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NONEXISTENCE RESULTS
OF POSITIVE ENTIRE SOLUTIONS

FOR QUASILINEAR ELLIPTIC INEQUALITIES

Dedicated to Professor Junji Kato on his 60th birthday

YŪKI NAITO AND HIROYUKI USAMI

ABSTRACT. This paper treats the quasilinear elliptic inequality

div(jDujm�2Du) ½ p(x)uõÒ x 2 RN
Ò

where N ½ 2, m Ù 1, õ Ù m � 1, and p:RN
! (0Ò1) is continuous. Sufficient

conditions are given for this inequality to have no positive entire solutions. When p has
radial symmetry, the existence of positive entire solutions can be characterized by our
results and some known results.

1. Introduction and the statement of results. This paper is concerned with the
quasilinear elliptic inequalities of the form

(11) Lmu � div(jDujm�2Du) ½ p(x)uõÒ x 2 R
N
Ò

where N ½ 2, m Ù 1, õ Ù m � 1, and p:RN
! (0Ò1) is continuous. When m = 2, Lm

reduces to the usual Laplacian; when m 6= 2, Lm is referred to as the degenerate Laplacian.
A positive entire solution of (1.1) is defined to be a positive function u 2 C1(RN) such
that jDujm�2Du 2 C1(RN) and satisfies (1.1) at each x 2 R

N.
The importance of such inequalities in mathematical analysis has been widely recog-

nized in recent years. Interesting existence theorems and asymptotic theory for positive
entire solutions of such inequalities have been obtained by many authors; see, e.g., [4, 5,
7, 8, 9, 12, 14]. Among such results, we recall those obtained by [4]. The main existence
theorem in [4] may be described roughly as follows:

THEOREM A [4, THEOREMS 2.1, 3.1, AND 3.2]. Let p be radially symmetric. Then
(1.1) has a positive radial entire solution if, for some ¢ Ù 0

(12)

8>>><
>>>:

lim supjxj!1 jxjm+¢p(x) Ú 1 in the case m Ú N;
lim supjxj!1 jxjm(log jxj)õ+1+¢p(x) Ú 1 in the case m = N;

lim supjxj!1 jxjN+ õ(m�N)
m�1 +¢p(x) Ú 1 in the case m Ù N.

Actually, in [4] we can find more than mentioned above. It is therefore natural to ask
whether or not (1.1) does possess any positive entire solutions if (1.2) is violated. Our
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main objective is to give partial answers to this question. In fact, we can show that the
decaying order imposed on p(x) in Theorem A is optimal in some sense; that is, if p(x)
decays more slowly than indicated in Theorem A, (1.1) does not possess positive entire
solutions.

The first result is as follows:

THEOREM 1. Let m Ù 1 be arbitrary. If

(13) lim inf
jxj!1

jxjmp(x) Ù 0Ò

then, inequality (1.1) has no positive entire solutions.

In the case m Ú N, Theorem A shows the sharpness of Theorem 1. On the other hand,
in case m ½ N, one can improve Theorem 1 considerably as seen below:

THEOREM 2. Let m Ù N. If

(14) lim inf
jxj!1

jxjN+ õ(m�N)
m�1 p(x) Ù 0Ò

then, inequality (1.1) has no positive entire solutions.

THEOREM 3. Let m = N. If

(15) lim inf
jxj!1

jxjm(log jxj)õ+1p(x) Ù 0Ò

then, inequality (1.1) has no positive entire solutions.

The paper is organized as follows. In Section 2 an important lemma (Lemma 2.1) is
stated and proved. By means of this lemma we can reduce the multi-dimensional problem
under study to a one-dimensional problem. The proofs of Theorems 1, 2, and 3 are given
in Sections 3, 4, and 5, respectively.

The problem of nonexistence of positive entire solutions has been studied in various
situations. For the case m = 2, we refer to [2, 3, 6, 10, 13, 16] and, for the case m 6= 2,
we refer to [1, 11, 12].

2. A comparison lemma. Consider the ordinary differential equation

(21) (rN�1
jv0jm�2v0)0 = rN�1q(r)võÒ r Ù 0Ò

where q: [0Ò1) ! (0Ò1) is a continuous function satisfying

(22) p(x) ½ q(jxj)Ò x 2 R
N


We define an entire solution of (2.1) by a solution v of (2.1) with v0(0) = 0 which exists
on the interval [0Ò1). It should be noted that the leading term of (2.1) is the so-called
polar form of Lm.
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Let v be a solution of (2.1) with v0(0) = 0. Suppose that [0ÒR) (R � 1) be the
maximal interval on which v is defined and remains positive. Then we have v0(r) Ù 0 for
0 Ú r Ú R. In fact, an integration of (2.1) over [0Ò r]Ò r Ú R, yields

jv0(r)jm�2v0(r) = r1�N
Z r

0
sN�1q(s)võ(s) dsÒ 0 Ú r Ú R

Hence v0(r) Ù 0 for 0 Ú r Ú R. Moreover we know from this fact that, if R Ú 1, then v
must blow up at R: v(R � 0) = 1.

It is worthwhile to note that a positive entire solution v of (2.1) satisfies

(23) v0(r) =
�

r1�N
Z r

0
sN�1q(s)võ(s) ds

� 1
m�1
Ò r ½ 0Ò

and

(24) v(r) = v(0) +
Z r

0

�
s1�N

Z s

0
tN�1q(t)võ(t) dt

� 1
m�1

dsÒ r ½ 0

The following lemma plays an important role in proving our results.

LEMMA 2.1. If inequality (1.1) has a positive entire solution u, then there exists a
positive entire solution v of (2.1).

To prove Lemma 2.1, we prepare the following lemma.

LEMMA 2.2. Let Ω be a bounded domain in R
N with smooth boundary ] Ω. Let u

be a positive entire solution of (1.1) and let v 2 C(Ω̄) \ C1(Ω) be a positive function
satisfying jDvjm�2Dv 2 C1(Ω). If Lmv � p(x)võ in Ω and u � v on ] Ω, then u � v in Ω.

REMARK. Lemma 2.2 was also obtained in [1, 15], although we give a proof for the
sake of completeness.

PROOF. Let û:R ! [0Ò1) be a C1-function which vanishes on (�1Ò 0] and is
strictly increasing on (0Ò1). For example, û(u) = 0 for u � 0 and û(u) = u2 for u Ù 0.
We have

(Lmu � Lmv)û(u � v) ½ p(x)(uõ � võ)û(u � v) in Ω

As a consequence of the divergence theorem, it follows that

�
Z

Ω
(jDujm�2Du� jDvjm�2Dv) Ð (Du � Dv)û0(u � v) dx ½

Z
Ω

p(x)(uõ � võ)û(u � v) dx

Since (jDujm�2Du � jDvjm�2Dv) Ð (Du � Dv) ½ 0 in Ω, we have

Z
Ω

p(x)(uõ � võ)û(u � v) dx � 0

Thus, we conclude that u � v in Ω.
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PROOF OF LEMMA 2.1. Assume to the contrary that no such function v exists. Take
a Ù 0 such that a Ú u(0). Let v be a solution of (2.1) with initial values v(0) = a and
v0(0) = 0. Since v can not be continued to 1, the maximal interval of existence of v is
of the form [0ÒR), R Ú 1, and we have v0(r) Ù 0 for 0 Ú r Ú R and v blows up at R:
v(R � 0) = 1. We therefore can find an R1 2 (0ÒR) so that

v(R1) ½ maxfu(x) : jxj = R1g

Define Ω = fx 2 R
N : jxj Ú R1g. Then Lmv � p(x)võ in Ω and v ½ u on ] Ω. By

Lemma 2.2, u � v in Ω, which contradicts v(0) = a Ú u(0). Thus, the proof is complete.

3. Proof of Theorem 1. In this section Theorem 1 is proved. Assume that (1.3)
holds. Then there is a constant c Ù 0 such that

p(x) ½
c

1 + jxjm
Ò x 2 R

N


Putting

q(r) =
c

1 + rm
Ò r ½ 0Ò

we find that q satisfies (2.2), and

(31) q(r) ½ C0r�m
Ò r ½ R0Ò

for some C0, R0 Ù 0.

PROOF OF THEOREM 1. Suppose to the contrary that (1.1) admits a positive entire
solution. Then, (2.1) has a positive entire solution v(r) by Lemma 2.1. First we show that

(32) lim
r!1

v(r) = 1

Since (2.4) holds and v is increasing, it follows that

v(r) ½ v(0) + v(0)
õ

m�1

Z r

0

�
s1�N

Z s

0
tN�1q(t) dt

� 1
m�1

ds

From (3.1), we observe that

lim
r!1

Z r

0

�
s1�N

Z s

0
tN�1q(t) dt

� 1
m�1

ds = 1

Thus we obtain (3.2).
Integrating (2.1) twice over [RÒ r], R ½ R0, we see that

(33) v(r) ½ v(R) +
Z r

R

 Z s

R

� t
s

�N�1
q(t)võ(t) dt

! 1
m�1

dsÒ r ½ R ½ R0
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Using (3.1) and the inequality

� t
s

�N�1
½

1
2N�1

for R � t � s � 2R

in (3.3), we have

(34) v(r) ½ v(R) + C1

Z r

R

�Z s

R
t�mvõ(t) dt

� 1
m�1

dsÒ R � r � 2RÒ

where C1 = (C0Û2(N�1))1Û(m�1). Now let us define the function w(r) on R � r � 2R,
by the right hand side of (3.4). Then w satisfies w(R) = v(R) and, for R � r � 2R,
w(r) � v(r),

w0(r) = C1

�Z r

R
s�mvõ(s) ds

� 1
m�1

½ 0Ò

and

(35) (jw0
j
m�2w0)0 = Cm�1

1 r�mvõ ½ Cm�1
1 r�mwõ



Multiplying (3.5) by w0 ½ 0 and integrating the resulting inequality on [RÒ r] (R � r �
2R), we see that

m � 1
m

jw0(r)jm ½ Cm�1
1 r�m

Z r

R
wõ(s)w0(s) ds =

Cm�1
1

õ + 1
r�m[wõ+1(r) � wõ+1(R)]Ò

which implies

[wõ+1(r)� wõ+1(R)]�
1
m w0(r) ½ C2r�1Ò R Ú r Ú 2RÒ

where C2 = (
mCm�1

1
(õ+1)(m�1) )

1Ûm Ù 0. Integrating over [RÒ 2R], we have

Z 1

v(R)
[sõ+1

� wõ+1(R)]�
1
m ds ½

Z w(2R)

w(R)
[sõ+1

� wõ+1(R)]�
1
m ds ½ C2 log 2

We observe that, by the change of variable s = w(R)t,

(36) [v(R)]�
õ+1�m

m

Z 1

1
(tõ+1

� 1)�
1
m dt ½ C2 log 2Ò R ½ R0

On the other hand, from (3.2) and õ + 1 � m Ù 0, we have

lim
R!1

[v(R)]�
õ+1�m

m

Z 1

1
(tõ+1

� 1)�
1
m dt = 0Ò

which contradicts (3.6). This completes the proof.

REMARK. When m = 2, Theorem 1 was proved by [2, Theorem 3.1], [3, Theorem 2.1],
and [10, Theorem 3.4].
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4. Proof of Theorem 2. In this section we assume that m Ù N and (1.4) holds.
Then, there exists a positive constant c such that

p(x) ½
c

1 + jxjN+ õ(m�N)
m�1

Ò x 2 R
N


Define a function q by

q(r) =
c

1 + rN+ õ(m�N)
m�1

Ò r ½ 0

Then q satisfies (2.2) and there exist constants C0 Ù 0 and R0 Ù 0 such that

(41) q(r) ½ C0r�N� õ(m�N)
m�1 Ò r ½ R0

The proof of Theorem 2 is decomposed into several steps.

LEMMA 4.1. Let v be a positive entire solution of (2.1). Then

(42) lim
r!1

v(r)

r
m�N
m�1

= 1

PROOF. From (2.4) we observe that, for r Ù 1,

v(r) ½
Z r

1

�
s1�N

Z 1

0
tN�1q(t)võ(t) dt

� 1
m�1

ds

½

�Z 1

0
sN�1q(s)võ(s) ds

� 1
m�1 Z r

1
s�

N�1
m�1 ds

Then, we obtain

(43) v(r) ½ C1r
m�N
m�1 Ò r ½ R0Ò

for some constant C1 Ù 0. From (2.3), we have

v0(r) ½ r�
N�1
m�1

�Z r

R0

sN�1q(s)võ(s) ds
� 1

m�1
Ò r ½ R0

By virtue of (4.1) and (4.3), we find that

v0(r) ½ (C0Cõ
1)1Û(m�1)r�

N�1
m�1

�Z r

R0

s�1 ds
� 1

m�1

½ C2r�
N�1
m�1 (log r)

1
m�1 Ò r ½ R0Ò

for some C2 Ù 0. This implies that limr!1 v0(r)Ûr
N�1
m�1 = 1. By L’Hôspital’s rule, we

conclude that (4.2) holds.

LEMMA 4.2. Let v be a positive entire solution of (2.1). Let w(r) = v(r)Ûr
m�N
m�1 and

ï = õÛ(m � 1). Then, for some C Ù 0,

(44) w(2r) ½ C[w(r)]ïÒ r ½ R0
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PROOF. Integrating (2.1) twice over [RÒ r], (r Ù R ½ R0), we have

v(r) ½
Z r

R
s�

N�1
m�1

�Z s

R
tN�1q(t)võ(t) dt

� 1
m�1

dsÒ r Ù R ½ R0

Putting r = 2R in the above, we obtain

v(2R) ½
Z 2R

R
s�

N�1
m�1

�Z s

R
tN�1q(t)võ(t) dt

� 1
m�1

dsÒ R ½ R0

Since (4.1) holds and v(r) is increasing, it follows that

v(2R) ½ C1Û(m�1)
0 [v(R)]

õ

m�1

Z 2R

R
s�

N�1
m�1

�Z s

R
t�1� õ(m�N)

m�1 dt
� 1

m�1
dsÒ R ½ R0

We therefore have

v(2R) ½ C1Û(m�1)
0 R

m�N
m�1 (1� õ

m�1 )[v(R)]
õ

m�1

Z 2

1
t�

N�1
m�1

�Z t

1
ú
�1� õ(m�N)

m�1 dú
� 1

m�1
dt

for R ½ R0. This implies (4.4) with

C = C1Û(m�1)
0

Z 2

1
t�

N�1
m�1

�Z t

1
ú
�1� õ(m�N)

m�1 dú
� 1

m�1
dt

LEMMA 4.3. Let v be a positive entire solution of (2.1). Then, for any k 2 N,

(45) lim
r!1

v(r)
rk

= 1

PROOF. From Lemmas 4.1 and 4.2, we see that limr!1 w(r) = 1 and

(46) w(2r) ½ C[w(r)]ïÒ r ½ R0Ò

where w(r) = v(r)Ûr
m�N
m�1 and ï = õÛ(m � 1). Choose R1 ½ R0 so large that

(47) C
1

ï�1 w(r) ½ 2Ò r ½ R1

From (4.6) we observe that, for any ‡ 2 N,

(48) w(2‡r) ½ C1+ï+ÐÐÐ+ï‡[w(r)]ï
‡

= C� 1
1�ï [C

1
ï�1 w(r)]ï

‡

Ò r ½ R1

Let r ½ 2R1. Then we can find ‡ = ‡(r) 2 N and R2 2 [R1Ò 2R1) such that 2‡R1 � r Ú
2‡+1R1 and r = 2‡R2. We notice here that

(49) ‡(r) ½
log r � log R1 � log 2

log 2


From (4.7) and (4.8), we have

w(r) = w(2‡(r)R2) ½ C� 1
ï�1 [C

1
ï�1 w(R2)]ï

‡

½ C� 1
ï�1 H

�
‡(r)

�
Ò r ½ 2R1Ò

where H(ã) = 2ï
ã

. By virtue of (4.9), we easily see that limr!1 H
�
‡(r)

�.
rk = 1 for

any k 2 N. Then we have, for any k 2 N,

lim
r!1

w(r)
rk

= 1

Thus we obtain (4.5).
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PROOF OF THEOREM 2. Suppose to the contrary that inequality (1.1) admits a positive
entire solution u. Then, by Lemma 2.1, there exists a positive entire solution v of (2.1).
We note that v satisfies

(410) (rN�1
jv0jm�2v0)0 = rN�1

�
q(r)[v(r)]

õ�m+1
2

�
v
õ+m�1

2 Ò r Ù 0

From (4.1) and Lemma 4.3, we observe that

(411) lim
r!1

rm
�
q(r)[v(r)]

õ�m+1
2

�
= 1

Since (õ + m � 1)Û2 Ù m � 1, by virtue of Theorem 1 we can show that (4.10) has
no positive entire solutions. Thus, we have a contradiction. This completes the proof of
Theorem 2.

5. Proof of Theorem 3. Only a sketch of the proof of Theorem 3 is given here,
since a parallel argument to that of Theorem 2 is valid.

Assume that m = N and (1.5) holds. Then, there exists a positive constant c such that

p(x) ½
c

1 + jxjm
�
log(1 + jxj)

�õ+1 Ò x 2 R
N


Put
q(r) =

c

1 + rm
�
log(1 + r)

�õ+1 Ò r ½ 0

We then show that q satisfies (2.2) and there exist constants C0 Ù 0 and R0 Ù 0 such that

(51) q(r) ½ C0r�m(log r)�õ�1
Ò r ½ R0

LEMMA 5.1. Let v be a positive entire solution of (2.1). Then

(52) lim
r!1

v(r)
log r

= 1

PROOF. From (2.4) we observe that, for r Ù 1,

v(r) ½
Z r

1

�
s1�m

Z 1

0
tm�1q(t)võ(t) dt

� 1
m�1

ds ½
�Z 1

0
sm�1q(s)võ(s) ds

� 1
m�1 Z r

1
s�1 ds

Then, we obtain

(53) v(r) ½ C1 log rÒ r ½ R0Ò

for some constant C1 Ù 0. From (2.3), we have

v0(r) ½ r�1
�Z r

R0

sN�1q(s)võ(s) ds
� 1

m�1
Ò r Ù R0

By virtue of (5.1) and (5.3), we find that

v0(r) ½ (C0Cõ
1)1Û(m�1)r�1

� Z r

R0

s�1(log s)�1 ds
� 1

m�1

½ C2r�1
�
log(log r)

� 1
m�1 Ò r ½ R0Ò

for some C2 Ù 0. This implies that limr!1 rv0(r) = 1. By L’Hôspital’s rule, we conclude
that (5.2) holds.
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LEMMA 5.2. Let v be a positive entire solution of (2.1). Let w(r) = v(r)Û log r and
ï = õÛ(m � 1). Then, for some C Ù 0,

(54) w(r2) ½ C[w(r)]ïÒ r ½ R0

PROOF. Integrating (2.1) twice over [RÒ r], (r Ù R ½ R0), we have

v(r) ½
Z r

R
s�1

�Z s

R
tm�1q(t)võ(t) dt

� 1
m�1

dsÒ r Ù R ½ R0

Putting r = R2 in the above, we obtain

v(R2) ½
Z R2

R
s�1

�Z s

R
tm�1q(t)võ(t) dt

� 1
m�1

dsÒ R ½ R0

Since (5.1) holds and v(r) is increasing, it follows that

v(R2) ½ C1Û(m�1)
0 [v(R)]

õ

m�1

Z R2

R
s�1

�Z s

R
t�1(log t)�õ�1 dt

� 1
m�1

dsÒ R ½ R0Ò

and hence, we obtain

v(R2) ½ C1Û(m�1)
0 (log R)�

õ

m�1 +1[v(R)]
õ

m�1
Z 2

1

�Z t

1
ú
�õ�1 dú

� 1
m�1

dtÒ R ½ R0

This implies (5.5) with

C =
1
2

C1Û(m�1)
0

Z 2

1

�Z t

1
ú
�õ�1 dú

� 1
m�1

dt

LEMMA 5.3. Let v be a positive entire solution of (2.1). Then, for any k 2 N,

(55) lim
r!1

v(r)
(log r)k

= 1

PROOF. Let w(r) = v(r)Û log r and

z(s) = w(r)Ò s = log r

Then, from Lemmas 5.1 and 5.2, we see that lims!1 z(s) = 1 and

(56) z(2s) ½ C[z(s)]ïÒ s ½ S0Ò

where S0 = log R0. Hence exactly as in the proof of Theorem 2, we can show that

lim
s!1

z(s)
sk

= 1Ò

for any k 2 N, which implies

lim
r!1

w(r)
(log r)k

= 1

Thus we obtain (5.5).

The final stage of the proof of Theorem 3 is the same as that of Theorem 2. So we
leave the proof to the reader.
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