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Abstract

Lagrangian necessary and sufficient conditions for a nonsmooth vector-valued minimax in terms of
Clarke's generalized Jacobians are established under suitable invexity hypotheses.
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1. Introduction

Minimax points, or (more restrictively) saddlepoints, occur in several optimization
contexts, including stationary points that are neither maxima nor minima, saddlepoints
of Lagrangians for convex minimization problems, and saddlepoints for complemen-
tary variational problems (see [1]). These ideas generalize to vector functions (see
for example [8]), replacing maximum and minimum by weak maximum and weak
minimum. This paper considers generalizations to Lipschitz functions, not gener-
ally differentiable at all points, by constructing approximating problems with smooth
functions.

Let / , h and g be locally Lipschitz functions from R" x Rm, Km and K" into R\
Rp and K" respectively. Let Q c IR'', T C Rs and S c Rp be closed convex cones,
with int Q ^ 0. This paper considers the vector-valued minimax problem :

(WMM1)
WMINv{WMAXv/(x, y) subject to - h(y) e S] subject to - g(x) € T,
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164 B. D. Craven and D. V. Luu [2]

where WMIN denotes weak local minimum, and WMAX denotes weak local maxi-
mum, with respect to the order cone Q. Here a weak minimum of a vector function
0 at a point a means that, for some function p ( ) = o{\\ • —a\\),

Q(z) — @(a) — p(z) $ — intg as z —»• a through feasible points.

A weak maximum of 0 ( ) is a weak minimum of — ©(•)•
Necessary and sufficient conditions for a smooth vector-valued mimimax were

recently studied in [11], where under suitable invexity assumptions a weak maximum
of the inner problem becomes a strong maximum with respect to a suitable basic cone
K D Q. This property is not available for a nonsmooth problem. Instead, using
a method of smooth approximations, based on a known technique for generalized
functions (see [6], [ 10]), the nonsmooth problem is approximated by a smooth minimax
problem, to which results for smooth vector-valued minimax (see [9]) apply.

If S c Kp and K c W, then L(S, K) denotes the set of all linear mappings from
R" into W which map S into K; if b e W, then Kb := {y(t - b) : t e K, y > 0}. A
convex cone K C K' is called a basic cone if K has exactly r generators, which form
a basis for W. Let W := W'\(-intg) and U := W n (-W); Q* is the dual cone of
Q; f(x, y) is a column vector, and elements of Q* are row vectors.

2. Smoothed minimax problem

For sufficiently small positive parameters a and y3, define (see [8])

(2.1) f ( x , y : a , P ) : = [ f f(x - s , y - t)4>{s\a)t{t\P)dsdt;

h(y : fi) := / h(y — t)\jf{t\fi)df, g(x : a) := / g(x - s)<t>(s\a)ds;
JR» JR»

where ds and dt denote Lebesgue measures on W and W respectively; <t>{s\ot) :=
a"'<I>(Q'"1||5||), \j/{t\fi) := fi~l *(/3"'||f ||), where <I> a n d * are any fixed non-negative
C^-functions with supports in (—1, 1), scaled so that /R <P(z)dz = 1 = /R ty{z)dz\ if
/ = (/ , , / 2 , . . . ) then / 0 is the vector (fi<f>, f2(j>,...). Note that / ( • , . : a, 0), h(- :
0) and g(- : a) are continuously differentiable (see [6]), and tend to / ( • , •), h(-) and
g(-) as a, 0 —> 0. If f,h, g have Lipschitz constants Kf,Kh, Kg in a neighbourhood
No of a point (x, y) then, for (JC, j ) e No,

(2.2)

r | |5(x - 5 ) - ^ ( x ) | | ^ ( ^ | « ) ^ 5 <Kg I \\sU{.s\a)ds<Kg,
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[3] Conditions for a nonsmooth minimax 165

noting that (/>(•)> 0 and has compact support; and similarly

(2.3) \\h(y : P) - h{y)\\ < Kkp, a n d | | / ( J C , y : a , P ) - f ( x , y)\\ < Kf{a + P).

By Rademacher's theorem, the Lipschitz function g is Frechet differentiable except
on a set N\ of zero measure; then (see [6])

g\x:a)= f g'(x-s)<P(s\a)dscCg(a):=co{g'(s):s<tNi,\\s-x\\<c(},
./OS"

where co denotes closed convex hull, since the integrand on N\ does not affect the
integral. For sufficiently small a, Cg(a) is compact, and (from [3]):

f]Cg(a) = dg(x),
a>0

the Clarke generalized Jacobian.
Assume that (WMMl) reaches a weak local minimax at (x, y) = (x, y). Define

h(y : P) := h(y : P) - h(y : P) + h(y);
g(x : P) := g(x : P) - g(x : P) + g(x).

Then

h(y : p) = h(y), g(x : P) = g(x).

The problem (WMMl) is then approximated by the smooth minimax problem:

(WMM2) WMINx{WMAXy/(jc, y : a, P) subject to - h{y : P) e S]

subject to — g(x : a) e T.

By construction of g and h, the point (x, y) is also feasible for (WMM2). Denote
by (IP(a, P)) the inner problem of (WMM2).

PROPOSITION 1. Let f and g be locally Lipschitz functions, satisfying the stability
condition:

(V| e dh(y)) 0 e int [h(y) + f (IT) + S],

and the linear growth condition, for some 0 / r e Q* and some r > 0 :

(3X > 0)(Vy, \\y - j | | < r, -A(y) € 5) zf(x, y) < r/(Jt , Cy) - x\\y - 91
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166 B. D. Craven and D. V. Luu [4]

Then, for sufficiently small \\x — x ||, a and fi, the problem (IP(a, fi)) reaches a weak
local maximum at a point y = y(x; a, fi), where, for some 0 < p < oo,

\\y{x;a, fS) - y(x;0, 0)|| < p||(jc, a, fi) - (x, 0, 0)||.

PROOF. Since h is a locally Lipschitz function on finite dimensional spaces, the
mapping y (->• dh(y) is upper semicontinuous at y, by [3, Proposition 2.1.5]. From
this, and the hypotheses assumed, all hypotheses of [9, Lemma 4], are satisfied for
the minimization of T/(JC, •;«, fi) subject to —h(-;fi) € S. This problem reaches a
local maximum at a point y(x;a, fi), satisfying the stated Lipschitz condition. Then
y(x; a, /6) is a weak local maximum for (IP(a, /S)). •

Letm(;c;a, f$) := f(x, y(x;a, fi) : a, P); and for a e int Q, let

m(x;a, fi) := m(x;a, fi) + a\\x — x\\2.

^reQ* then za > 0. Consider now the following problems:

(OP(a , fi)) W M I N ^ w ( x ; a, fi) subject to - g(x :a)eT;

(OP(a , fi)z): MlN,rm(x;a, fi) subject to - g(x :a)eT.

PROPOSITION 2. Let g be locally Lipschitz. Letx be a local minimum of the problem
(OP(0, 0) : r ) , and let the hypotheses of Proposition 1 hold. Then m{x; a, fi) reaches
a weak local maximum, subject to —g(x : a) e T, at a point x = x(a, ff), where
x(a, fi) -> x as a, fi ->• 0.

PROOF. By Proposition 1, (IP(a, $)) reaches a weak local maximum y(x;a, fi),
where y(-; •, •) is Lipschitz at (x; 0, 0). From (2.2) and the hypotheses, all the hy-
potheses of [9, Lemma 3] are satisfied for (OP(a, P);T). Hence xm{- : a, fi) reaches
a local maximum, subject to — g{x : a) e T, at a point x(a, fi), where x(a, fi) —>• x
as a, fi —>• 0. Then x(a, fi) is also a weak local minimum of (OP(a, fi)). •

3. Smoothing locally invex functions

A differentiable function F : W —> Kr is invex at p e l " with respect to the order
cone 2 c l " if, for some scale function r)(x, p),

(to) F(x) - F(p) - F'(pMx, p) e Q.
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[5] Conditions for a nonsmooth minimax 167

It can be assumed that, for p fixed, rj(x, p) — x — p + oi\\x — p\\), so rj(-, p) is
continuous, and r)(p, p) = 0. A Lipschitz function F : R" —> K' is Q-invex at p if

(Voc)(V? € F{p)) F(x) - F(p) - f JJ(JC, p) € g ,

where 8F(p) is the Clarke generalized Jacobian of F at p . By Rademacher's theorem,
F is differentiate except on a set NQ of zero Lebesgue measure.

DEFINITION 1. A Lipschitz function F : R —>• K' is Q-invex around p if, for some
continuous scale function t](-, •), and each u in some neighbourhood of p with u <£ No,

- F(u) - F'(uMx -u + p,p)eQ.

Clearly, Q-invex around p implies Q-invex at p.

PROPOSITION 3. Let F(-) be Q-invex around p. Then the smoothed function

F ( - : a ) : = / F(x - s)(p(s\a)ds.

with <p chosen as in Section 2, is Q-invex at p, with the same scale function as F(-),
whenever a is sufficiently small.

REMARKS. This conclusion, required in Theorem 1, would not hold if Q-invex
around p is weakened to invex at each point in a neighbourhood of p, because a sum
of invex functions is not necessarily invex, if the scale functions are different.

Invex around p holds, in particular, for a C' -function F if invexity at the point p is
strengthened to

(Vx) F(x) - F{p) - F'ipMx, p) -a\\x- p\\2 e Q,

where a e int Q. For then

(VJC) Fix) - F{p) - F'ipMx, p) e int Q,

so that, for sufficiently small S,

( V J C ) ( V « , \\U - p \ \ < 8) F{x) - Fiu) - F'iuMx - u + p , p ) e Q .

For a C00 function F, shifting origins to make p = 0 and Fip) = 0, consider

F(z) = Az + \zTB.z and r/(z, 0) = z + \zTD.z

up to quadratic terms. Here B. represents the set of Hessian matrices, Bk say, for the
components of F, and similarly for D.. Substitution in the definition then shows that
invex around 0 requires the matrices B. — iA — uTB.)D. to be positive semidefinite,
for sufficiently small \\u — ||, where AD. represents the matrices Es AskDk. Hence the
matrices B. — AD. must be positive definite, and this in turn implies that F is invex
around 0.
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168 B. D. Craven and D. V. Luu [6]

PROOF OF PROPOSITION 3. Using the differentiability of F(- : a) and the Lipschitz
property of F(-),

F'(- : a) = I F'(x — s)(f>(s\u)ds,
Jw

since F'(x — s) is only undefined on a set of zero measure. Hence, for {w;} —> p with
Uj $ No, and noting that <p(-\a) > 0,

F(Uj + y : a) - F(uj : a) - F'(«, : a)r)(p + y, p)

= / [F(iij + y - s) - F(uj - s) - F'(uj - s)r)(p + y, p)]<j>(s\a)ds,

in which [... ] e Q for almost all s, provided that Uj and Uj• — s are in a suitable
neighbourhood of p. Consequently,

F(uj + y:a)- F(uj : a) - F'(UJ : a)t](p + y, p) e Q,

which implies that

F(p + y : a) - F(p : a) - F'(p : a)r)(p + y, p) e Q.

n

REMARK. Suppose that F : U." —>• Kr (where r < n) is invex at each point in a
ball B with centre p, with respect to an order cone Q c IRr. If F is differentiable at
u € B\{/>} then:

F(w + z : a) - F(u : a) = J[F(u + z-s)-F(u- s)]<t>(s\a) ds

> I F'(M — s)(o(z, u — s)(p(s\a)ds

(where co(z, u — s) := rj(z + u — s, s))

= F'(u\a)6(z,u)

if there exists 6(z, u) satisfying the linear equation

,u) = \ I F'(u - s)<j>(s\a)ds 6(z, u) = I F'(u - s)co(z, u) - <l>(s\a)ds.

Consider the hypothesis that for each sufficiently small S > 0, there exists some s,
with \\s\\ < 8, such that F'{u — s) has full rank. This implies that, for some 0 ( ) > 0
with support in a ball of radius 8, M has full rank; hence 9{z,u) exists, and 9(z, p) as
a limiting case. Thus F(- : or) is invex, as required in the proof of Theorem 1.

If F is differentiable at p, and p is a Karush-Kuhn-Tucker point for the minimization
of F,() subject to Fy() < 0 (j = 2, 3 , . . . , r), then F'(p) does not have full rank.
But F'(p — s) may have full rank, for small ||s|| > 0.
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4. Necessary conditions for a weak minimax

Assume that the inner problem of (WMM1):

(4.1) (IP,): WMAX, f(x,y) subject to - h(y) e S := R£,

reaches a (non-unique) weak local maximum at y = y(x), with y(x) — y and
constraints of (IP^) are active at y. Following [11], construct the problem (MP^) by
adjoining p — k additional constraints:

(4.2)
4>U)(y - y ) : = a ] { y - y ) + \ { y - y ) T A j ( y - y ) < 0 (j = 1 , 2 , . . . , p - k )

to (IPi). The matrices Aj are chosen (see [11], and (iii) in Theorem 1 below) so that
the 0O ) satisfy an invex property. Then y is also a weak maximum of (MP^). Another
similar set of functions

f U ) ( y - y ) : = b ] ( y - y ) + \ ( y - y ) T B j ( y - y ) < 0 ( 7 = 1 , 2 , . . . , * - / )

is also required in Theorem 2, with the B, chosen to satisfy an invex property. Note
that 0O)(O) = 0 and ^U )(0) = 0. (These (pu) and V0 ) are unrelated to the mollifier
functions <j> and \jf in section 2.)

Under the hypotheses of Proposition 1, the smoothed problem (IP(a, fi)) reaches a
weak local maximum at y = y(x; a, /}), where >>(•; •, •) satisfies a Lipschitz condition.
Consider then the following smoothed version

(4.3) WMAXy f(x,y:a,P) subject to

(MIP(a,/?)): -h(i)(y.p)<0 (i = 1,2,... , p);

<j>U)(y - y{x;ot, 0))<O (j = 1, 2 , . . . , p - k).

Then y(x; a, /3) is also a weak local maximum for (MIP(or, fi)). Under a constraint
qualification, weak Karush-Kuhn-Tucker conditions [5, Theorem 1] hold:

(WKT): r(x;a, P)fy(x, y(x :a,P): a, P)

= S, k,(x;a, p)hf{y{x;a, p) : P) + E ; /*,-(*;«, P)a]-

for some nonnegative Lagrange multipliers z(x;a, p), A.,(x;a, P), Hj(x;a, P); the
summation E, is over active constraints (thus hU)(y) = 0), and S ; is over j =
1, . . . ,k-p.
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THEOREM 1. Let (x, y) be a local weak minimaxfor (WMM1). Assume that:

(i) the hypotheses of Propositions 1 and 2 hold;
(ii) for each £, e dh(t)(y), the set of gradients %itfor those constraints for which

hu>(y) — 0, together with the gradients aj (j = 1, . . . , p — k) of the adjoined
constraints, form a linearly independent set;

(iii) the vectorfunction H (•), comprising — f (x, •), those h{"(-) for which hU)(y) =
0, and (p(J)(-) (j = 1, 2 , . . . , k — p), is Q x R^-invex around each point y' in a
neighbourhood ofy, whenever \\x — x\\ is sufficiently small;

(iv) the Lagrange multipliers in (WKT) are continuous at (x, 0, 0);
(v) the Lagrange multipliers for (OP(a, P)) are continuous at (0, 0);

(vi) (Vr? e dg(x)) 0 e int [g(Cx) + ^(R") + T].

Then, for some basic cone K D Q, and some 8 > 0,

(Vx, -g(x) e T, \\x - jf || < S)(3A(x) e L(KP
+, K),

M(x) e l(K~k< K^ * e L(r-.a-)' 2) , I G 3x/(Jt, y), »j e 3g(Jt)),

0 e 3v[/(x, y(x)) - A(jc)/i(5>(jc))] - M{x)a; k(x)h(y(x)) = 0; ran[| + jrJJ] C f/.

PROOF. From (iii) and Proposition 3, the vector function / /(•) , comprising the
objective —f(x, • : a, f3),h('}(-; fi) for the constraints for which hU)(y) — 0, and
<pu>(-) for j = 1,2,... , k — p,is Q x. (R+-invex at each y' in a neighbourhood of y,
whenever \\x — x\\ is sufficiently small. From Proposition 1, the problem (IP(a, /3))
reaches a weak local maximum at y = y(x;a, /3), whenever a, ft and ||x — jf || are
sufficiently small. From (ii), the Robinson stability condition (see [14], and [16] for
the nonsmooth generalization) holds for (IPCr). Since this condition requires 0 in the
interior of a set involving gradients, and the Clarke generalized subdifferentials are
upper semicontinuous, the stability condition extends to (MIP(a, fi)) for sufficiently
small ||JC — jf||. Then, applying [11, Proposition 1] to (MIP(a, /})), which requires
the invexity hypothesis (iii), there is some basic cone K D Q, such that the strong
Karush-Kuhn-Tucker conditions hold:

(4.4) fy(x,y{x;a,p) : a, 0) - A(*;a, p)hy(y(x;a, p) : P) - M(x;a, P)a = 0;

A(x;a,P)h(y(x;a,P) : j8) = 0;

for some Lagrange multipliers A(x; a, p) e l(Rp
+, K)mdM(x;a, P) e l(R^k, K).

From Proposition 2, the function m(-;a,P) from Section 2 reaches a weak local
minimum, subject to — g(-;a) e T, a t i ( a , /3), where x(a, P) —> x as a, P —*• 0.

From (vi), the smoothed function g satisfies the Robinson condition:

0 e int [g(x; a) + gx(x; a)(R") + T] whenever a is sufficiently small.
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[9] Conditions for a nonsmooth minimax 171

From [6, Theorem 1], there exists a Lagrange multiplier n(a, /?) e L(IRS, K'), satis-
fying

ran [mx(x;a, P) + n(a, P)gx(x;a)] C U; n(a, 0)(r_l(i:a)) C Q.

From [11, Proposition 2],mx(x;a, ft) = fx(x, y : a, ft). Combining these,

(4.5) ran[fx(x, y : a, P) + n(a, P)gAx;a)] C U.

Letting a, /J ->• 0, A(x;a,fi) -> A(JC) and M{x;a,fi) ->• M(x) (these limits
existing by (iv)), 7r(a, P) —*• n (by hypothesis (v)), the left side of (4.4) tends to
an element of 3 y ( / — A(x)h — M(x)a)(x, y(x)), fx{x, y;a, ft) and ^v(jc;a) tends
to elements of 3X/JC, y) and 3g(x). So the results follow as limits from (4.4) and
(4.5). •

REMARKS. If hypothesis (vi) is replaced by the hypothesis that, for each r\i €
dg,(x), the set of rj,^ for the active constraints, together with b J (j = 1,2, . . . ,s — l), is
linearly independent, then the conclusion holds in which the inclusion ran[ | +n rj] c U
is replaced by

0 e dx[f(x, y) + ng{x)\ + 3b, ng{x) = 0

for7r € 0_(r+), H), 3 € 0_(r- ' , / / ) , where / / i s a basic cone satisfying Q C K c H.

Theorem 1 assumes that Lagrange multipliers are continuous functions of smooth-
ing parameters. Consider strong Karush-Kuhn-Tucker conditions expressed as:

where A comprises A and M, and ky comprises hy and a. In case the p x m matrix ky

has full rank, and p < n, then the linear equation for A is solvable, for A a continuous
function of a, 0.

5. Sufficient conditions

Recall [13] that a multifunction 4> : R" -> Km is calledpseudo-Lipschitzian around
(x, y) e gr<t> (the graph of <I>) with modulus c > 0 if there exist neighbourhoods U
of x and V of y such that

(Vx,x' e U) <t>(x')n V c O(JC) + c\\x -x'\\Bi(0).
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Here Bi (0) is the unit closed ball. Denote the Clarke generalized Jacobian with respect
to x and y by dx and dy and let N(i>, £2) denote the Clarke normal cone to a set Q at a
point v G Q. Define the Lagrangian:

L(x, y; A, M, n , 3) := f(x, y) - Ah(y) - M<j>(y - Cy) + Tlg(x) + af(x - x).

A function F(-) reaches a (local) strong minimum at x with respect to a cone H (see
[4]) if F(x) - F(x) e H for all feasible x near x.

THEOREM 2. Let (x, y) be a feasible point for (WMM1), where k < p constraints
from —h(-) € 5 are active at y, and I < s constraints from —g(-) € T are active at x.
Assume that:
(a) For some closed convex cones K and H, Q C K c H, and

(EA e US-Hy), K), M e L(RJ-*, K), f\ e L(r_i(i)f H), S e L(KS
+-', //))

(0, 0) G dxL(x, y; A, M, f\, 3) x dyL(x, y; A, M, fl, 3);

(here dxL is independent of (A, M), and dyL is independent 0/(11, 3));
(b) For sufficiently small \\x — x\\, the vector function comprising —fix, •), ^(0.

and 0O)(- - y) U = 1. 2 , . . . , p - k) (as in (4.2)) is Q x S x Ki~k-invex at each
point y' in some neighbourhood of y, with scale function independent of x, and the
vector function comprising / ( - , _y), g(-), and if(j)(- — x) (j = 1, 2 , . . . , s — /) is
Q xT x W~l-invex at x\
(c) (?,0)eN((Je,z),£2)=>f = 0,

where

Q. :=ker8yL D (W x ker[A/j(y) + M(f>(y - y)]) D

([R" x IT1 x {(A, M) : A(S) + Af (RJ"*) C AT}).

T/zen (Jc, j ) w a local strong minimaxfor (WMM1), with the additional constraints
4>(i)(y - y) < 0 (j = 1, 2 , . . . , p - k) and f('\x - x) < 0 (j = 1, 2 , . . . , s - I)
adjoined, with respect to the order cones K and H.

PROOF. Define a multifunction 4> by

4>(JC) :={z = (y, A, M) : 0 e 3yL(x, j ; A, M, U, 3), A/j^) + M0(y - y) = 0,
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[11] Conditions for a nonsmooth minimax 173

noting that 3>.L() does not involve n and S. From hypothesis (a), z := iy, A, M) €
<I>(JC). From definition of *(•) , gr<J> = £2. Using hypothesis (c),

(£, 0) € N((Jc, z), grcD) =• f = 0.

According to Aubin [1] and Rockafellar [15], this condition ensures that <t> is pseudo-
Lipschitzian. Hence, whenever \\x — Cx\\ is sufficiently small, <S>(x) ^ 0, (as shown
in the proof of [10, Theorem 3], thus

(3z(x) = (y(x), A(*), M(x)) 3 <D(x)) z{x) = iy, A, M).

From this, with hypothesis (b), if —h{y) e S, <j>U)(y - y) < 0 (j = 1, 2, . . . , p — k),
then

/ ( * , >0O) - / O c , y)

= L(JC, y(jr); A(JC), M(x), n , S) - L(JC, y; A(x), M(x), n , S)

+ A0O[-*O0 + *(>(*))] + M(x)[-(P(y -y) + 4>(y(x) - y)]

e-A(x)l;(y,y(x)) + Q + K CK,

where A{x) e dyL(x, y(x); A(x), M(x), U, a), £ ( j , y(x)) is a scale function from
the invex hypothesis (b), </> := (<p(l),... , (j>{p~k)), and the values of FI and S do not
matter in this calculation. Hence y(x) is a strong maximum, with respect to the
cone K, for the inner problem of (WMMl) with additional constraints (p<j>(y — y) <
0 (j = 1, 2 , . . . , p - k). From z(x) e <*>(•*) and hypotheses (a) and (b), if ||x - x \\
is sufficiently small, —g(x) e T, and \j/U)(x — x) <0 (j = I,... , s — I) then

f(x,y(x))-f(x,y)

= f(x, y(x)) - f{x, y) + fix, y) - fix, y)

= L(x,y(x);A(x),M(x),Tl, a) - L(x,y;A(x), M(x),T\, S)

+ Lix, y; A, M, f\, S) - Lix, y; A, M, fl, S)

- A(jc)A(3i) - M(x)</)(0) + Aix)hiyix)) + Mix)<j>iyix) - y)

+ f\[-gix) + gix)] + S[-\Kx -x) + ^r(O)]

e -Aix)t;iy, yix)) + K + Byix,x) + H + K + H C H

where A(x) and £(•) are as above, B e 3vL(i , y;A,M, fl, E), y (•) is a scale function
from the invex hypothesis (b), \js := (i/f'",... , Vr(s~"). Thus x is a strong minimum
with respect to the cone / / of the outer problem of (WMM 1) with additional constraints

- x ) < 0 i j = 1 , 2 , . . . , s - l ) . •

REMARK. TO find an instance where the hypotheses of Theorems 1 and 2 hold,
suppose that the vector function 0 (x ) reaches a local weak minimum at z = p,
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subject to the constraint —y(x) e F, where the convex cone F has interior points.
Then there is no solution x to

@(x) - 0 ( p ) € - int Q, -y(x) € int F.

If the vector function ( 0 , y) is convexlike (see [12]), then there exist multipliers
(T, X) £ Q* x r*, not both zero, such that

xT[@(x)-@(p)]+XTy(x) >0

for all x near p. Note that convexlike (with differentiate) implies invex. If a Slater
constraint qualification holds, that is —y(c) e int F for some c, then the multiplier
r ^ 0. Then there is a matrix F, with Y in the matrix cone S := {y : y(F) C Q}, such
that &(x) + Yy(x) reaches a weak minimum at x = p. It follows that / ( x , v) :=
0(JC) + .yyOO reaches a weak minimax at (*, y) = (/?, 7) , with respect to the cones
Q and S.

Consider the hypotheses of Theorem 1, and assume Lipschitz functions, so that
Clarke generalized subdifferentials are available. The stability condition of Proposi-
tion 1 holds, in particular, if the generalized subdifferentials £ of the active constraints
are linearly independent, and then hypothesis (ii) of Theorem 1 follows by suitable
construction of the adjoined constraints. The linear growth condition in Proposition
1 holds, omitting active constraints, if —y(p) € int S. Hypotheses (iv) and (v) of
Theorem 1 require Lagrange multipliers to be continuous in their parameters. If the
problem is differentiable, it suffices to locally linearize it, obtaining a linear program,
and then to assume that the dual linear program is stable to small perturbations; then
the Lagrange multipliers, which are dual variables, have the required continuity. For
a nonsmooth problem, the same construction applies to the linear programs obtained
by replacing gradients of generalized subdifferentials. A similar remark applies to
hypothesis (v). The remaining hypothesis (iii) is invexity; this holds if the vector of
— f{x, •) and the active h(l)i-) is invex, by suitable choice of quadratic terms in the
adjoined (f>{]). Theorem 2 assumes (KKT) condition (a), and invexity conditions (b),
to which the discussion of invexity for Theorem 1 also applies. Hypothesis (c) is
made to ensure the pseudo-Lipschitzian property; see [13] for discussion of when this
holds.
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