the right-hand side runs over R(L) ∈ LH satisfying x ∈ DL.
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Proof. If d ∈ D̃M , then d−1x ∈ Ω(G)M,H . Therefore, Proposition 2.2 asserts that there exists a
unique ω ∈ DM,H such that d−1x ∈ Ω(M)ωΩ(H). Hence, by Lemma 15, we have


(D̃−1
M x ∩DH) = 
{ω ∈ DM,H | D̃−1

M x ∩DH ∩ Ω(M)ωΩ(H) �= ∅}.
Since DM,H =

⋃
R(L)∈LH DM,H,L, the required equation follows immediately from Lemma 16.

Proposition A.18. We have

[ξ̃MξH ]H =
∑

R(L)∈LH
aM,H,L[ξL]H .

Proof. Let x ∈ Ω(G)H , then the coefficient of x in [ξ̃MξH ]H is equal to the number of the pair
(dM , ωH) ∈ D̃M ×DH satisfying x = dMωH . Therefore, the coefficient of x in [ξ̃MξH ]H is 
(D̃−1

M x∩
DH), and Lemma 17 asserts that this is equal to the coefficient of x in the right-hand side of the
formula.

Theorem A.19 (Theorem 2.4). We have∑
R(M)∈LG

(−1)r(M)aM,H,L = (−1)r(M
H) · (−1)r(L).

Proof. By Lemma 10, we have

ωM
H

− ωG− = (−1)r(M
H )

∑
R(M)∈LG

(−1)r(M)ξ̃M .

Therefore, by using Lemma 11 and Proposition 18, we have∑
R(L)∈LH

(−1)r(L)[ξL]H = [ωM
H

− ωG−ξH ]H

= (−1)r(M
H )

∑
R(M)∈LG

(−1)r(M)[ξ̃MξH ]H

= (−1)r(M
H )

∑
R(M)∈LG

(−1)r(M)
∑

R(L)∈LH
aM,H,L[ξL]H .

It is easy to see that [ξL]H are linearly independent. Hence, by comparing the coefficient of [ξL]H ,
we get the required formula.

For R(M), R(M ′) ∈ LG, we put

DM,M ′ = {ω ∈ Ω(G) | lM (ω−1) = lM ′(ω) = 0}.
Then DM,M ′ is a set of representatives for Ω(M)\Ω(G)/Ω(M ′).

Lemma A.20 (Lemma 2.5). Let R(M), R(M0) ∈ LG. Assume that R(M0) has no other associate
standard subroot system than R(M0) itself. If R(M) satisfies ω(aM ) ⊂ aM0 for some ω ∈ Ω(G),
then we have

R(M) ⊃ R(M0).

Proof. Choose a chamber C of aM0 such that the closure C of C contains a non-empty open subset
of ω(aM ). By Lemma 2 we can take ω′ ∈ Ω(G)aM0

such that ω′(C) = C+
M0

. Then ω′ω(aM ) is a
standard subspace and there exists S(M ′) ⊂ S(G) such that ω′ω(R(M)) = R(M ′). Take ω0 ∈
DM,M ′ ∩ Ω(M)ω−1ω′−1Ω(M ′). Since ω0(R(M ′)) = R(M), we have ω0(S(M ′)) = S(M). Therefore,

ω0(S(M0)) ⊂ ω0(S(M ′)) = S(M) ⊂ S(G).

This implies that ω0(R(M0)) is an associate standard subroot system of R(M0). Hence R(M0) =
ω0(R(M0)) ⊂ R(M).
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Lan83 R. P. Langlands, Les débuts d’une formule des traces stable, Publications mathématiques de
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