MULTIWAVELENGTH STUDIES OF β CEPHEI STARS

H. CUGIER¹, A. PIGULSKI¹, G. POLUBEK¹ and R. MONIER² ¹Astronomical Institute, Wrocław University, Kopernika 11, 51-622 Wrocław, Poland ² IUE Observatoty VILSPA, P.O. Box-Apartado 50727, Madrid 28080, Spain

As first pointed out by Moskalik and Dziembowski (1992) all β Cephei stars lie within the domain of H-R diagram where κ -mechanism effectively drives pulsations in the stellar layers with $T \approx 2 \times 10^5$ K. For most of these objects a chemical composition described by X = 0.70 and Z = 0.02 is sufficient to account for the pulsations, cf. Dziembowski and Pamyatnykh (1993). Recently, Cugier, Dziembowski and Pamyatnykh (1993) have investigated how the present knowledge about nonadiabatic observables of β Cephei stars affects methods of identification of the spherical harmonic degree, *l*. They found that good photometric and radial velocity data should result in unambiguous identification of *l*. Cugier, Dziembowski and Pamyatnykh also concluded that nonadiabatic observables can be used to obtain mean stellar parameters of pulsating stars.

We report here, as examples, the studies of δ Ceti and BW Vulpeculae. The above mentioned analysis of the ground-based photometric data of δ Cet taken from Jerzykiewicz et al. (1988) indicates: l = 0, p_2 , $\log T_{\rm eff} = 4.346$ and $\log g = 3.73$. Figure 1 shows that indeed only a model with l = 0 is able to explain the observed flux behaviour of δ Cet in the satellite ultraviolet region. Futhermore, the observed phases of flux maximum as a function of wavelength offer the possibility to determine the effective temperature of β Cephei stars with high precision as Fig. 2 shows for δ Cet.

In Fig. 3 the observed light ranges for BW Vul are compared with the nonadiabatic model $(l = 0, p_1, \log T_{\text{eff}} = 4.29 \text{ and } \log g = 3.71)$. As one can see, a very good agreement exists even for this star, which is rather extreme case among β Cephei stars considering its large light and radial-velocity amplitudes.

Acknowledgements

This work was supported by the research grant No. 2 1241 91 04 from the Polish Scientific Research Committee (KBN).

References

Cugier, H. Dziembowski, W.A. and Pamyatnykh, A.A.: 1993, this issue Dziembowski, W.A. and Pamyatnykh, A.A.: 1993, *MNRAS* 262, 204 Jerzykiewicz, M., Sterken, C. and Kubiak, M.: 1988, A&AS 72, 449 Moskalik, P. and Dziembowski, W.A.: 1991, A&A 256, L5

L. A. Balona et al. (eds.), Pulsation, Rotation and Mass Loss in Early-Type Stars, 17–18. © 1994 IAU. Printed in the Netherlands. https://doi.org/10.1017/S0074180900214368 Published online by Cambridge University Press

Fig. 1. Calculated light ranges Δm (dotted lines) in comparison with UV and visual observations (filled circles) for δ Cet. All nonadiabatic models with l=0, 1 and 2 have the same period (P = 0.16114 d)

Fig. 2. The observed (filled circles with error bars) phases of flux maximum for δ Cet are plotted together with nonadiabatic calculations (dots) corresponding to p_2 mode of l = 0. Stellar models (all with the period equal to 0.16114 d) are labelled by log $T_{\rm eff}$ values. The step in log $T_{\rm eff}$ is equal to 0.005 dex.

Fig. 3. The best-fit nonadiabatic model compared with the IUE observations of BW Vul.