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1. Introduction

A tight Riesz group G is a partially ordered group G that satisfies a strengthened
form of the Riesz interpolation property. The term "tight" was introduced by
Miller in (1970) and the tight interpolation property has been considered by Fuchs
(1965), Miller (1973), (to appear), (preprint), Loy and Miller (1972) and Wirth
(1973). If G is free of elements called pseudozeros then G is a non-discrete Haus-
dorff topological group with respect to the open interval topology °tt. Moreover
the closure P of the cone P of the given order is the cone of an associated order
on G. This allows an interesting interplay between the associated order, the tight
Riesz order and the topology %. Loy and Miller found of particular interest
the case in which the associated partial order is a lattice order. This situation
was considered in reverse by Reilly (1973) and Wirth (1973), who investigated
the circumstances under which a lattice ordered group, and indeed a partially
ordered group, permits the existence of a tight Riesz order for which the initial
order is the associated order. These tight Riesz orders were then called compatible
tight Riesz orders. In Section one we relate these ideas to the topologies denned
on partially ordered groups by means of topological identities, as described by
Banaschewski (1957), and show that the topologies obtained from topological
identities are precisely the open interval topologies from compatible tight Riesz
orders.

Miller (1973) and (preprint) has recently investigated possible representations
of lattice ordered groups with compatible tight Riesz orders. If {Ax: a eA} is a
set of dense totally ordered groups and H is their product then two natural partial
orders can be described on H as follows. First there is the usual cardinal order
^ and then there is the order denned by: / > g if and only i f / (a ) > g{a), for
all ix e A. Then (H, < ) is a lattice ordered group and ^ is a compatible tight
Riesz order. Miller (1973) determines certain conditions under which an abelian
lattice ordered group (G, <!) with a compatible tight Riesz order ^ can be repre-
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sented as a subdirect product of a product H of totally ordered groups with two
inherited orders as described above. Miller (to appear) then investigates two
representations due to Ribenboim and Jaffard and obtains conditions under
which they can be used to represent (G, =^, <;). In doing so he makes use of the
following type of construction. Let {A^.aeA}, {Bp-.fieB} be totally ordered
groups and let H be their product. Then H together with the cardinal order =<! is
a lattice ordered group. If an order is defined on H by: / > g if and only if
/ (a ) ^ g(tx), for all aeA, and f(fi) > g(fi), for all j5eJ, then (H, < , g ) is a
hybrid product. In this paper we show any abelian lattice ordered group with a
compatible tight Riesz order can be represented as a subdirect product of a hybrid
product. We also extend this result to partially ordered groups and also to
non-abelian groups by using hybrid products of permutation groups of ordered
sets.

The reader should note that the interpolation property assumed in the
definition of a tight Riesz group in Loy and Miller (1972), Reilly (1973) and
Wirth (1973) is stronger than that assumed in Miller (1973) and Miller (to appear)
and in this paper. However, the compatible tight Riesz orders on a lattice ordered
group that satisfy the weaker interpolation condition also satisfy the stronger
condition and so, in that context, it is immaterial which condition is assumed.
In the context of compatible tight Riesz orders for partially ordered groups,
however, the weaker interpolation property, which we consider here, appears to
be the more appropriate. One further point to notice is that other authors have
usually assumed that a tight Riesz group is directed. As this assumption appears
to be largely immaterial, we have not made this assumption.

2. Compatible tight Riesz orders on partially ordered groups

A partially ordered set (G, :g) is said to satisfy the tight Riesz (1, 2) property
if for any elements a, b, ceG with a < b and a < c there exists an element d e G
with a < d < b and a < d < c. The tight Riesz (2, 1) property is denned analo-
gously and the two are clearly equivalent if (G, ^ ) is a partially ordered group.
The relationship between various tight Riesz orders has been considered by
Cameron and Miller (to appear). As we shall be concerned almost exclusively
with the tight Riesz (1, 2) property we shall refer to it as the tight Riesz property.
A partially ordered group satisfying the tight Riesz property will be called a tight
Riesz group. Clearly a totally ordered group is a tight Riesz group if and only if
it is dense.

For the definitions and basic properties of pseudopositive elements, pseudo-
zero elements and associated orderings the reader is referred to Loy and Miller
(1972) and Miller (1973) and, unless otherwise mentioned, the notation and ter-
minology of this paper will be that of Loy and Miller (1972) and Miller (1973).
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For any partially ordered group (G, ^ ) the open interval toplogy °U is the
topology on G having as a subbase the set of all intervals of the form (a, b)
= {xeG: a < x < b}. From Loy and Miller (1972), in which they took tight
Riesz groups to be directed and abelian, we have the following result that did not
depend on either of these assumptions.

PROPOSITION 2.1. A tight Riesz group (G, ^ ) is a topological group with
respect to its open interval topology °U. Morever, °U is not discrete and the
collection of all open intervals (a, b) forms a base for *%.

Let P denote the positive cone of(G, ^ ) . Then
(1) the boundary dP, of P, is the set of all pseudopositive elements together

with 0;
(2) the set of pseudozeros is BP O ( — dP). This set is also equal to {0}, the

closure of {0}.
If(G, :£) has no pseudozeros then
(3)(G, <%) is a Hausdorff topological group,

and
(4) the cone of the associated order is P, the closure of P.
The next result is due to Fuchs (1965a), Lemma 8.2.

LEMMA 2.2. Let (G, ^ ) be a tight Riesz group. Let Z = {0}. Then Z is a
closed normal trivially ordered subgroup and G/Z is a tight Riesz group without
pseudozeros with respect to the naturally induced order.

Let =̂  and ^ be partial orderings on a group G such that (G, = )̂ is a partially
ordered group and (G, :g) is a tight Riesz group without pseudozeros. If =̂  is the
associated ordering for :g then :g is said to be a compatible tight Riesz order for
(G, =^). In this context we adopt the following notation:

P = {geG:0^g}

P* = P\{0}

dP = {geG\P*:P* + g c P*}.

Then G+ = P* U dP. We refer to P* as the strict cone of the compatible tight
Riesz order g .

Wirth (1973) gave a valuable characterization of those subsets of the cone
of a partially ordered group that are the strict cones of compatible tight Riesz
orders.

PROPOSITION 2.3. (Wirth (1973)). Let (G, < ) be a partially ordered group.
A proper subset T of G+ is the strict cone of a compatible tight Riesz order if
and only if the following conditions are satisfied:
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T(l) T is a lower directed upper ideal of(G + , =4-);
T(2) T =T+T;
T(3) A T = 0, that is, 0 is the greatest lower bound for the set T inG+;
T(4) T is normal.

If (G, O is a lattice ordered group and ^ is a compatible tight Riesz
order then (G, ^ ) is directed.

Before proceeding to obtain a representation theorem for partially ordered
groups with compatible tight Riesz orders we relate the concept to that of topo-
logical identities. Banaschewski (1957) defined a topological identity in a partially
ordered group (G, = )̂ to be a subset £ of G such that

£(1) £ s G + \ { 0 } ;
£(2) for any e, e' e E there exists a d e E with d =̂  e, e ;
£(3) for any e e E, there exists an element d e £ with d + d ^ e;
£(4) fof any eeE, xeG there exists an element deE with d^x + e — x;
£(5) A £ == 0.

If £ is a topological identity on (G, =<) then Banaschewski defined a topology
on G, with respect to which G is a topological group, by taking the sets of the
form Be = {x: — e =̂  x *4 e], for eeE, as a subbase of neighbourhoods of 0.
On account of £(2) these sets also form a base of neighbourhoods for 0. We shall
refer to this topology as the £-topology. A glance at the conditions T'(l) — T(4)
and £(1) — £(5) would suggest a close connection between compatible tight Riesz
orders and topological identities. We proceed to make this precise.

For any subset A of a partially ordered group (G, =̂ ) let

A" = {g e G: g =̂ a, for some a eA},

and for any subset A of a topological space let A0 denote the interior of A.

LEMMA 2.4. Let E be a topological identity in the partially ordered
group (G, <) . Then, with respect to the E-topology (G+)° = £".

PROOF. Let geE". Let eeE be such that e =̂  g. By £(3), there exists an
element deE with 0 -< d < e < g. Then ge[g-d, g + d~] c G +. Hence
0£(G+)°.

Conversely, let ge(G+)°. Then there exists an element deE such that
[g - d, g + d~\ £ G + . Then 0 < g - d, d < g and g e£".

LEMMA 2.5. Let (G, =<) be a partially ordered group and E £ G+\{0}.
Then the following statements are equivalent.

(1) £ is the strict cone of a compatible tight Riesz order.
(2) £ is a topological identity and E = £".
(3) £ is a topological identity and E = (G+)°, with respect to the E-topology.

PROOF. The equivalence of (2) and (3) follows from Lemma 2.4. Let (2) hold.
Then £ is an upper ideal of G+ and by £(2), £ is lower directed. Therefore £
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satisfies T(l). For any eeE there exists an element deE with d + d =̂  e. Then
- d + e > d a n d , b y ( 2 ) , -d + eeE. H e n c e e = d + (-d + e)eE + E. O n

the other hand, for e, feE,e+f^e and so, by (2), e +feE. Thus E = E + E
and T(2) is satisfied.

Conditions 7(3) and £(5) are the same and condition E(4) combined with (2)
clearly implies that E is normal. Thus (2) implies (1). That (1) implies (2) is even
simpler.

Let £ be a topological identity on the partially ordered group (G, <) . It is
clear that E" is also a topological identity and that the E-topology is equal to the
£u-topology. However, from Lemma 2.5, since (£")" = £", E" is the strict cone of
a compatible tight Riesz order ^ . Let Be, for e e £", be any element of the neigh-
bourhood base of 0 in the £"-topology. From £(3) there exists an element d e £",
with 0 -< d -< e and so ( — d, d) a [ — e, e] . Hence the £"-topology is con-
tained in the ^-topology, from the tight Riesz order determined by £". The con-
verse containment follows similarly and we have the following result.

PROPOSITION 2.6. Let (G, < ) be a partially ordered group. The topologies
on (G, =̂ ) derived from topological identities are precisely the open interval
topologies on G derived from compatible tight Riesz orders.

In the remainder of this section we develop a representation theorem for
isolated partially ordered groups with a compatible tight Riesz order where a
partially ordered group (G, ^ ) is said to be isolated if na =̂ 0 for some natural
number n implies that a > 0.

LEMMA 2.7. Let (G, = )̂ be an isolated partially ordered group and ^ be a
compatible tight Riesz order. Then (G, g) is isolated.

PROOF. Let aeG and n be a natural number such that na S: 0. If na = 0
then naeG+ and, since (G, < ) is isolated, aeG+ and so a = 0. Now suppose
that na > 0. From conditions T(l) and T(2) on the strict cone T of the order ^
it follows that there exists an element h > 0 such that nh < na. Then

o
0 < na - nh = S (a + (ka — h — ka))

k=n-l
0

= E (a-(ka + h- ka)).
k=n-l

Since T is normal, ka + h~ kaeT, k = 0, •-,n- 1. By T(l), there exists a
g e T such that g < ka + h - ka, for k = 0, •••,n - 1. Then

o
0 < na — nh < £ (a — g) = n(a — g).

k=n-l
•Hence n(a- g)eG+. Since (G, =<) is isolated a - # e G + . Thus 0 < g < a.

Therefore 0 < a.
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This result will enable us to describe the boundary of the cone of a compatible
tight Riesz order on an isolated partially ordered group. We shall also refer to the
following.

PROPOSITION 2.8. Let (G, < ) be a partially ordered group. Let S?(G) be
the set of convex subsemigroups ofG+ containing 0 and let ^(G) denote the set
of all directed convex subgroups of G. Then the mappings

A^> A n G+

and

are inverse mappings of#(G) onto £f(G) and S^(G) onto ̂ (G), respectively.

PROOF. The proof is entirely analogous to that of Conrad (1967, Theorem 1.3)
establishing the correspondence between convex Z-subgroups and convex sub-
semigroups containing 0 of the positive cone of an /-group (G, ^ ) .

THEOREM 2.9. Let (G, = )̂ be an isolated partially ordered group with a
compatible tight Riesz order g . Then 8P = G+ \P* = u{Sf: iel} where
{St: iel} is the set of maximal subsemigroups of G+\P*. Each St is convex
with respect to the order < and contains 0. Let Mf = [S,] be the convex directed
subgroup of (G, = )̂ generated by St. Then Mt is a maximal convex directed
subgroup of(G, < ) with respect to the condition that Mt n P* = 0. Moreover,
Sj_is closed with respect to the open interval topology 91 induced from g and
Mi C\ G* = St, where Mt is the closure of M{ with respect to %.

PROOF. For any a e G+ \P*, <a> s G+, where <a> denotes the subsemigroup
of G generated by a. Since (G, <i) is isolated, <a> n P* = 0. Hence <a}^G+ \P*
and G+ \P* is the union of its maximal subsemigroups. Let Sf be any of the
maximal subsemigroups of G+ \P* and let a < x < b where a, beS,- and xeG.
Clearly x e G + and the subsemigroup generated by S; and x is contained in G + \P*.
Hence, by the maximality of S;, x e S, and St is convex. Similarly 0 e St.

That M; is a directed convex subgroup of (G, ^ ) and is maximal with respect
to the condition that Mtr\P* - 0 . follows immediately from Proposition 2.8.

Let St denote the closure of S, with respect to °U. Since G+ is closed, being
the closure of P by Proposition 2.1 (4), and P* is open it follows that G+\P* is
closed. Therefore St £ G+ \P* and, since St is a subsemigroup containing Sh we
must have St = Sh by the maximality of St.

Since Mt n G+ = Sh M; s GYP*. Hence~Mi £ G\P* and Si£~M^nG+

S G+ \P*. By the maximality of Sh Mi n G* = St.
It would seem to be quite possible that the subgroups Mf of Theorem 2.9

will be closed thereby simplifying the statement and proof. Unfortunately, the
author was unable to determine whether or not this must always be so. However,
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in the event that (G, = )̂ is a lattice ordered group the situation is much improved
(cf. Lemma 3.2).

To avoid repetition, we shall assume throughout the remainder of this
section that (G =̂ ) is an isolated partially ordered group with a compatible tight
Riesz order ^ , that {S;: i e /} is the set of maximal subsemigroups of G+ \P*
and that M, = [5,], for each iel. We call 8P = \j {S;: iel} the prime de-
composition of dP. The reason will become apparent in Section 3. Topological
comments refer to the open interval topology °U induced from :g.

Let M be a convex subgroup of (G, =<T). Then M is also convex in (G, ;£).
Hence the set of right cosets R(M) of M can be endowed with orders induced
from ^ and ^, respectively. We denote these orders by =< and ^ , as this shou/d
cause no confusion. If G is abelian or M is normal in G, then GjM is a partially
ordered group with respect to the induced orders and the natural mappings are
order preserving homomorphisms.

LEMMA 2.10. Let M be a convex subgroup of(G, ^ ) .
(1) M is open if and only if M n P* # 0 .
(2) If M is not open then R(M) has the tight Riesz property. If M is also a

normal subgroup then GjM is a tight Riesz group.

PROOF. (1) is a straightforward and is just the extension to the partially
ordered case of the observation 5° (IV) in Miller (1973). The proof of 5° (V)
given by Miller (1973) will carry over verbatim to establish (2).

LEMMA 2.11. For each iel, (R(M;), ^ ) has the tight Riesz property.
Moreover, the induced orders =̂  and ^ on R(Mj) are identical.

PROOF. Since every neighbourhood of 0 clearly contains an element of P*,
M; is not open. If 0 ^ a =^ b, beMh then beMf n G+ = S; and, since S,- is
convex, aeSt £ M;. Hence Mt is convex in (G, ^ ) and so also in (G, ^ ) . There-
fore, by Lemma 2.10, (R(Mi), g) has the right Riesz property.

For any a,beG, is is clear that Mt,+ b < M( + a implies that Mt + b
-< Mt + a. We wish to establish the converse implication. So let M; + b
-< M,- + a. Clearly we may assume that Mt + b = Mt and that 0 «< a. Then
<S/, a> n P* T* 0, where <5,-, a} is the subsemigroup of G generated by S: and a.
Therefore, for some nijeSt,j = 1, •••,«, we have

x = ni! + a + m2 + ••• + a + mne P*.

lfm = mi + ••• + mn then

x < n(m + a)

and so n(m + a)eP*. Since (G, g) is isolated this implies that m + aeP* and so

Mi < Mj + m + a = Mt + a.
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Thus (R(AQ, < ) =
In Reilly (1973) it has been shown that if (G, =<!) is a lattice ordered

group then (/?(M;), =^) is totally ordered. This need not hold in general as the
following example demonstrates.

EXAMPLE. Let G denote the additive groups of two by two matrices of real
numbers with the order defined as follows:

(0) < r ) if and only if either (1) a, b ^ 0 but a and

b are not both equal to 0,

or (2) a = b = 0 and c, d ^ 0,

where (0) denotes the zero two by two matrix.
Let a second order ^ be defined as follows:

(0) < r I if and only if either (1) a, b ^ 0 but a and b

are not both equal to 0

or (2) a = b = 0, c ^ 0 and d > 0.

Then (G, = )̂ is a partially ordered group and ^ is a compatible tight Riesz order.
The boundary dP of P consists of those matrices of the form

(i) 1° % «s o.
Thus dP is itself a subsemigroup of G+ and the corresponding directed convex
subgroup M consists of all those matrices of the form (1) above where c is arbitrary;
M is closed. If

= (o o ) a n d * = lo o)
then M + x and M + y are incomparable in R(M) and therefore R(M) is not
totally ordered.

Let si = {(Hx, < ) : ae.4} and / = {(Kj,<): iel} be two sets of partially
ordered groups (where / # 0 ) . Then we shall denote by i^,^,/,^,^)
the full direct product of the groups {Hx, < ) and (Kh < )

^ = n # . >< n *«
a e i4 i t /

endowed with two partial orderings =̂  and :S where ^ is just the cardinal order

0 < / if and only if /(a) > 0, for all aeA, and /(i) > 0, for all i e / ,

and :g is the order defined by
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0 < / if and only if / (a ) > 0, for all txeA, and f(f) >- 0, for all i e / .

Miller (to appear) has referred to such products as hybrid products. We shall say
that a group with two partial orderings (H, =^, g ) is a subdirect product of the
hybrid product {&, srf, £, =^, :g) if H is a subdirect product of the group 3P in
the usual group theoretic sense and the orders = ,̂ :g on H are the restrictions to
H of the orders ^ and ^ on 3P. An o-isomorphism (p of a partially ordered
group (G, = )̂ into a partially ordered group (H, O is a group monomorphism of
G into / / such that a =< b if and only if </>(a) =* </>(*>)• If (G, < , ^ ) is a group
with two partial orderings, then a realization of (G, =^, :£) as a subdirect product
of the hybrid product {(?, s/,,/, =^, ^ ) is a monomorphism of G onto a sub-
direct product of {&, s4,f, < , 50 which is an o-isomorphism of (G, =<) and
(G, g ) into {&, =<) and (^, ^ ) , respectively.

THEOREM 2.12. Lef (G, = )̂ fee an abelian isolated partially ordered group
with a compatible tight Riesz order ^ . Let dP = u {Ss: iel} be the prime
decomposition ofdP and Mt — [S,]. Let 6 be the product of the identity mapping
iG of G and the natural homomorphisms 0; of G onto each G/Mi. Then 9 is a
realization of (G, ^ , ^ ) as a subdirect product of the hybrid product (SP, si
/ \ j ^ ^ ) where <$>/={(G,<)} and tf = {(G/Nl^ < ) : iel} where the order < on

j is that induced from either of the orders ^ or ^ on G (by Lemma 2.11,
the induced orders are the same). Each (G/Mt, :g) is a tight Riesz group.

For each iel, let Z; denote the subgroup of G such that ZJMi is the group
consisting of the pseudozeros ofGjMi together with Mt.

Let <j> be the product of the identity mapping iG on G and the natural homo-
morphisms <f>i of G onto each G/Zt. Let G\Zt have the partial order inherited
from either =4 or ^ . Then <j) is a realization of(G, =<, ^ ) as a subdirect product
of the hybrid product (0>, < < / ' , < , ^ ) where / ' = {(G/Zi; < ) : J e /} and
each G/Zi is a tight Riesz group without pseudozeros.

PROOF. The presence of iG as a component in both 9 and <p guarantees that
9 and <j> are one-to-one. Clearly 9(G) and <p(G) are subdirect products of the
groups &, 0>'. That (GjMi, =<) is a tight Riesz group follows from Lemma 2.11.
Since ZJMi is the group of pseudozeros (together with zero in GjM^) it follows
from Lemma 2.2 that G\Z{ is a tight Riesz group without pseudozeros, with respect
to the order inherited from G\M{ and therefore with respect to the order inherited
from either of the orders < and ^ on G. It only remains, therefore, to show that
9 and <f> are o-isomorphisms with respect to =̂ [ and ^ .

As all the components in 6 and <j) are order-preserving with respect to ^ , 6
and 0 are themselves order-preserving with respect to ^ . Moreover, the presence
of iG as a component in 9 and (f> ensures that 9(a) =̂  9(b) (4>(a) =̂  <j>(b)) implies
that a *4 b. Thus 9 and <j> are o-isomorphisms with respect to ^ .
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Let 0 < a, a e G. Then a $ M;, for any i, and so Mt < Mt + a, for all i e /.
Since M; nG+= Sh this implies that Mt < M; + a, for all iel. Thus 0 < 0(a).
Furthermore, M( < M; + a implies that Mt + a is not a pseudozero in GjM{ and,
therefore, that a <£Zt. Thus Z; < Z, + a, for all i, and so 0 < $(a).

Conversely, 0 < 6(a) implies that 0 < iG(a) or that aeG + . Furthermore,
0 < 6(a) implies that a <£ M^, for all i. Therefore, a e G+ \ u St = P* and 0 < a.
Similarly 0 < </>(«) implies that 0 < a and so 6 and </> are both o-isomorphisms.

We now give a variant of the hybrid product in order to obtain a repre-
sentation for non-abelian partially ordered groups with compatible tight Riesz
orders.

By an automorphism p of a partially ordered set (X, =4) is meant a permuta-
tion p of X such that x ^ y if and only if xp =̂  y/>. (We shall write permutations
on the right.)

Let H be a group of automorphisms of the partially ordered set (X, ^ ) .
Then H is a partially ordered group with respect to the naturally defined order:

(2) hi < h2 if and only if xhy =< xh2, for all xeX.

We shall write (H, X, =̂ ) to indicate that (X, ^ ) is a partially ordered set and
that H is a group of automorphisms of X with the inherited order denned in (2)
above.

Let J / = {(Hx, Xa, < ) : ae.s/} and / = {(£,-, y,, < ) : ie /} be two sets of
groups of automorphisms of partially ordered sets. Then we shall denote by
(&, s#,f,<,S) the full direct product of the groups Hx and X;

^ = n n*x uKt
xeA iel

endowed with two partial orderings =<[ and ^ where ^ is the cardinal order
and ^ is the order denned by

t < / if and only if (1) x/(a) ^ x, for all a e A, x e Xa

and (2) yf(i) > y, for all i e A, y e r£,

where t denotes the identity of (P. Since elements of ^ are now functions whose
values are permutations we treat 0* as a multiplicative group. Once again, if
(G, =<;, :g) is a group with two partial orderings then by a relization 9 of (G, = ,̂ ^ )
as a subdirect product of the hybrid product (3P, s2,#, = ,̂ ^ ) is meant a mono-
morphism of G onto a subdirect product of (i^, s&,#, ^., ^) which is an o-iso-
morphism of (G, < ) and (G, ^ ) into (^, < ) and (0>, ^ ) , respectively.

For any group G and any subgroup H of G, the rifif/i( regular representation
of G is the homomorphism p: g -> pg of G into the group of permutations of G
where ap = a + g, for all a e G, and the n'#/jf regular representation of G on
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R(H) is the homomorphism a: g -> ag of G into the group of permutations of
R(H) where (H + a)ag = H + a + g.

THEOREM 2.13. Let (G, =^) be an isolated partially ordered group with a
compatible tight Riesz order f^.Let 8P = (J{^;: i^I} be the prime decomposition
ofdP and Mt = [S,]. Let 9 denote the product of the right regular representation
pofG and the right regular representations pt of G on R(Mj). Then 9 is a reali-
zation of(G, < , g) as a subdirect product of the hybrid product {0>,^,f, =<, 50
where s4_ = {(p(G), G, <)} and/ = {(p;(G), R(MJ, < ) : iel} where the order =<
on R(Mt) is that induced from either of the orders =C ^ on G. Each R(M,) has
the tight Riesz property and (Pi(G), ;£) is a tight Reisz group.

PROOF. The presence of p as a component of 9 ensures that 9 is one-to-one.
It is also clear that 9(G) is a subdirect product of 0>. That R/(Mi) has the tight
Riesz property follows from Lemma 2.11. Each pit iel, is clearly order-preserving
with respect to =̂  and so also is p. Hence 9 is ^-preserving. If 9{d) =̂  9(b) then
p{a) ^ p(b) and therefore a ^ b. Thus 9 is an o-isomorphism with respect to =<!.
Let 0 < a and j e /. Then a $ M;, for any i G /. Since P* is a normal subset of G,
for_any beG, -b + Sj + b = Si, for some iel. Therefore - b+~M] + b
= Mh for some i e /. Therefore M; + a ̂  Mt and so

j + b + a = b + Mt + a

Hence

b < Mj + b + a = (Mj + b)pj(a),

for all beG, j el. Hence i < 9(a) and 9 is 5i-preserving.
Now let a e G be such that i < 9(a). Then iG =< p(a), where iG is the identity

permutation of G. Hence 0 =< a. Also M{ < MiPi(a) = Mt + a, for all iel.
Hence a$ u{M,-: iel}. Therefore a e G + \ u { S ; : ie /} = P* and 0 is an o-iso-
morphism with respect to ^ .

The kernel of pf is kerp; = n { - x + Mt + x:xeG} and is therefore a
closed subgroup. As Mt OP* = 0 , kerp( n P * = 0 . Hence kerpj is closed
but not open. That (Pi(g), £) = (Gj kerp;, <S) is a tight Riesz group then follows
from Lemma 2.10.

3. Representation of lattice ordered groups with compatible
tight Riesz orders

Throughout this section, (G, =̂ ) will denote a lattice ordered group (hence-
forth /-group) with a compatible tight Riesz order 5?. Our previous notational

https://doi.org/10.1017/S144678870002067X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870002067X


318 N. R. Reilly [12]

conventions for G + , P, P*, dP, "U, etc. will be retained. If M is a convex l-sub-
group of G (that is, a convex sublattice as well as a subgroup) then (R(M), < ) is
a lattice. For this and other basic facts about /-groups the reader is referred to
Conrad (1967).

LEMMA 3.1. For a convex l-subgroup M of (G, = )̂ the following are
equivalent:

(1) a,beG+\M implies that a /\beG+\M;

(2) the lattice (R(M), < ) is totally ordered.

A convex /-subgroup of (G, ̂ ) satisfying the conditions of Lemma 3.1 is
called a prime subgroup. There are various other characterizations of prime
subgroups for which the reader is referred to Conrad (1967).

LEMMA 3.2. Let dP = u {S,-: i e /} be the prime decomposition of dP and

Mi =

(1) Each M; is a prime subgroup of(G, =^).

(2) Each Mt is closed in (G, <&).

PROOF. (1) is proved in Reilly (1973) Theorem 2.6.
It is observed by Miller (1973) 10° that M is a_convex /-subgroup of (G, < ) ,

for any convex /-subgroup M of G. Therefore, Mf is a convex /-subgroup of
(G, =<!) and so is directed. By Theorem 2.9, Mt n G+ = S; and so by Proposi-
tion 2.8, M~ = Mt.

The reason for the terminology "prime decomposition of dP" should now
be evident from Lemma 3.2.

The following characterization of minimal prime subgroup will be useful.

LEMMA 3.3. (Conrad (1967)). A prime subgroup M of(G, ^ ) is a minimal
prime subgroup if and only if for every xeM n G+ there is a yeG+\M with
x A y = 0.

An /-group (G, = )̂ with compatible tight Riesz order ^ is androgenous if
there exist x,yeG with x > x A y but x ^ y. This term was introduced by
Miller (to appear) where he obtained a representation of non-androgenous /-
groups with compatible tight Riesz orders. We give various conditions equivalent
to being non-androgenous below. In this connection an element a of G is a weak
unit if a e G + , a ^ 0 and a A x = 0 implies that x = 0.

For any subset A of G we write A+ = { x e ^ : 0 ^ x } ,

LEMMA 3.4. The following are equivalent.

(1) G is non-androgenous.

(2) For all x,yeG, x > x Ay implies that x > y.
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(3) For all x,yeG,x < x V y implies that x < y.
(4) If x A y is neither x nor y then x,yex A y + dP.
(5) lfx\ly is neither x nor y then x V ye(x + 8P) n (y + 8P).
(6) x > 0, y > 0 implies that x A y > 0.
(7) P* £ w, the set of weak units of(G, =<T).
(8) dP 2 U {M+ : M is a minimal prime subgroup of{G, =Q}.
(9) O {Mt: iel} = {0}, where {Mt: iel} is the set of prime subgroups

of(G, =O determined in Lemma 3.2.

PROOF. The equivalence of (l)-(7) is given in Miller (1973).

Let (7) hold, let M be a minimal prime subgroup of (G, =Q and let a be any
non-zero element of M + . Then by Lemma 3.3, there is a non-zero element b of G +

with a A b = 0. Hence a$w and so a$P*. Thus P* C\M+ =0, M+ c dP
and (8) holds.

Let (8) hold and suppose that A = n {Mt: iel} ^ {0}. Then A + # {0}.
So let a be any non-zero element of A + and let x be any element of P* such that
a and x are incomparable with respect to =<. (Such elements must exist, since
a < P* implies that a = 0, by T(3).) Let a', x' be such that

a = a A x + a'

x = a A x + x'.

Then a', x are non-zero and a' A x' = 0. Since the intersection of all minimal
prime subgroups is {0}, there exists a prime subgroup M such that a' $M; then
x'eM and, by (8), x'edP = U {S;: iel}. But a A xeSt for all i e / and so,
for someye/, xeS,- s G\P*, a contradiction. Hence (9) holds.

Finally, let (9) hold. Let x e P* \w. Then, for some non-zero element
aeG+ \{0}, x A a = 0. Since each Mf is a prime subgroup and x $ U Mf, we
must have ae n M{ = {0}, a contradiction.

In relation to (7) in Lemma 3.4, it is interesting to note the following.

LEMMA 3.5. The following statements are equivalent.

(1) P* = w.
(2) dP = KJ {M+ : M is a minimal prime}.

PROOF. Suppose that (1) holds and A = U{M + : M is a minimal prime}.
From Lemma 3.4, (7) and (8) we have that ^ £ U {M;

+: iel} = B, say. For any
m £ B \A, m$P* and so there exists, by (1), an element a e G+ with a # 0 and
a A m = 0. Hence me U{M+ : M a minimal prime}, a contradiction since
m £ 4 . Thus (2) holds.

If (2) holds, then, from Lemma 3.4, we have that P* c w . Let a e w. By
Lemma 3.3, a $ M, for any minimal prime M. Hence, by (2), a $ dP and so a e P*.
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In order to refine the representation theorems of Section 1, we wish to find
subgroups M which relate to the =̂  and g structure and for which R(M) is
totally ordered with respect to the induced orders.

LEMMA 3.6. For all iel, (R(M,), < ) = (K(M,), ^ ) and (R(Mt), < ) is a
dense totally ordered set.

PROOF. We know that (R(Mi), < ) = (R(M(), ^ ) from Lemma 2.11. Since
Mi is a prime subgroup of (G, =̂ ) by Lemma 3.2, we know that (R(Mi), ̂ ) is
totally ordered by Lemma 3.1. Since (R(Mf), =<) has the tight Riesz property
by Lemma 2.11, it must be dense.

An alternative source of prime subgroups that relate to the two orders is
given in the following.

LEMMA 3.7. / / M is a prime subgroup of (G, =̂ ) such that M n P* =£ 0
then (R(M), < ) = (R(M), ^ ) is totally ordered.

PROOF. It is shown in Theorem 3.3 of Reilly (1973) that (R(M), ^ ) is totally
ordered. So also is (R(M), < ) totally ordered. Since =< is a refinement of ^ and
both are totally ordered, we must have equality.

We now have a sufficient supply of suitable prime subgroups of (G, =̂ ) to
approach the representation theorems.

Let s/ = {Hx: cceA} and / = {Kt: iel} be two sets of totally ordered
groups where 1^0 (but possibly A = 0 ) . Suppose further that each Kt is
dense. Let i^,^,/,^., ±=) be the hybrid product of the totally ordered groups
Hx, Kt described in Section 2. Then it is observed by Miller (to appear), 5° that
(SP, =0 is an /-group and that ^ is a compatible tight Riesz order.

If (G, =O is an /-group with a compatible tight Riesz order ^ then by an
l-realization 9 of (G, ^ , ^ ) as a subdirect product of {2P, s&,#, = ,̂ ^ ) is meant
a realization 9 which is also a lattice homomorphism in the sense that 9(a V b)
= 9{a) V 9{b) and 9(a A b) = 9(a) A 9(b), for all a, beG. In this connection
we observe that an /-monomorphism of an /-group (G, ^ ) into an /-group (if, =̂ )
is necessarily an o-isomorphism of (G, =̂ ) into (H, ^ ) .

We note that an /-group is always isolated (Conrad (1967)).

THEOREM 3.8. Let (G, =<[) be an abelian l-group with a compatible tight
Riesz order gj. Let {Na :aeA) be the set of prime subgroups Nx of(G, =̂ [) such
that Nx n P* ^ 0. Let dP = U {St: i e /} be the prime decomposition of 8P
and Mt = [S,]. Let sf = {(G/Nx, < ) : a e i } and/ = {(G/M,, < ) : iel}. Then
the product 9 of the natural homomorphisms 9X: G -> GjNx and 9t: G -* GIMt

is an l-realization of (G, ^ , ^ ) as a subdirect product of the hybrid product
(/, stf, SP, =<, ^ ) of the abelian totally ordered groups (G/Na, < ) and the
dense abelian totally ordered groups (G/Mh =Q.
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The product (j> of the natural homomorphisms 6t: G-^GjMt is an l-realization
of (G, < , ^ ) as a subdirect product of the hybrid product (f?,0,/, < , S) of
the abelian totally ordered groups G\Mi if and only if G is non-androgenous.

PROOF. We have from Lemmas 3.6, 3.7 that each GjNa, GjMt is a totally
ordered abelian group and from Lemma 3.6 that G/M; is dense.

Since each 0x is an /-homomorphism, the kernel, ker0, of 9 is a convex
/-subgroup of (G, <) . Let aekerfl and # > 0 . Then ge C\ {Na:aeA} and
g e n {Mj: iel} = B, say. Let xeP* and let x', g' be such that

x = x A 9 + x'

g = x A g + g'.

Then x' A 0' = 0. If x' — 0, then X = X A J < J which would imply that
g eP*. But g eB+ £ dP. Hence x' 5̂  0. If 0' # 0 then there exists a prime sub-
group M of G with g' $M,x' e M. (Take M to be any maximal convex /-subgroup
of (G, =̂ ) with respect to not containing g'. Then (Conrad (1967)) M is prime and
therefore x'eM.) Since x$6P and x A 0e.B we must have x' $cP. Hence x'eP*
and MOP* # 0 . Thus M = Na for some aeA. Since 0^= g' we would then have
g$Nx, a contradiction. Therefore g' = 0 and 0 = x A 0 =̂  x for all xeP*.
By T(3) g = 0. Hence ker 0 = {0} and 6 is an /-monomorphism.

If x e G and 0 < x, then x £ M;, for any i and so 0 < 0f(*)> for all i e /, and
0 =< 6x(x), for all a e A. In other words, 0 < 0(x). Conversely, let 0 < 6(x). Then
0 -< 0(x) and x e G+. Since 0 «< 0;(x), for all i e /, we have x £ M;, for all i. There-
fore, x e P* and 8 is an o-isomorphism with respect to ^ . Thus the assertions
regarding 0 are proved.

Clearly ker<£ = n {Mf: i e /} and so, by Lemma 3.4, </> is an /-mono-
morphism if and only if G is non-androgenous. The result is then clear.

Corresponding to Theorem 2.13, we have the following result.

THEOREM 3.9. Let (G, =sQ be an l-group with a compatible tight Riesz
order g . Let {Na : cteA) be the set of prime subgroups Nx of(G, *^)for which
jVa n P* 7̂  0. Let dP = U {St: iel} be the prime decomposition of dP and
M( = [S(]. Let 6 be the product of all the right regular representations pa, pt of
G on the R(NJ and ^(M,), respectively. Then 6 is an l-realization of(G, ^ , _)
as a subdirect product of the hybrid product (&1, *£/,,/, < , ^ ) where
d = {(p.(G), R(NJ, O : aeA}, / = {(p;(G), R(M,), <): iel} and each
pjfi) (Pi(G)) is an l-subgroup of the l-group of all automorphisms of the totally
ordered sets R(Na) (i?(M,)). Each R(Mt) is dense.

Let (j> denote the product of the representations pit iel. Then (f> is an
l-realization of (G, = ,̂ = ) as a subdirect product of the hybrid product
(^,0,/, =<> ̂ ) if and only ifG is non-androgenous.
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PROOF. Since each component of 6 and (j> is an Z-homomorphism it

is clear that 6 and (j> are Z-homomorphisms (with respect to =^). Since

ker 9 s { n {Na : a e A}} n { n {M;: i e /}} it follows as in Theorem 3.8 that

ker# = {0} and that if G is non-androgenous, ker$ = {0}. Thus 8 is an Z-mono-

morphism. Since, in fact, {M;: iel} is a normal family of subgroups, that is,

for all i e / , a e G, a + Mt — a = Mj, for some j e I, the kernel of <p is precisely

n {M;: i e / } . Hence 0 is an Z-monomorphism if and only if G is non-androgenous.

It follows, as in Theorem 2.13, that 9 (<j>) is an o-isomorphism with respect to ^

(provided, in the case of (j>, that G is non-androgenous).

Each (R(Mi), =O is dense by Lemma 3.6, and each pt(G) is a tight Riesz group

as in Theorem 2.13.
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