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HERMITE CONJUGATE FUNCTIONS 
AND REARRANGEMENT INVARIANT SPACES 

BY 

KENNETH F. ANDERSEN 

The Hermite conjugate Poisson integral f(x, y) of a given feL1^), d{i(y)= 
exp(—j2) dy, was defined by Muckenhoupt [5, p. 247] as 

/*oo 

/(*> y) = Q(x> y> z)f(z) dKz) x > °> y e Q = ( - °°> °°) 
J — 00 

where 

, /-i21/2(z-rj;)exp(x2/21ogr) (-?y*+2ryz-r*z*\ 
e ( x ' * z ) =Jo . ( - l o g . n i - ^ e x p l — i ^ — ) "r-

If the Hermite conjugate function operator Tis defined by (Tf)(y)=limx_0+f(x, y) 
a.e., then one of the main results of [5] is that Tis of weak-type (1, 1) and strong-
type (p,p) for all/7>l. This result together with a theorem of Boyd [3, Theorem 1] 
shows that if Lp(£l) is a rearrangement invariant space with upper and lower indices 
a and ft respectively (see [3] for definitions and notation) which satisfy 0 < ^ < a < 1, 
then Tmaps Lp(£ï) continuously into itself. The purpose of this note is to give an 
elementary proof of the converse which then results in the following generalization 
of Muckenhoupt's result: 

THEOREM. Let Lp(ù) be a rearrangement invariant space with upper index a and 
lower index /?. Then 0 < / ? < a < l is a necessary and sufficient condition for T to be 
bounded as a linear operator from LP(Q) into itself 

In general, the indices a and /? will depend not only on the particular function 
norm p defining Lp but also on the nature of the underlying measure space. How
ever, it is known that the conditions 0 < / ? < a < l are equivalent to uniform con
vexity in the case of the Lorentz spaces A(<p, p),p>\, and to reflexivity in the case 
of the Orlicz spaces. For the infinite non-atomic measure spaces this was proved by 
Boyd [2], and using similar methods Kerman [4] and the author [1] obtained the 
same results for the finite non-atomic and the purely atomic cases respectively. 
Thus, Kerman's result applies in the present situation, and in analogy with known 
results for the classical Hilbert transform [2], the classical conjugate function 
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operator [4], [6] and the discrete Hilbert transforms [1] we have: 

COROLLARY 1. T is bounded from A.(cpyp),p>\, into itself if and only if A( (/>,/?) 
is uniformly convex. 

COROLLARY 2. T is bounded from an Orlicz space into itself if and only if the space 
is reflexive. 

For the proof of the Theorem we require the following lemma. 

LEMMA. Denote by Q* the interval [0, a] equipped with Lebesgue measure m,where 
0=//(£)), and if f ^ LP(Q*) let rf denote the function in LP(Q) given by 

f(z) i f z e [ 0 , a ] 

0 otherwise . 

Then f and rfhave equivalent norms, that is, 

(exp(-a2))pn*(/) < Pa(rf) < pa*(f). 

Proof. Denote b y / * and (rf)' respectively, the nonincreasing equimeasurable 
rearrangements o f /and rf onto Q*. Then we clearly have 

m{zE[0,a]:f(z)>y} = m{ze[0,a]:\f(z)\>y}<-p{zG(^œ,œ):\Tf(z)\>y} 
s 

= -m{ze[0,a]:(rf)'(z)>y} 
S 

so that 

(1) /*(*) <Ç (T/) '(SZ) 

where we have put s=exp(—a2). On the other hand we also have 

m{z e [0, a]:(r/)'(z) > y} = /*{z e ( - o o , OO):|T/(Z)| > y} 

£m{ze[0,a]:\f(z)\>y} 

= m{ze[0,a]:f*(z)>y} 
so that 

(2) ( T / ) ' ( Z ) < / * 0 ) . 

Now it follows immediately from Lemma 3(a) and (47) of [3] that jt>n*(0/)'(s-))< 
(Ms)Pn*((Tf)') a n d hence from (1) and (2) it follows that 

Pa*(J) = Pa'if*) < (l/s)pn*((T/)') = ( I / S ^ T / ) 

( T / ) ( Z ) = 
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and 

Pairf) = PO*((T/)') < Pa<n = Pn<f) 

which proves the lemma. 

Proof of the Theorem, (necessity). According to [3, p. 1253, (50) and (51)] it is 
sufficient to show that if T is bounded, then there is a constant A independent of 
/Elp(f l l*) such that 

(3) Pn<\(P+P')f\) ^ APn*(\f\) 

where for y e Q * , 

(Pf)(y) = fXf(yz) dz and (P'f)(y) = itt'Vf(yz)-. 
Jo Ji z 

Now if 0<y<a, 0<yz<a and 0<c<\ then 

21/2
 2 r (z + r) / 2 r 2 + 2 r z + r V \ J 

21/2irJ° ( l + r z ) \ - l o g r / \ dr \ 1-r2 / / 

and since ((1 — r)j—logr)1/2 is bounded below for c<r<\ we have 

(4) - ) > e ( 0 , y , - } > z ) > - f f ~ 

where iTis a positive constant, depending only on c. Now i f / e LP(Q*) w i t h / > 0 , 
let g(z)= — (rf)(—z). Then g and r^are equimeasurable which together with the 
lemma shows that 

(5) AtoOgl) = Poirf) < Pa.(f) 

and according to Theorem 2 of [5], for almost ally, 0<y<a, we have 

(Tg)(y) = lim f 0(0, y9 z)g(z) d^z) 
e-*0 J\y—z\>B 

= -ja
oQ(.0,y,-z)f(z)d^z) 

(note that the principal value is not required in this last integral since \z—y\ > j > 0 
for all z in the support of g). Now making the change of variable z-^yz and using 
(4) we get 

Ul ra/y\ 

t +)i ) ~yQ(0, y, -yz)f(yz)exp(-(yzf) dz 

>Kcxp(-a2)[(P+P')f](y) 
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for 0<y<a, so that for almost all y e O we have 

[r(P+P')f](y) < ^ l ( T g ) O 0 l 

and hence, by the Lemma and (5) 

Rn<(P+P')f) < (exp a2)Pn(r(P+nf) < ^ ^ Pa(\Tg\) 

. e x p 2a2 

< — — II T\\ pn«(/) 

from which (3) follows, noting that \{P+P')f{y)\< [(P+P') l / IKj) ,y e Û*. 
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