COMPOSITIO MATHEMATICA

A solution to the Erdős-Sárközy-Sós problem on asymptotic Sidon bases of order 3

Cédric Pilatte ©

Compositio Math. 160 (2024), 1418-1432.

A solution to the Erdős-Sárközy-Sós problem on asymptotic Sidon bases of order 3

Cédric Pilatte ©

Abstract

A set $S \subset \mathbb{N}$ is a Sidon set if all pairwise sums $s_{1}+s_{2}$ (for $s_{1}, s_{2} \in S, s_{1} \leqslant s_{2}$) are distinct. A set $S \subset \mathbb{N}$ is an asymptotic basis of order 3 if every sufficiently large integer n can be written as the sum of three elements of S. In 1993, Erdős, Sárközy and Sós asked whether there exists a set S with both properties. We answer this question in the affirmative. Our proof relies on a deep result of Sawin on the $\mathbb{F}_{q}[t]$-analogue of Montgomery's conjecture for convolutions of the von Mangoldt function.

1. Introduction

A set S of natural numbers is called a Sidon set, or a Sidon sequence, if all the sums $s_{1}+s_{2}$, for $s_{1}, s_{2} \in S, s_{1} \leqslant s_{2}$, are distinct. Sidon sequences are named after Simon Sidon, who in 1932 asked Erdős about the possible growth rate of such sequences. We write

$$
S(x):=|\{n \leqslant x: n \in S\}| .
$$

Erdős observed that the greedy algorithm generates a Sidon sequence S with $S(x) \gg x^{1 / 3}$. He also conjectured that, for every $\varepsilon>0$, there is a Sidon sequence S with $S(x) \gg x^{1 / 2-\varepsilon}$ (see [Erd81]). In some sense, this would be best possible, as Erdős showed that any Sidon sequence S satisfies

$$
S(x) \ll x^{1 / 2}(\log x)^{-1 / 2}
$$

for infinitely many x (see [HR83, Theorem 8]). The lower bound was improved in 1981 by Ajtai, Komlós and Szemerédi [AKS81], who proved the existence of a Sidon sequence S with

$$
S(x) \gg x^{1 / 3} \log x^{1 / 3}
$$

using graph-theoretic tools. In a 1998 landmark paper, Ruzsa [Ruz98] used the fact that the primes form a 'multiplicative Sidon set' to construct a Sidon sequence S with

$$
S(x) \gg x^{\sqrt{2}-1-o(1)} .
$$

This is still the best-known lower bound: improving the exponent $\sqrt{2}-1 \approx 0.4142 \ldots$ would be a major achievement.

It is worth mentioning that much more is known about finite Sidon sets. In particular, the maximal size of a Sidon subset of $\{1,2, \ldots, n\}$ is $n^{1 / 2}+O\left(n^{1 / 4}\right)$ (see Halberstam and Roth [HR83, Chapter I, §3] for detailed references).

[^0]
The Erdős-SÁrközy-Sós problem on asymptotic Sidon bases of order 3

Sidon sequences have become classical objects of interest in arithmetic combinatorics. It is natural to study the properties of the sumset $S+S:=\left\{s_{1}+s_{2}: s_{1}, s_{2} \in S\right\}$, or more generally of the k th iterated sumset $k S:=\underbrace{S+S+\cdots+S}_{k \text { times }}$, when S is a Sidon sequence.

A subset $A \subset \mathbb{N}$ is called an asymptotic basis of order k if $\mathbb{N} \backslash k A$ is finite. In other words, A is an asymptotic basis of order k if every sufficiently large integer can be written as the sum of k elements of A. Many well-known problems can be restated as follows: for a given set A, what is the smallest k such that A is an asymptotic basis of order k ? If A is the set of primes, this is essentially Goldbach's conjecture, whereas if A is the set of perfect d th powers, this is a variant of Waring's problem.

In [ESS94a, Problem 14] and [ESS94b, Problem 8], Erdős, Sárközy and Sós asked the following question.
Problem 1.1. Does there exist a Sidon sequence S which is an asymptotic basis of order 3?
This problem also appears in Erdős [Erd98, p. 212] and Sárközy [Sár01, Problem 32]. ${ }^{1}$ In his paper [Erd98], Erdős describes Problem 1.1 as 'an old problem of Nathanson and myself'.

It is easy to see that no Sidon sequence can be an asymptotic basis of order 2. In fact, Erdős, Sárközy and Sós [ESS95] proved that for any Sidon set $S \subset\{1,2, \ldots, n\}$, the sumset $S+S$ cannot contain $\geqslant C n^{1 / 2}$ consecutive integers, where C is an absolute constant. Thus, the constant ' 3 ' in Problem 1.1 can certainly not be improved.

In this article, we settle Problem 1.1 by proving the existence of a Sidon sequence S which is also an asymptotic basis of order 3 .

A number of partial results have been previously obtained in the direction of Problem 1.1.

There is an asymptotic Sidon basis of order	Reference
7	Deshoulliers and Plagne [DP09]
5	Kiss [Kis10]
4	Kiss, Rozgonyi and Sándor [KRS14]
$3+\varepsilon$	Cilleruelo [Cil15, Theorem 1.3]

To make sense of the last row, we recall that a set $S \subset \mathbb{N}$ is an asymptotic basis of order $3+\varepsilon$ if, for every $\varepsilon>0$, every sufficiently large integer n can be written as the sum of four elements of S, with one of them $\leqslant n^{\varepsilon}$. Our solution to Problem 1.1 also generalises another result of Cilleruelo [Cil15, Theorem 1.2], which states that there is an asymptotic basis S of order 3 such that every integer n can be represented in at most two different ways as a sum of two elements of S. Finally, Kiss and Sándor [KS23] showed the existence of a Sidon sequence $S \subset \mathbb{N}$ whose 3 -fold sumset $S+S+S$ has lower asymptotic density $>0.0064 .^{2}$

The results in [Cil15, Kis10, KRS14, KS23] quoted above all use some variant of the probabilistic method. The starting point of all these approaches is to consider a random subset S of \mathbb{N} where each $n \in \mathbb{N}$ is chosen to be in S, independently, with some probability $p(n)$: a typical choice is $p(n)=n^{-\gamma}$ for some $\gamma>0$. In order for S to resemble a Sidon sequence (i.e. to be able to use the alteration method), it is necessary to have something roughly like $p(n) \ll n^{-2 / 3}$. In [Cil15, Kis10, KRS14], the authors choose $p(n)=n^{-\gamma}$ for some $\gamma<2 / 3$, while for [KS23] they choose $p(n)=c n^{-2 / 3}$ for some optimised constant $c>0$. However, for such choices of $p(n)$, the

[^1]
C. Pilatte

set S will almost surely not be an asymptotic basis of order 3 (this follows from [Gog75, Satz B]). Hence, it seems that purely probabilistic approaches are of little use for addressing Problem 1.1.

In order to obtain an asymptotic basis of order 3, it is more promising to start from the Sidon sequence of Ruzsa mentioned previously [Ruz98], as it is much denser than the Sidon sets obtained by the probabilistic method.

The underlying idea behind Ruzsa's construction is to consider an infinite set of primes \mathcal{P}, and for each $p \in \mathcal{P}$, to define a natural number n_{p} that 'behaves like a logarithm of p ', so that an equality $n_{p_{1}}+n_{p_{2}}=n_{p_{3}}+n_{p_{4}}$ only holds if $p_{1} p_{2}=p_{3} p_{4}$. Since the primes form a multiplicative Sidon set, we get $\left\{p_{1}, p_{2}\right\}=\left\{p_{3}, p_{4}\right\}$, so the set $S:=\left\{n_{p}: p \in \mathcal{P}\right\}$ has the Sidon property. In his original paper, Ruzsa defined n_{p} in terms of the binary expansion of the real number $\log _{b} p$ (for some $b \in \mathbb{R}^{>1}$) by concatenating certain blocks of digits of $\log _{b} p$ to obtain a natural number.

Cilleruelo [Cil14] proposed a neat variant of Ruzsa's construction, where the real logarithm is replaced by a family of discrete logarithms. Fix an increasing sequence $\ell_{1}, \ell_{2}, \ldots$ of primes $\ell_{i} \notin \mathcal{P}$ and choose for each i a primitive root ω_{i} modulo ℓ_{i}. Write $\log _{\ell_{i}, \omega_{i}}(p)$ for the unique $e \in\left\{0,1, \ldots, \ell_{i}-2\right\}$ such that $\omega_{i}^{e} \equiv p\left(\bmod \ell_{i}\right)$. Cilleruelo defined n_{p} by encoding many of these discrete logarithms $\log _{\ell_{i}, \omega_{i}}(p)$ into a single natural number, using a suitable base expansion. Now, an equality of the form $n_{p_{1}}+n_{p_{2}}=n_{p_{3}}+n_{p_{4}}$ implies that

$$
\log _{\ell_{i}, \omega_{i}}\left(p_{1}\right)+\log _{\ell_{i}, \omega_{i}}\left(p_{2}\right)=\log _{\ell_{i}, \omega_{i}}\left(p_{3}\right)+\log _{\ell_{i}, \omega_{i}}\left(p_{4}\right)
$$

for many values of i, and thus $p_{1} p_{2} \equiv p_{3} p_{4}\left(\bmod \ell_{i}\right)$ for many i. With the appropriate quantification, this is only possible if $p_{1} p_{2}=p_{3} p_{4}$, which forces $\left\{p_{1}, p_{2}\right\}=\left\{p_{3}, p_{4}\right\}$ as before.

Neither Ruzsa's nor Cilleruelo's construction constitutes an asymptotic basis of order 3. There is an obvious obstruction, which is intrinsically tied to the way the information about p is encoded in n_{p}. For the readers familiar with Ruzsa's construction, the reason is due to the presence of zeros between the blocks of digits of $\log _{b} p$ within n_{p}. These zeros cannot be removed, for this would destroy the Sidon property of S. Cilleruelo's construction suffers from a similar drawback.

Our point of departure is Cilleruelo's construction. To avoid the issue raised in the previous paragraph, we replace the zeros in the encoding of n_{p} with random numbers chosen from a carefully designed set A (see Lemma 3.1 and Definition 3.3). The remaining task is to prove that our modified Cilleruelo construction produces an asymptotic basis of order 3. Eventually, this reduces to information about the distribution of products of three primes in arithmetic progressions.

However, the kind of information we would need is not remotely within reach of our current knowledge of prime numbers. We would need something along the lines of Montgomery's conjecture, a far-reaching generalisation of the generalised Riemann hypothesis. Montgomery's conjecture [IK04, Eq. (17.5), p. 419] states that, for every $\varepsilon>0$,

$$
\begin{equation*}
\psi(x ; q, a):=\sum_{\substack{n \leqslant x \\ n \equiv a(\bmod q)}} \Lambda(n)=\frac{x}{\varphi(q)}+O_{\varepsilon}\left(q^{-1 / 2} x^{1 / 2+\varepsilon}\right) \tag{1}
\end{equation*}
$$

uniformly in $x, q \geqslant 1$ and $(a, q)=1$. This implies the asymptotic formula $\psi(x ; q, a) \sim x / \varphi(q)$ uniformly in the residue class and the modulus, provided that $q \leqslant x^{1-\varepsilon}$. We would need a similar (suitably normalised) statement, with the triple convolution $\Lambda * \Lambda * \Lambda$ in place of the von Mangoldt function Λ.

Cilleruelo $\left[\right.$ Cil14, §4] observed that his construction works equally well over $\mathbb{F}_{q}[t]$. Let \mathcal{F} be a set of irreducible monic polynomials in $\mathbb{F}_{q}[t]$. Fix a sequence $\left(g_{i}\right)$ of irreducible monic polynomials not in \mathcal{F}, and for each g_{i}, choose a generator ω_{i} of $\left(\mathbb{F}_{q}[t] /\left(g_{i}\right)\right)^{\times}$. For $f \in \mathcal{F}$, write $\log _{g_{i}, \omega_{i}}(f)$ for

The Erdős-SÁrközy-Sós problem on asymptotic Sidon bases of order 3

the unique integer $e \in\left\{0,1, \ldots, q^{\operatorname{deg} g_{i}}-1\right\}$ such that $\omega_{i}^{e} \equiv f\left(\bmod g_{i}\right)$. As before, one can define an integer n_{f} in terms of many such integers $\log _{g_{i}, \omega_{i}}(f)$, so that $S:=\left\{n_{f}: f \in \mathcal{F}\right\}$ is a Sidon sequence. It is important to remember that S is a Sidon sequence of integers, even if \mathcal{F} is a subset of $\mathbb{F}_{q}[t]$.

The final and crucial ingredient to our proof is the remarkable work of Sawin [Saw21], who proved Montgomery-type results for 'factorisation functions' in $\mathbb{F}_{q}[t]$, a class of arithmetic functions that encompasses (the $\mathbb{F}_{q}[t]$-version of) the von Mangoldt function and its convolutions. For example, [Saw21, Theorem 1.2] implies that, for all $\varepsilon>0$, there is some $q_{0}(\varepsilon)$ such that, for all prime powers $q \geqslant q_{0}(\varepsilon)$, the analogue of Montgomery's conjecture (1) holds over $\mathbb{F}_{q}[t]$ (for squarefree moduli), i.e.

$$
\begin{equation*}
\sum_{\substack{f \in \mathbb{F}_{q}[t] \\ \text { nonic of degree } n \\ f \equiv a(\bmod g)}} \Lambda(f)=\frac{q^{n}}{\varphi(g)}+O\left(\left(q^{\operatorname{deg} g}\right)^{-1 / 2}\left(q^{n}\right)^{1 / 2+\varepsilon}\right) \tag{2}
\end{equation*}
$$

uniformly in the modulus g (squarefree monic polynomial) and in the residue class a, with $(a, g)=1$. Sawin's work relies on deep algebraic geometry methods, including sheaf cohomology, the characteristic cycle, vanishing cycles theory and perverse sheaves. We use a bound similar to (2) for the triple convolution $\Lambda * \Lambda * \Lambda$ (see Lemma 5.2). With this powerful result, we are able to prove that our modified Cilleruelo sequence is an asymptotic basis of order 3, thereby solving Problem 1.1.

To conclude this introduction, we mention an application of our work to the study of $B_{h}[1]$ sequences. A set $S \subset \mathbb{N}$ is said to be $B_{h}[g]$ set if every positive integer can be written as the sum of h terms from S at most g different ways. For any $h \geqslant 2$, with the probabilistic method, Kiss and Sándor successively showed the existence of a $B_{h}[1]$ set which is an asymptotic basis of order $2 h+1$ (see [KS21]), then $2 h$ (see [KS22]). A simple modification of our proof should establish the existence of a $B_{h}[1]$ set which is an asymptotic basis of order $2 h-1$, for $h \geqslant 2$, thus answering a question of Kiss and Sándor [KS21, KS22].

2. Notation

The sumset of two sets $A, B \subset \mathbb{Z}$ is $A+B:=\{a+b: a \in A, b \in B\}$. We write $f \ll g$ or $f=O(g)$ if $|f| \leqslant C g$ for some absolute constant $C>0$. If instead C depends on a parameter θ, we write $f \ll_{\theta} g$ or $f=O_{\theta}(g)$.

For $b \geqslant 1$ and $a \in \mathbb{Z}$, we write $[a \bmod b]$ for the unique integer n satisfying $0 \leqslant n<b$ and $n \equiv a(\bmod b)$.

Definition 2.1 (Generalised base). Let $\boldsymbol{b}=\left(b_{1}, b_{2}, \ldots\right)$ be an infinite sequence of integers $\geqslant 2$. For any $n \geqslant 1$ and any $x_{1}, \ldots, x_{n} \in \mathbb{Z}$, we write

$$
\overline{x_{n} \ldots x_{1}}{ }^{\boldsymbol{b}}:=x_{1}+x_{2} b_{1}+x_{3} b_{1} b_{2}+\cdots+x_{n} b_{1} b_{2} \cdots b_{n-1} .
$$

Any $m \in \mathbb{Z} \geqslant 1$ can be uniquely represented as $m={\overline{x_{n}} \ldots x_{1}}^{\boldsymbol{b}}$ for some $0 \leqslant x_{i}<b_{i}$ with $x_{n} \neq 0$. Recall, however, that the notation $\overline{x_{n} \ldots x_{1}} \boldsymbol{b}$ is defined for arbitrary integers x_{i} : we do not always require $0 \leqslant x_{i}<b_{i}$.

C. Pilatte

3. Construction

The following lemma is a slight strengthening of the statement that, for any sufficiently large p, there exists a set $A \subset \mathbb{Z} / p \mathbb{Z}$ such that A and $A+A$ are disjoint, and moreover $A+A+A=$ $\mathbb{Z} / p \mathbb{Z}$.

Lemma 3.1. For every sufficiently large prime p, there is a set $A \subset\{1,2, \ldots,\lfloor p / 2\rfloor-1\}$ such that:
(i) the sets A and $A+A+\{0,1\}$ are disjoint;
(ii) $A+A+A$ contains $p+2$ consecutive integers.

It turns out that we only need to use the existence of a single pair (p, A) with these properties. Lemma 3.1 can be shown by the alteration method in probabilistic combinatorics. We provide a detailed proof in Appendix A.

For the remainder of this paper, we fix a pair (p, A) satisfying the conclusion of Lemma 3.1. In particular, p should be thought of as an absolute constant. Let $c=0.35$, the point is that

$$
\frac{1}{3}<c<\frac{3-\sqrt{5}}{2}
$$

Let $C_{0}>100 p$ be a large absolute constant that will be chosen later.
Definition $3.2\left(\mathcal{P}_{d}, g_{i}, \omega_{i}, \mathcal{F}_{k}, \mathcal{F}\right)$. Let $q \geqslant C_{0}$ be a prime (or a prime power). Let \mathcal{P}_{d} be the set of irreducible monic polynomials $f \in \mathbb{F}_{q}[t]$ of degree d. Recall the standard formula of Gauss

$$
\begin{equation*}
\left|\mathcal{P}_{d}\right|=\frac{1}{d} \sum_{e \mid d} \mu\left(\frac{d}{e}\right) q^{e}=\frac{q^{d}}{d}+O\left(q^{d / 2}\right) . \tag{3}
\end{equation*}
$$

For $i \geqslant 1$, let g_{i} be an arbitrary element of $\mathcal{P}_{2 i-1}$, and fix an arbitrary generator ω_{i} of $\left(\mathbb{F}_{q}[t] /\left(g_{i}\right)\right)^{\times}$.

For $k \geqslant C_{0}$, let

$$
\mathcal{F}_{k}:=\bigcup_{c k^{2} \leqslant 2 i<c(k+1)^{2}} \mathcal{P}_{2 i} .
$$

Let $\mathcal{F}:=\bigcup_{k \geqslant C_{0}} \mathcal{F}_{k}$.
We work in the generalised base $\boldsymbol{b}=\left(b_{1}, b_{2}, \ldots\right)$ where

$$
b_{i}= \begin{cases}q^{i}-1 & i \text { odd } \tag{4}\\ p & i \text { even }\end{cases}
$$

Definition $3.3\left(e_{i}, r_{i}, s, n_{f}, S\right)$. Let $k \geqslant C_{0}$ and let $f \in \mathcal{F}_{k}$. We associate to f a positive integer n_{f} as follows.

- For $1 \leqslant i \leqslant k$, let $e_{i}(f)$ be the unique integer such that $0 \leqslant e_{i}(f)<b_{2 i-1}=q^{2 i-1}-1$ and

$$
\omega_{i}^{e_{i}(f)} \equiv f \quad\left(\bmod g_{i}\right)
$$

- Let $r_{1}(f), \ldots, r_{k}(f)$ be a sequence of independent and identically distributed (i.i.d.) random variables, each uniformly distributed on A (in particular, $1 \leqslant r_{i}(f) \leqslant p / 2-1$).
- Let $s(f)$ be an integer chosen uniformly at random in the set $\left\{1,2, \ldots, q^{3 k}\right\}$.

It is understood that the family of all random variables $r_{i}(f)$ and $s(f)$ (over all choices of f and i) is independent.

The Erdős-SÁrközy-Sós problem on asymptotic Sidon bases of order 3

We define n_{f} to be the integer

$$
n_{f}:=\overline{s r_{k} e_{k} \ldots r_{2} e_{2} r_{1} e_{1}} \boldsymbol{b}
$$

omitting the dependence of each digit on f for conciseness. To be explicit,

$$
n_{f}=e_{1}(f)+r_{1}(f) b_{1}+e_{2}(f) b_{1} b_{2}+r_{2}(f) b_{1} b_{2} b_{3}+\cdots+r_{k}(f) b_{1} b_{2} \cdots b_{2 k-1}+s(f) b_{1} b_{2} \cdots b_{2 k},
$$

with b_{i} as in (4). ${ }^{3}$
Finally, we define $S=\left\{n_{f}: f \in \mathcal{F}\right\}$.
We show that, with probability 1 , the elements of S form a Sidon sequence and an asymptotic basis of order 3 .

Lemma 3.4.
(i) Let $f \in \mathcal{F}_{k}$. Then $n_{f}=q^{k^{2}+O(k)}$.
(ii) Let $f_{1}, f_{2} \in \mathcal{F}$ be such that $n_{f_{1}}=n_{f_{2}}$. Then $f_{1}=f_{2}$.

Proof. (i) On the one hand,

$$
n_{f}={\overline{s r_{k}} e_{k} \ldots r_{2} e_{2} r_{1} e_{1}}^{\boldsymbol{b}} \geqslant{\overline{1 \underbrace{00 \ldots 00}_{2 k \text { zeros }}}}^{\boldsymbol{b}}=\prod_{i=1}^{k} p\left(q^{2 i-1}-1\right)>\prod_{i=1}^{k} q^{2 i-1}=q^{k^{2}} .
$$

On the other hand,

$$
n_{f}=\overline{s r} r k e_{k} \ldots r_{2} e_{2} r_{1} e_{1} b \leqslant{\overline{\left(q^{3 k}+1\right) \underbrace{00 \ldots 00}_{2 k \text { zeros }}}}^{\boldsymbol{b}}=\left(q^{3 k}+1\right) \prod_{i=1}^{k} p\left(q^{2 i-1}-1\right)=q^{k^{2}+O(k)} \text {, }
$$

as $p \leqslant q$. This shows that $n_{f}=q^{k^{2}+O(k)}$.
(ii) Let $n=n_{f_{1}}=n_{f_{2}}$. Suppose that $f_{1} \in \mathcal{F}_{k_{1}}$ and $f_{2} \in \mathcal{F}_{k_{2}}$. By part (i), we have

$$
q^{k_{1}^{2}+O\left(k_{1}\right)}=n=q^{k_{2}^{2}+O\left(k_{2}\right)},
$$

from which we infer that $k_{1}=k_{2}+O(1)$. Let $k=\min \left(k_{1}, k_{2}\right)$. Since $n_{f_{1}}=n_{f_{2}}=n$, we also have

$$
{\overline{r_{k}\left(f_{1}\right) e_{k}\left(f_{1}\right) \ldots r_{1}\left(f_{1}\right) e_{1}\left(f_{1}\right)}}^{\boldsymbol{b}}=\left[n \bmod b_{1} b_{2} \ldots b_{2 k}\right]={\overline{r_{k}\left(f_{2}\right) e_{k}\left(f_{2}\right) \ldots r_{1}\left(f_{2}\right) e_{1}\left(f_{2}\right)}}^{\boldsymbol{b}} .
$$

The left- and right-hand side are two base-b representations of the same natural number, and since the i th digit is between 0 and $b_{i}-1$ in both cases, we see that $e_{i}\left(f_{1}\right)=e_{i}\left(f_{2}\right)$ (and $\left.r_{i}\left(f_{1}\right)=r_{i}\left(f_{2}\right)\right)$ for all $1 \leqslant i \leqslant k$. By the definition of e_{i}, this implies that $f_{1} \equiv f_{2}\left(\bmod g_{i}\right)$. By the Chinese remainder theorem, we deduce that

$$
\begin{equation*}
f_{1} \equiv f_{2} \quad\left(\bmod g_{1} \cdots g_{k}\right) . \tag{5}
\end{equation*}
$$

However, $\operatorname{deg}\left(f_{1}-f_{2}\right) \leqslant c k^{2}+O(k)$ by definition of \mathcal{F}_{k}, whereas $\operatorname{deg}\left(g_{1} \cdots g_{k}\right)=k^{2}$. Therefore, $\operatorname{deg}\left(f_{1}-f_{2}\right)<\operatorname{deg}\left(g_{1} \cdots g_{k}\right)$ if C_{0} is sufficiently large, and (5) can only hold if $f_{1}=f_{2}$.

4. Sidon property

Lemma 4.1. Let $f_{1}, f_{2}, f_{3}, f_{4} \in \mathcal{F}$ be such that $n_{f_{1}}+n_{f_{2}}=n_{f_{3}}+n_{f_{4}}$. Then $\left\{f_{1}, f_{2}\right\}=\left\{f_{3}, f_{4}\right\}$. Proof. Without loss of generality, suppose that $f_{i} \in \mathcal{F}_{k_{i}}$ for $i \in\{1,2,3,4\}$, where $k_{1} \geqslant k_{2}$ and $k_{3} \geqslant k_{4}$. By part (i) of Lemma 3.4, we have $q^{k_{1}^{2}+O\left(k_{1}\right)}=n_{f_{1}}+n_{f_{2}}=n_{f_{3}}+n_{f_{4}}=q^{k_{3}^{2}+O\left(k_{3}\right)}$ and, thus, $k_{1}=k_{3}+O(1)$.

[^2]
C. Pilatte

We claim that $k_{2}=k_{4}+O(1)$. Write the integer $n:=n_{f_{1}}+n_{f_{2}}=n_{f_{3}}+n_{f_{4}}$ in base \boldsymbol{b}, as

$$
n=\overline{y_{l} x_{l} \ldots y_{2} x_{2} y_{1} x_{1}}{ }^{\boldsymbol{b}},
$$

for some $0 \leqslant x_{i}<q^{2 i-1}-1$ and $0 \leqslant y_{1}<p$, where x_{l} and y_{l} are not both zero. Let us align the base- \boldsymbol{b} digits of $n_{f_{1}}, n_{f_{2}}$ and n :

$n_{f_{1}}:$ $n_{f_{2}}$	$s\left(f_{1}\right)$	$r_{k_{1}}\left(f_{1}\right)$	$e_{k_{1}}\left(f_{1}\right)$		$r_{k_{2}+1}\left(f_{1}\right)$	$\begin{gathered} e_{k_{2}+1}\left(f_{1}\right) \\ s\left(f_{2}\right) \end{gathered}$	$\begin{aligned} & r_{k_{2}}\left(f_{1}\right) \\ & r_{k_{2}}\left(f_{2}\right) \end{aligned}$	$\begin{aligned} & e_{k_{2}}\left(f_{1}\right) \\ & e_{k_{2}}\left(f_{2}\right) \end{aligned}$	\cdots	$\begin{aligned} & r_{1}\left(f_{1}\right) \\ & r_{1}\left(f_{2}\right) \end{aligned}$	$\begin{aligned} & e_{1}\left(f_{1}\right) \\ & e_{1}\left(f_{2}\right) \end{aligned}$
n	\ldots	$y_{k_{1}}$	$x_{k_{1}}$		$y_{k_{2}+1}$	$x_{k_{2}+1}$	$y_{k_{2}}$	$x_{k_{2}}$	\ldots	y_{1}	x_{1}

Since $n_{f_{1}}+n_{f_{2}}=n$ and $r_{i}\left(f_{j}\right) \leqslant p / 2-1$ for all i and j, we can easily express the digits x_{i} and y_{i} in terms of the digits of $n_{f_{1}}$ and $n_{f_{2}}$. The computation gets slightly more complicated when i is close to k_{2} (or larger than k_{1}) because $s\left(f_{2}\right)$ can be as large as $q^{3 k_{2}}$, which exceeds $b_{2 k_{2}+1}=q^{2 k_{2}+1}-1$.

On the one hand, for $1 \leqslant i \leqslant k_{2}$, we have:

- $x_{i}=\left[e_{i}\left(f_{1}\right)+e_{i}\left(f_{2}\right) \bmod q^{2 i-1}-1\right]$; and
- $y_{i}=r_{i}\left(f_{1}\right)+r_{i}\left(f_{2}\right)+\mathbf{1}_{e_{i}\left(f_{1}\right)+e_{i}\left(f_{2}\right) \geqslant q^{2 i-1}-1}$.

On the other hand, for $k_{2}+3 \leqslant i \leqslant k_{1}$ we have: ${ }^{4}$

- $x_{i}=e_{i}\left(f_{1}\right)$; and
- $y_{i}=r_{i}\left(f_{1}\right)$.

In particular, for $1 \leqslant i \leqslant k_{2}$ we have $y_{i} \in A+A+\{0,1\}$, whereas for $k_{2}+3 \leqslant i \leqslant k_{1}$ we have $y_{i} \in A$. Let i_{0} be the largest integer $\leqslant l$ such that $y_{1}, \ldots, y_{i_{0}} \in A+A+\{0,1\}$. If $k_{2}+3>k_{1}$, then $i_{0}=k_{1}+O(1)=k_{2}+O(1)$. Otherwise, since A and $A+A+\{0,1\}$ are disjoint by Lemma 3.1(i), we have $k_{2} \leqslant i_{0}<k_{2}+3$. Hence, $i_{0}=k_{2}+O(1)$ in both cases.

Repeating the whole argument with f_{3} and f_{4} in place of f_{1} and f_{2}, we obtain that $i_{0}=$ $k_{4}+O(1)$, whence $k_{2}=k_{4}+O(1)$ as claimed.

Our previous computations have shown that

$$
x_{i}=\left[e_{i}\left(f_{1}\right)+e_{i}\left(f_{2}\right) \bmod q^{2 i-1}-1\right]=\left[e_{i}\left(f_{3}\right)+e_{i}\left(f_{4}\right) \bmod q^{2 i-1}-1\right]
$$

for $1 \leqslant i \leqslant \min \left(k_{2}, k_{4}\right)$, and

$$
x_{i}=e_{i}\left(f_{1}\right)=e_{i}\left(f_{3}\right)
$$

for $\max \left(k_{2}, k_{4}\right)+3 \leqslant i \leqslant \min \left(k_{1}, k_{3}\right)$.
By the definition of $e_{i}(f)$ and the Chinese remainder theorem, this implies that

$$
\begin{equation*}
f_{1} f_{2} \equiv f_{3} f_{4}\left(\bmod \prod_{i=1}^{\min \left(k_{2}, k_{4}\right)} g_{i}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{1} \equiv f_{3}\left(\bmod \prod_{i=\max \left(k_{2}, k_{4}\right)+3}^{\min \left(k_{1}, k_{3}\right)} g_{i}\right) . \tag{7}
\end{equation*}
$$

Suppose first that $f_{1}=f_{3}$. Then $n_{f_{2}}=n-n_{f_{1}}=n-n_{f_{3}}=n_{f_{4}}$ and, hence, $f_{2}=f_{4}$ by Lemma 3.4(ii), which is what we needed to prove.

[^3]If $f_{1} f_{2}=f_{3} f_{4}$, we immediately conclude that $\left\{f_{1}, f_{2}\right\}=\left\{f_{3}, f_{4}\right\}$, since all f_{i} are irreducible monic polynomials.

Hence, we may suppose that $f_{1} \neq f_{3}$ and $f_{1} f_{2} \neq f_{3} f_{4}$. By (7) we must have

$$
c k_{1}^{2}+O\left(k_{1}\right) \geqslant \operatorname{deg}\left(f_{1}-f_{3}\right) \geqslant \operatorname{deg}\left(\prod_{i=k_{2}+O(1)}^{k_{1}-O(1)} g_{i}\right)=k_{1}^{2}-k_{2}^{2}-O\left(k_{1}\right)
$$

Similarly, by (6), we have

$$
c k_{1}^{2}+c k_{2}^{2}+O\left(k_{1}\right) \geqslant \operatorname{deg}\left(f_{1} f_{2}-f_{3} f_{4}\right) \geqslant \operatorname{deg}\left(\prod_{i=1}^{k_{2}-O(1)} g_{i}\right)=k_{2}^{2}-O\left(k_{2}\right)
$$

Therefore, we have

$$
\left\{\begin{array}{l}
k_{1}^{2}-k_{2}^{2} \leqslant c k_{1}^{2}+O\left(k_{1}\right) \\
k_{2}^{2} \leqslant c k_{1}^{2}+c k_{2}^{2}+O\left(k_{1}\right) .
\end{array}\right.
$$

Hence,

$$
(1-c) k_{1}^{2}-O\left(k_{1}\right) \leqslant k_{2}^{2} \leqslant \frac{c}{1-c} k_{1}^{2}+O\left(k_{1}\right)
$$

which is impossible since $1-c>c /(1-c)$, if C_{0} is sufficiently large.

5. Asymptotic basis of order 3

Lemma 5.1. Let $m \geqslant 3$ be an integer. We can write $m=\overline{z y_{k} x_{k} \ldots y_{2} x_{2} y_{1} x_{1}} \boldsymbol{b}$, for some $k \geqslant 0$ and some integers x_{i}, y_{i}, z satisfying:

- $0 \leqslant x_{i}<q^{2 i-1}-1$ for all $1 \leqslant i \leqslant k$;
- $0 \leqslant y_{i}<2 p$ for all $1 \leqslant i \leqslant k$;
- $\left\{y_{i}-2, y_{i}-1, y_{i}\right\} \subset A+A+A$ for all $1 \leqslant i \leqslant k$;
- $3 \leqslant z \leqslant 6 p q^{2 k+1}$.

Proof. We proceed in a similar way to the standard algorithm that generates the base-b expansion of an integer. Let us inductively define a sequence $\left(m_{i}\right)$ of integers $\geqslant 3$. Let $m_{1}:=m$. Suppose we have defined $m_{1}, \ldots, m_{2 l-1}$ for some $l \geqslant 1$.

If $m_{2 l-1}>6 p q^{2 l-1}$, we define

$$
x_{l}:=\left[m_{2 l-1} \bmod q^{2 l-1}-1\right]
$$

and we set $m_{2 l}:=\left(m_{2 l-1}-x_{l}\right) /\left(q^{2 l-1}-1\right)$.
Let $0 \leqslant y_{l}<2 p$ be an integer with $y_{l} \equiv m_{2 l}(\bmod p)$ and such that

$$
\left\{y_{l}-2, y_{l}-1, y_{l}\right\} \subset A+A+A
$$

Such an integer exists by Lemma 3.1(ii) (note that $A+A+A \subset[0,3 p / 2]$). We define $m_{2 l+1}:=$ $\left(m_{2 l}-y_{l}\right) / p$. Since $m_{2 l-1}>6 p q^{2 l-1}$, we have

$$
m_{2 l+1} \geqslant \frac{m_{2 l}}{p}-2 \geqslant \frac{m_{2 l-1}}{p q^{2 l-1}}-3 \geqslant 3 .
$$

We have thus constructed $x_{l}, y_{l}, m_{2 l}$ and $m_{2 l+1}$.
Otherwise, if $m_{2 l-1} \leqslant 6 p q^{2 l-1}$, so we can define $z:=m_{2 l-1}$ and stop the construction (thus, $k=l-1$).

The procedure must stop since $\left(m_{i}\right)$ is decreasing. When the procedure terminates, we end up with integers $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}$ and z that satisfy the required properties, by construction.

C. Pilatte

Lemma 5.2. Let $d \geqslant 1$ and let $g \in \mathbb{F}_{q}[t]$ be a squarefree monic polynomial of degree

$$
2 \leqslant \operatorname{deg}(g) \leqslant 3 \theta d
$$

for some $0<\theta<1$. Let $a \in\left(\mathbb{F}_{q}[t] /(g)\right)^{\times}$. Then, with $\phi(g):=\left|\left(\mathbb{F}_{q}[t] /(g)\right)^{\times}\right|$, we have

$$
\left|\sum_{\substack{f_{1}, f_{2}, f_{3} \in \mathcal{P}_{d} \\ f_{i} \text { distinct } \\ f_{1} f_{2} f_{3} \equiv a(\bmod (g))}} 1-\frac{1}{\phi(g)}\binom{\left|\mathcal{P}_{d}\right|}{3}\right| \ll e^{O_{\theta}(d)} q^{(3 d-\operatorname{deg}(g)) / 2} .
$$

Proof. We use [Saw21, Lemma 9.14] with $\omega=3, n_{1}=n_{2}=n_{3}=d, n=3 d$ and $h=1$ (meaning that $c=0$). The author writes $\mathbb{F}_{q}[t]^{+}$and \mathcal{M}_{n} for the set of monic polynomials in $\mathbb{F}_{q}[t]$ and the set of monic polynomials of degree n in $\mathbb{F}_{q}[t]$, respectively. The definition of $H_{n_{1}, \ldots, n_{\omega}}^{h}(f)$ can be found at the bottom of [Saw21, p. 89]. In particular,

$$
H_{d, d, d}^{1}(f)=d^{3} \sum_{\substack{f_{1}, f_{2}, f_{3} \in \mathcal{P}_{d} \\ f_{i} \text { distinct } \\ f_{1} f_{2} f_{3}=f}} 1,
$$

and, thus,

$$
\sum_{f \in \mathcal{M}_{3 d}} H_{d, d, d}^{1}(f)=d^{3}\binom{\left|\mathcal{P}_{d}\right|}{3} .
$$

Since $c=0$, the conclusion of [Saw21, Lemma 9.14] simplifies to

$$
d^{3}\left|\sum_{\substack{f_{1}, f_{2}, f_{3} \in \mathcal{P}_{d} \\ f_{i} \text { dstinct } \\ f_{1} f_{2} f_{3} \equiv a(\bmod (g))}} 1-\frac{1}{\phi(g)}\binom{\left|\mathcal{P}_{d}\right|}{3}\right| \ll \frac{(3 d)!}{(d!)^{3}}\left(O_{\theta}(q)\right)^{(3 d-\operatorname{deg}(g)) / 2} .
$$

By Stirling's formula, $(3 d)!/(d!)^{3} \ll e^{O(d)}$, and we obtain Lemma 5.2.
Lemma 5.3. Let $m \geqslant q^{\left(C_{0}+2\right)^{2}}$. Then $\mathbb{P}(m \notin S+S+S) \leqslant \exp \left(-m^{3 c-1-o(1)}\right)$ as $m \rightarrow+\infty .{ }^{5}$
Proof. Let $m \geqslant q^{\left(C_{0}+2\right)^{2}}$. We write $m=\overline{z y_{k} x_{k} \ldots y_{2} x_{2} y_{1} x_{1}}{ }^{\boldsymbol{b}}$ with x_{i}, y_{i} and z satisfying the conclusion of Lemma 5.1. By a computation similar to that in Lemma 3.4(i), we have

$$
q^{k^{2}} \leqslant m \leqslant q^{(k+2)^{2}}
$$

In particular, $k \geqslant C_{0}$ and $m=q^{k^{2}+O(k)}$.
We show that m is very likely to be expressible as $n_{f_{1}}+n_{f_{2}}+n_{f_{3}}$ for some $f_{i} \in \mathcal{F}_{k}$.
We first focus on the digits x_{i}. By the Chinese remainder theorem, there is some $a \in \mathbb{F}_{q}[t]$ such that

$$
a \equiv \omega_{i}^{x_{i}} \quad\left(\bmod g_{i}\right)
$$

for all $1 \leqslant i \leqslant k$. Let $g=\prod_{1 \leqslant i \leqslant k} g_{i}$; it is a squarefree polynomial of degree $\operatorname{deg}(g)=k^{2}$. Let d be an even integer with $c k^{2} \leqslant d<c(k+1)^{2}$. Let \mathcal{E} be the set of all triples $\left(f_{1}, f_{2}, f_{3}\right) \in\left(\mathcal{P}_{d}\right)^{3}$ of distinct polynomials such that $f_{1} f_{2} f_{3} \equiv a(\bmod g)$. By Lemma 5.2 with $\theta=k^{2} /(3 d) \leqslant 1 /(3 c)<1$, we have

$$
\begin{equation*}
\left||\mathcal{E}|-\frac{1}{\phi(g)}\binom{\left|\mathcal{P}_{d}\right|}{3}\right| \ll e^{O(d)} q^{\left(3 d-k^{2}\right) / 2} . \tag{8}
\end{equation*}
$$

[^4]Using the fact that $\phi(g)=\prod_{i=1}^{k}\left(q^{2 i-1}-1\right)=q^{k^{2}-O(k)}$ and the bound (3) on the size of \mathcal{P}_{d}, we can simplify (8) to get

$$
|\mathcal{E}|=q^{3 d-k^{2}+O(k+\log d)}+O\left(q^{\left(3 d-k^{2}\right) / 2+O(d / \log q)}\right)=q^{(3 c-1) k^{2}+O(k)}+O\left(q^{((3 c-1) / 2+O(1 / \log q)) k^{2}}\right),
$$

using $d=c k^{2}+O(k)$ for the last step. If C_{0} is sufficiently large, the error term is negligible and we obtain

$$
\begin{equation*}
|\mathcal{E}|=q^{(3 c-1) k^{2}+O(k)} . \tag{9}
\end{equation*}
$$

Let us estimate, for a fixed triple $\left(f_{1}, f_{2}, f_{3}\right) \in \mathcal{E}$, the probability that $n_{f_{1}}+n_{f_{2}}+n_{f_{3}}=m$. By the definition of $n_{f_{i}}$, we can write

$$
n_{f_{1}}+n_{f_{2}}+n_{f_{3}}={\overline{s^{\prime} r_{k}^{\prime} e_{k}^{\prime} \ldots r_{2}^{\prime} e_{2}^{\prime} r_{1}^{\prime} e_{1}^{\prime}}}^{b}
$$

where $e_{i}^{\prime}, r_{i}^{\prime}$ and s^{\prime} are defined by:

- $e_{i}^{\prime}=\left[e_{i}\left(f_{1}\right)+e_{i}\left(f_{2}\right)+e_{i}\left(f_{3}\right) \bmod q^{2 i-1}-1\right]$ for $1 \leqslant i \leqslant k$;
- $r_{i}^{\prime}=r_{i}\left(f_{1}\right)+r_{i}\left(f_{2}\right)+r_{i}\left(f_{3}\right)+\kappa_{i}$ for $1 \leqslant i \leqslant k$, with

$$
\kappa_{i}:=\left\lfloor\frac{e_{i}\left(f_{1}\right)+e_{i}\left(f_{2}\right)+e_{i}\left(f_{3}\right)}{q^{2 i-1}-1}\right\rfloor \in\{0,1,2\} ;
$$

- $s^{\prime}=s\left(f_{1}\right)+s\left(f_{2}\right)+s\left(f_{3}\right)$.

The assumption that $\left(f_{1}, f_{2}, f_{3}\right) \in \mathcal{E}$ ensures that $e_{i}^{\prime}=x_{i}$ for all $1 \leqslant i \leqslant k$. Indeed, both e_{i}^{\prime} and x_{i} are between 0 and $q^{2 i-1}-2$, and

$$
\omega_{i}^{e_{i}^{\prime}} \equiv \omega_{i}^{e_{i}\left(f_{1}\right)+e_{i}\left(f_{2}\right)+e_{i}\left(f_{3}\right)} \equiv f_{1} f_{2} f_{3} \equiv a \equiv \omega_{i}^{x_{i}} \quad\left(\bmod g_{i}\right) .
$$

Hence,
$\mathbb{P}\left(n_{f_{1}}+n_{f_{2}}+n_{f_{3}}=m\right) \geqslant \mathbb{P}\left(r_{1}^{\prime}=y_{1}, r_{2}^{\prime}=y_{2}, \ldots, r_{k}^{\prime}=y_{k}, s^{\prime}=z\right)=\mathbb{P}\left(s^{\prime}=z\right) \prod_{1 \leqslant i \leqslant k} \mathbb{P}\left(r_{i}^{\prime}=y_{i}\right)$,
where we used the independence of the family of all random variables $r_{i}\left(f_{j}\right)$ and $s\left(f_{j}\right)$ in the last step.

Recall that s^{\prime} is the sum of three independent random numbers chosen uniformly in $\left\{1,2, \ldots, q^{3 k}\right\}$, so s^{\prime} can be equal to any integer in the set $\left\{3,4, \ldots, 3 q^{3 k}\right\}$, each of which occurs with probability at least $q^{-9 k}$. Since z is a fixed element of $\left\{3,4, \ldots, 6 p q^{2 k+1}\right\}$ and $6 p q^{2 k+1} \leqslant 3 q^{3 k}$, we get

$$
\mathbb{P}\left(s^{\prime}=z\right) \geqslant q^{-9 k} .
$$

Similarly, r_{i}^{\prime} is the sum of three elements of A chosen uniformly and independently at random, plus a fixed carry $\kappa_{i} \in\{0,1,2\}$. Since $\left\{y_{i}-2, y_{i}-1, y_{i}\right\} \subset A+A+A$ by Lemma 5.1, there is at least one triple $\left(a_{1}, a_{2}, a_{3}\right) \in A^{3}$ such that $a_{1}+a_{2}+a_{3}+\kappa_{i}=y_{i}$. Thus, we see that $\mathbb{P}\left(r_{i}^{\prime}=y_{i}\right) \geqslant$ $|A|^{-3} \geqslant p^{-3}$. We have thus shown that

$$
\mathbb{P}\left(n_{f_{1}}+n_{f_{2}}+n_{f_{3}}=m\right) \geqslant q^{-9 k} p^{-3 k} \geqslant q^{-O(k)} .
$$

To conclude the argument, we wish to restrict to a large subset \mathcal{E}_{0} of \mathcal{E} such that no polynomial appears in more than one triple of \mathcal{E}_{0}. Observe that, if two triples $\left(f, f_{1}, f_{2}\right)$ and $\left(f, f_{3}, f_{4}\right)$ are both in \mathcal{E}, then $\left\{f_{1}, f_{2}\right\}=\left\{f_{3}, f_{4}\right\}$. Indeed, two such triples satisfy $f_{1} f_{2} \equiv f^{-1} a \equiv f_{3} f_{4}(\bmod g)$,

C. Pilatte

which implies that $f_{1} f_{2}=f_{3} f_{4}$ in $\mathbb{F}_{q}[t]$ since

$$
\operatorname{deg}\left(f_{1} f_{2}-f_{3} f_{4}\right) \leqslant 2 d<k^{2}=\operatorname{deg}(g),
$$

and thus $\left\{f_{1}, f_{2}\right\}=\left\{f_{3}, f_{4}\right\}$. In addition, if $\left(f_{1}, f_{2}, f_{3}\right) \in \mathcal{E}$ then so does $\left(f_{\sigma(1)}, f_{\sigma(2)}, f_{\sigma(3)}\right)$ for every permutation σ. Therefore, any given polynomial $f \in \mathcal{P}_{d}$ appears at most once in a triple of \mathcal{E}, up to permutations. This shows that there is a suitable subset \mathcal{E}_{0} with $\left|\mathcal{E}_{0}\right|=\frac{1}{6}|\mathcal{E}|$.

Therefore,

$$
\begin{aligned}
\mathbb{P}(m \notin S+S+S) & \leqslant \mathbb{P}\left(\bigcap_{\left(f_{1}, f_{2}, f_{3}\right) \in \mathcal{E}_{0}}\left\{n_{f_{1}}+n_{f_{2}}+n_{f_{3}} \neq m\right\}\right) \\
& =\prod_{\left(f_{1}, f_{2}, f_{3}\right) \in \mathcal{E}_{0}} \mathbb{P}\left(n_{f_{1}}+n_{f_{2}}+n_{f_{3}} \neq m\right) \leqslant\left(1-q^{-O(k)}\right)^{\left|\mathcal{E}_{0}\right|},
\end{aligned}
$$

using the independence of the family of random variables $\left(n_{f_{1}}+n_{f_{2}}+n_{f_{3}}\right)_{\left(f_{1}, f_{2}, f_{3}\right) \in \mathcal{E}_{0}}$. By (9) and the simple inequality $1-x \leqslant \exp (-x)$, we get

$$
\mathbb{P}(m \notin S+S+S) \leqslant \exp \left(-q^{-O(k)} q^{(3 c-1) k^{2}-O(k)}\right) \leqslant \exp \left(-m^{(3 c-1+o(1))}\right)
$$

as $m=q^{k^{2}+O(k)}$.
ThEOREM 5.4. With probability 1 , the elements of S form a Sidon sequence and an asymptotic basis of order 3 .

Proof. By Lemma 4.1, S always has the Sidon property. By Lemma 5.3,

$$
\mathbb{P}(m \notin S+S+S) \leqslant \exp \left(-m^{3 c-1-o(1)}\right) \ll m^{-2}
$$

for sufficiently large m, so

$$
\mathbb{P}(|\mathbb{N} \backslash S+S+S|=+\infty)=0
$$

by the Borel-Cantelli lemma. We conclude that S is almost surely an asymptotic basis of order 3 .

Acknowledgements

I would like to thank my advisors, Ben Green and James Maynard, for their expert guidance and continuing encouragement. I am very grateful to Oliver Riordan for pointing out an error in the appendix of an earlier version of this paper, and for suggesting the method used here to fix it. The author is supported by the Oxford Mathematical Institute and a Saven European Scholarship.

Conflicts of Interest

None.

Appendix A. Auxiliary set

In this section, we use the notation $f * g$ for the additive convolution

$$
f * g(n)=(f * g)(n):=\sum_{\substack{a, b \in \mathbb{Z} \\ a+b=n}} f(a) g(b) .
$$

Proof of Lemma 3.1. Let $I=\{1,2, \ldots,\lfloor p / 2\rfloor-1\} \subset \mathbb{Z}$.

The Erdős-SÁrközy-Sós problem on asymptotic Sidon bases of order 3

Let R be the random set obtained by selecting each element of I, independently, with probability $K p^{-2 / 3}$, where $K=\lceil\log p\rceil$. In particular, $\mathbb{E}[|R|] \asymp K p^{1 / 3}$.

Note that R almost satisfies property (i) of Lemma 3.1, in the sense that

$$
\mathbb{E}[|R \cap(R+R+\{0,1\})|] \leqslant \sum_{\substack{a, b, c \in I \\ a-b-c \in\{0,1\}}} \mathbb{P}(a, b, c \in R) .
$$

The probability $\mathbb{P}(a, b, c \in R)$ is $\left(K p^{-2 / 3}\right)^{k}$ where $k=|\{a, b, c\}|$. Therefore,

$$
\begin{equation*}
\mathbb{E}[|R \cap(R+R+\{0,1\})|] \ll p^{2}\left(K p^{-2 / 3}\right)^{3}+p\left(K p^{-2 / 3}\right)^{2}+1\left(K p^{-2 / 3}\right)^{1} \ll K^{3} \tag{A.1}
\end{equation*}
$$

It will be useful to know the bound $\left\|\mathbf{1}_{R} * \mathbf{1}_{R}\right\|_{\infty} \ll 1$, which holds with high probability. Indeed, if $\mathbf{1}_{R} * \mathbf{1}_{R}(n) \geqslant 9$ for some $n \in \mathbb{N}$, then R contains elements $a_{1}<a_{2}<\cdots<a_{8}$ such that $a_{i}+a_{9-i}=n$ for all i and, thus,

$$
\begin{equation*}
\mathbb{P}\left(\exists n, \mathbf{1}_{R} * \mathbf{1}_{R}(n) \geqslant 9\right) \leqslant \sum_{n=1}^{p} \sum_{\substack{a_{1}, \ldots, a_{8} \in I \\ a_{i} \text { istinct } \\ a_{i}+a_{9}-i=n}} \mathbb{P}\left(\forall i, a_{i} \in R\right) \ll p^{5}\left(K p^{-2 / 3}\right)^{8} \ll K^{8} p^{-1 / 3} \ll K^{-1} . \tag{A.2}
\end{equation*}
$$

Similarly, if $\mathbf{1}_{R} * \mathbf{1}_{-R}(n) \geqslant 8$ for some $n \in \mathbb{Z}^{\neq 0}$, then R contains distinct elements a_{1}, \ldots, a_{8} such that $a_{2 i}-a_{2 i-1}=n$ for $i \in\{1,2,3,4\}$, and as before we get

$$
\begin{equation*}
\mathbb{P}\left(\exists n \in \mathbb{Z}^{\neq 0}, \mathbf{1}_{R} * \mathbf{1}_{-R}(n) \geqslant 8\right) \ll K^{-1} \tag{A.3}
\end{equation*}
$$

We now turn to property (ii) of Lemma 3.1. Let n be an integer with $p / 5 \leqslant n \leqslant 7 p / 5$. We show that n can be written in relatively many ways as the sum of three distinct elements of R, with high probability. Let $\mathcal{T}(n)$ be the collection of all sets $\{a, b, c\}$ of three pairwise distinct elements of I such that $a+b+c=n$. We show that

$$
\begin{equation*}
\mathbb{P}\left(\sum_{T \in \mathcal{T}(n)} \mathbf{1}_{T \subset R} \leqslant K^{2}\right) \ll e^{-K^{2}} \tag{A.4}
\end{equation*}
$$

To bound the left-hand side, we use Janson's inequality. This inequality involves the quantities

$$
\lambda:=\mathbb{E}\left[\sum_{T \in \mathcal{T}(n)} \mathbf{1}_{T \subset R}\right]=\sum_{T \in \mathcal{T}(n)}\left(K p^{-2 / 3}\right)^{3} \gg p^{2}\left(K p^{-2 / 3}\right)^{3}=K^{3}
$$

and

$$
\Delta:=\sum_{\substack{T_{1}, T_{2} \in \mathcal{T}(n) \\ T_{1} \cap T_{2} \neq \emptyset \\ T_{1} \neq T_{2}}} \mathbb{P}\left(T_{1} \cup T_{2} \subset R\right)
$$

Janson's inequality [JRL11, Theorem 2.14] gives

$$
\begin{equation*}
\mathbb{P}\left(\sum_{T \in \mathcal{T}(n)} \mathbf{1}_{T \subset R} \leqslant \frac{1}{2} \lambda\right) \leqslant \exp \left(-\frac{\lambda^{2}}{8(\lambda+\Delta)}\right) \tag{A.5}
\end{equation*}
$$

Observe that, if $T_{1}, T_{2} \in \mathcal{T}(n)$ are distinct but not disjoint, we must have $\left|T_{1} \cap T_{2}\right|=$ 1 , so there are pairwise distinct elements $a, b_{1}, b_{2}, c_{1}, c_{2} \in I$ such that $T_{1}=\left\{a, b_{1}, c_{1}\right\}$ and

C. Pilatte

$T_{2}=\left\{a, b_{2}, c_{2}\right\}$. In particular,

$$
\mathbb{P}\left(T_{1} \cup T_{2} \subset R\right)=\left(K p^{-2 / 3}\right)^{5}
$$

and there are $\ll p^{3}$ such pairs (T_{1}, T_{2}). Hence,

$$
\Delta \ll p^{3}\left(K p^{-2 / 3}\right)^{5} \ll 1 \ll \lambda .
$$

Provided p is larger than some absolute constant, we have $K^{2} \leqslant \frac{1}{2} \lambda$, so (A.4) follows from (A.5), using our estimates for λ and Δ. By the union bound, we get

$$
\begin{equation*}
\mathbb{P}\left(\exists n \in[p / 5,7 p / 5] \cap \mathbb{Z}, \quad \sum_{T \in \mathcal{T}(n)} \mathbf{1}_{T \subset R} \leqslant K^{2}\right) \ll p e^{-K^{2}} \ll K^{-1} \tag{A.6}
\end{equation*}
$$

We have shown that, typically, R satisfies property (ii) of Lemma 3.1 in a robust sense (by (A.6)), but R just fails to satisfy property (i) (see (A.1)).

We define $X:=R \cap(R+R+\{0,1\})$ and $A:=R \backslash X$. This set A satisfies property (i) of Lemma 3.1 by construction. We must show that A still satisfies property (ii) of Lemma 3.1, with high probability.

Let $n \in[p / 5,7 p / 5] \cap \mathbb{Z}$. We know that, with high probability, n is the sum of three distinct elements of R in many different ways. Thus, having $n \notin A+A+A$ means that, whenever n is written as $n=a+b+c$ with distinct $a, b, c \in R$, at least one of a, b, c is in X.

Define

$$
\mathcal{Q}(n):=\left\{(a, b, c, d, e) \in I^{5}: a, b, c \text { pairwise distinct, } a+b+c=n, c-d-e \in\{0,1\}\right\} .
$$

Suppose that n is such that

$$
\left|\mathcal{Q}(n) \cap R^{5}\right| \geqslant K
$$

We claim that either $\max _{m \in \mathbb{N}} \mathbf{1}_{R} * \mathbf{1}_{R}(m) \geqslant 10, \max _{m \in \mathbb{N}} \mathbf{1}_{R} * \mathbf{1}_{-R}(m) \geqslant 10$, or there are four tuples $\left(a_{i}, b_{i}, c_{i}, d_{i}, e_{i}\right)_{1 \leqslant i \leqslant 4} \in \mathcal{Q}(n) \cap R^{5}$ such that, for all $1 \leqslant i<j \leqslant 4$,

$$
\begin{equation*}
\left\{a_{i}, b_{i}, c_{i}, d_{i}, e_{i}\right\} \cap\left\{a_{j}, b_{j}, c_{j}, d_{j}, e_{j}\right\}=\emptyset . \tag{A.7}
\end{equation*}
$$

Suppose first that there is some $a \in R$ appearing as the first coordinate of 200 tuples

$$
\left(a, b_{i}, c_{i}, d_{i}, e_{i}\right)_{1 \leqslant i \leqslant 200} \in \mathcal{Q}(n) \cap R^{5}
$$

Then $n-a$ can be written as $b_{i}+c_{i}$ for all $1 \leqslant i \leqslant 200$. If $\mathbf{1}_{R} * \mathbf{1}_{R}(n-a)<10$, there are $b, c \in R$ such that $b_{i}=b$ and $c_{i}=c$ for at least 20 values of $i \in\{1, \ldots, 200\}$, say for $i \in J$ where $|J| \geqslant$ 20. In turn, this implies that $d_{i}+e_{i} \in\{c-1, c\}$ for all $i \in J$, but if $\mathbf{1}_{R} * \mathbf{1}_{R}(c-1)<10$ and $\mathbf{1}_{R} * \mathbf{1}_{R}(c)<10$ there must exist two distinct indices $i, j \in J$ such that $\left(d_{i}, e_{i}\right)=\left(d_{j}, e_{j}\right)$. This is impossible since $\left(a, b_{i}, c_{i}, d_{i}, e_{i}\right)$ and $\left(a, b_{j}, c_{j}, d_{j}, e_{j}\right)$ are distinct tuples.

Similar reasoning shows that no $r \in R$ can appear as the second or third coordinate of 200 tuples in $\mathcal{Q}(n) \cap R^{5}$, unless $\max _{m \in \mathbb{N}} \mathbf{1}_{R} * \mathbf{1}_{R}(m) \geqslant 10$.

Suppose that there is some $d \in R$ that appears as the fourth coordinate of 200 tuples

$$
\left(a_{i}, b_{i}, c_{i}, d, e_{i}\right)_{1 \leqslant i \leqslant 200} \in \mathcal{Q}(n) \cap R^{5} .
$$

Then $c_{i}-e_{i} \in\{d, d+1\}$ for all i. If $\max _{m \in \mathbb{N}} \mathbf{1}_{R} * \mathbf{1}_{-R}(m)<10$, there are $c, e \in R$ and at least 10 values of i such that $c_{i}=c$ and $e_{i}=e$. Thus, for these $\geqslant 10$ values of i, we have $a_{i}+b_{i}=n-c$. If $\mathbf{1}_{R} * \mathbf{1}_{R}(n-c)<10$, there are two distinct indices i, j such that $\left(a_{i}, b_{i}, c_{i}, d, e_{i}\right)=\left(a_{j}, b_{j}, c_{j}, d, e_{j}\right)$, a contradiction.

The same reasoning shows that no $e \in R$ appears in 200 distinct elements of $\mathcal{Q}(n) \cap R^{5}$, unless $\left\|\mathbf{1}_{R} * \mathbf{1}_{R}\right\|_{\infty} \geqslant 10$ or $\max _{m \in \mathbb{N}} \mathbf{1}_{R} * \mathbf{1}_{-R}(m) \geqslant 10$.

The Erdős-SÁrközy-Sós problem on asymptotic Sidon bases of order 3

The claim follows easily from these observations. Indeed, suppose that $\left\|\mathbf{1}_{R} * \mathbf{1}_{R}\right\|_{\infty}<10$, $\max _{m \in \mathbb{N}} \mathbf{1}_{R} * \mathbf{1}_{-R}(m)<10$ and $\left|\mathcal{Q}(n) \cap R^{5}\right| \geqslant K$. Let $\left(a_{1}, b_{1}, c_{1}, d_{1}, e_{1}\right)$ be an arbitrary element of $\mathcal{Q}(n) \cap R^{5}$. The previous observations show that the number of tuples in $\mathcal{Q}(n) \cap R^{5}$ having a coordinate in $\left\{a_{1}, \ldots, e_{1}\right\}$ is bounded above by an absolute constant. Since K is assumed to be sufficiently large, we can find another tuple ($a_{2}, b_{2}, c_{2}, d_{2}, e_{2}$) such that $\left\{a_{1}, \ldots, e_{1}\right\} \cap\left\{a_{2}, \ldots, e_{2}\right\}=\emptyset$. Repeating, we find four tuples $\left(a_{i}, b_{i}, c_{i}, d_{i}, e_{i}\right)_{1 \leqslant i \leqslant 4} \in \mathcal{Q}(n) \cap R^{5}$ satisfying (A.7).

By this claim and the union bound, we deduce that

$$
\begin{aligned}
& \mathbb{P}\left(\exists n \in[p / 5,7 p / 5] \cap \mathbb{Z},\left|\mathcal{Q}(n) \cap R^{5}\right| \geqslant K\right) \\
& \quad \leqslant \mathbb{P}\left(\left\|\mathbf{1}_{R} * \mathbf{1}_{R}\right\|_{\infty} \geqslant 10\right)+\mathbb{P}\left(\max _{m \in \mathbb{N}} \mathbf{1}_{R} * \mathbf{1}_{-R}(m) \geqslant 10\right) \\
& \quad+\sum_{n \in[p / 5,7 p / 5] \cap \mathbb{Z}} \sum_{\substack{\left(a_{i}, b_{i}, c_{i}, d_{i}, e_{i}\right)_{1 \leq i \leq 4} \text { satisfying (A.7) }}} \mathbb{P}\left(\forall i, a_{i}, b_{i}, c_{i}, d_{i}, e_{i} \in R\right) .
\end{aligned}
$$

By (A.2) and (A.3), the probabilities $\mathbb{P}\left(\left\|\mathbf{1}_{R} * \mathbf{1}_{R}\right\|_{\infty} \geqslant 10\right)$ and $\mathbb{P}\left(\max _{m \in \mathbb{N}} \mathbf{1}_{R} * \mathbf{1}_{-R}(m) \geqslant 10\right)$ are $\ll K^{-1}$. By (A.7), the events $\left\{a_{i}, \ldots, e_{i} \in R\right\}$ and $\left\{a_{j}, \ldots, e_{j} \in R\right\}$ are independent for $i \neq j$. Thus, the last probability is

$$
\mathbb{P}\left(\forall i, a_{i}, b_{i}, c_{i}, d_{i}, e_{i} \in R\right)=\prod_{i=1}^{4} \mathbb{P}\left(a_{i}, b_{i}, c_{i}, d_{i}, e_{i} \in R\right)=\prod_{i=1}^{4}\left(K p^{-2 / 3}\right)^{\left|\left\{a_{i}, \ldots, e_{i}\right\}\right|} .
$$

For $k \in\{3,4,5\}$, let

$$
\mathcal{Q}_{k}(n)=\{(a, b, c, d, e) \in \mathcal{Q}(n):|\{a, b, c, d, e\}|=k\} .
$$

It is not hard to see that $\left|\mathcal{Q}_{k}(n)\right| \ll p^{k-2}$ for $k \in\{3,4,5\}$. Hence, we obtain

$$
\begin{aligned}
\mathbb{P}\left(\exists n \in[p / 5,7 p / 5] \cap \mathbb{Z},\left|\mathcal{Q}(n) \cap R^{5}\right| \geqslant K\right) & \ll K^{-1}+\sum_{n \in[p / 5,7 p / 5] \cap \mathbb{Z}} \prod_{i=1}^{4} \sum_{k=3}^{5}\left|\mathcal{Q}_{k}(n)\right|\left(K p^{-2 / 3}\right)^{k} \\
& \ll K^{-1}+p\left(\sum_{k=3}^{5} p^{k-2}\left(K p^{-2 / 3}\right)^{k}\right)^{4} \\
& \ll K^{-1}+p\left(K^{5} p^{-1 / 3}\right)^{4} \\
& \ll K^{-1} .
\end{aligned}
$$

The last computation and (A.6) imply that there is a set $R \subset I$ such that:
(a) for all $n \in[p / 5,7 p / 5] \cap \mathbb{Z}$, there are $>K^{2}$ sets $\{a, b, c\}$ of three distinct elements of R such that $n=a+b+c$;
(b) for all $n \in[p / 5,7 p / 5] \cap \mathbb{Z}$, there are $\ll K$ sets $\{a, b, c\}$ of three distinct elements of R such that $n=a+b+c$, with one of a, b, c in $R+R+\{0,1\}$;
since with high probability, both properties hold simultaneously.
As announced earlier, we define $X=R \cap(R+R+\{0,1\}$ and $A=R \backslash X$. Then A and $A+$ $A+\{0,1\}$ are disjoint by construction, and for every $n \in[p / 5,7 p / 5] \cap \mathbb{Z}$ there are $K^{2}-O(K) \geqslant$ 1 ways to write n as the sum of three elements of R, none of which being in X. This means that we can write n as the sum of three elements of A, and we are done.

The Erdős-SÁrközy-Sós problem on asymptotic Sidon bases of order 3

References

AKS81 M. Ajtai, J. Komlós and E. Szemerédi, A dense infinite Sidon sequence, European J. Combin. 2 (1981), 1-11.
Cil14 J. Cilleruelo, Infinite Sidon sequences, Adv. Math. 255 (2014), 474-486.
Cil15 J. Cilleruelo, On Sidon sets and asymptotic bases, Proc. Lond. Math. Soc. (3) 111 (2015), 1206-1230.
DP09 J.-M. Deshouillers and A. Plagne, A Sidon basis, Acta Math. Hungar. 123 (2009).
Erd81 P. Erdős, Solved and unsolved problems in combinatorics and combinatorial number theory, European J. Combin. 2 (1981), 1-11.
Erd98 P. Erdős, The probability method: successes and limitations, J. Statist. Plann. Inference 72 (1998), 207-213.

ESS94a P. Erdős, A. Sárközy and V. T. Sós, On additive properties of general sequences, Discrete Math. 136 (1994), 75-99.
ESS94b P. Erdős, A. Sárközy and V. T. Sós, On sum sets of Sidon sets, I, J. Number Theory 47 (1994), 329-347.
ESS95 P. Erdős, A. Sárközy and V. T. Sós, On sum sets of Sidon sets, II, Israel J. Math. 90 (1995), 221-233.
Gog75 J. H. Goguel, Über Summen von zufälligen Folgen natürlicher Zahlen, J. Reine Angew. Math. 272 (1975), 63-77.
HR83 H. Halberstam and K. F. Roth, Sequences (Springer, New York, 1983).
IK04 H. Iwaniec and E. Kowalski, Analytic number theory, vol. 53 (American Mathematical Society, 2004).

JRL11 S. Janson, A. Rucinski and T. Luczak, Random graphs (John Wiley \& Sons, 2011).
Kis10 S. Z. Kiss, On Sidon sets which are asymptotic bases, Acta Math. Hungar. 128 (2010), 46-58.
KRS14 S. Z. Kiss, E. Rozgonyi and C. Sándor, On Sidon sets which are asymptotic bases of order 4, Funct. Approx. Comment. Math. 51 (2014), 393-413.
KS21 S. Z. Kiss and C. Sándor, Generalized asymptotic Sidon basis, Discrete Math. 344 (2021), 112208.
KS22 S. Z. Kiss and C. Sándor, On $B_{h}[1]$-sets which are asymptotic bases of order 2h, Preprint (2022), arXiv:2202.13841.
KS23 S. Z. Kiss and C. Sándor, Dense sumsets of Sidon sequences, European J. Combin. 107 (2023), 103600.

Ruz98 I. Z. Ruzsa, An infinite Sidon sequence, J. Number Theory 68 (1998), 63-71.
Sár01 A. Sárközy, Unsolved problems in number theory, Period. Math. Hungar. 42 (2001), 17-35.
Saw21 W. Sawin, Square-root cancellation for sums of factorization functions over squarefree progressions in $\mathbb{F}_{q}[t]$, Acta Math., to appear. Preprint (2021), arXiv:2102.09730.

Cédric Pilatte cedric.pilatte@maths.ox.ac.uk
Mathematical Institute, University of Oxford, Andrew Wiles Building, Oxford OX2 6GG, UK

[^5]
[^0]: Received 17 March 2023, accepted in final form 30 November 2023.
 2020 Mathematics Subject Classification 11B13 (primary), 11R58, 11N13, 05D40 (secondary).
 Keywords: Sidon sets, additive bases, arithmetic of function fields, probabilistic method.
 (C) 2024 The Author(s). This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial licence (https://creativecommons.org/licenses/by-nc/4.0), which permits noncommercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. Written permission must be obtained prior to any commercial use. Compositio Mathematica is © Foundation Compositio Mathematica.

[^1]: ${ }^{1}$ There is a typo in [Sár01, Problem 32]: ' 2 ' should be replaced with ' 3 '.
 ${ }^{2}$ The constant 0.064 in their paper [KS23] is a typo.

[^2]: ${ }^{3}$ Note that $s(f)$ may exceed $b_{2 k+1}$, whereas for $1 \leqslant i \leqslant 2 k$ the i th digit $\left(e_{(i+1) / 2}\right.$ or $\left.r_{i / 2}\right)$ is always between 0 and $b_{i}-1$.

[^3]: ${ }^{4}$ Note that $s\left(f_{2}\right) \leqslant q^{3 k_{2}}<b_{2 k_{2}+1} b_{2 k_{2}+2} b_{2 k_{2}+3}$, which is why these formulas are valid for $k_{2}+3 \leqslant i \leqslant k_{1}$.

[^4]: ${ }^{5}$ Recall that \mathbb{P} refers to the probability in the random choice of $r_{i}(f), s(f)$ (which are the random variables used to define S).

[^5]: Compositio Mathematica is owned by the Foundation Compositio Mathematica and published by the London Mathematical Society in partnership with Cambridge University Press. All surplus income from the publication of Compositio Mathematica is returned to mathematics and higher education through the charitable activities of the Foundation, the London Mathematical Society and Cambridge University Press.

