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A uniqueness theorem for the

Chaplygin-Frankl problem

John M.S. Rassias

In a paper dealing with trans-sonic jet flows Frankl (Bull. Aoad.

Sai. URSS Ser. Math. [Izv. Akad. Nauk SSSE] 9 (19U5), 121-1U3)

considered the following problem (T) by applying the condition

(1) F(y) = 1 + 2(k/k')' > 0 f o r y < 0 ,

where k = k(y) is a monotone increasing function with a

continuous second derivative, k(0) = 0 , F(0) > 0 , k'{y) ± 0

for y < 0 . Consider an equation of the form

(2) L[u] = k(y)-uxx + uyy = 0 ,

which is el l ipt ic for y > 0 , hyperbolic for y < 0 , and

parabolic for y = 0 . Consider equation (2) in a bounded simply

2
connected region D c R which is bounded by the following three

curves: a piecewise smooth curve T lying in the half-plane

y > 0 which intersects the line y = 0 at the points 4(0, 0)

and B(l, 0) ; for y < 0 by a smooth curve V through B

which meets the characteristic of (2) issuing from .4(0, 0) at

the point P ; and the curve F which consists of the portion PA

of the characteristic through A . The problem (T) (or problem

of Tricomi-Frankl) consists of finding a solution
o

u = u(x, y) € C (D) assuming prescribed values on T u F . In

the present paper we generalize Frankl's uniqueness theorem; our

uniqueness theorem includes cases where F(y) may be negative.
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2 1 8 J o h n M . S . R a s s i a s

The Chaplygin-Frankl problem

Consider the equation

(3) L[u] = kiy)^^ + u + A ( z , y)'U = fix, y)

in a bounded simply connected region G <z R , where k = fe(j/) is a mono-

tone increasing function with a continuous second derivative, kio) = 0 ,

k'(i/) / 0 for y < 0 , and the region G is bounded by the following

curves: a piecewise smooth curve T lying in the half-plane y > 0

which intersects the line y = 0 at the points AiO, 0) and B(l, 0) ;

for y < 0 by a smooth curve T through £ which meets the character-

i s t ic of (3) issuing from 4(0, 0) at the point P ; and the curve T

which consists of the portion PA of the characteristic through A ;

X(x, y) € 0^(0) , fix, y) € C°(G) .

The Chaplygin-Frarikl Problem, or problem (F),consists in finding a
o

solution u = uix, y) £ C (G) assuming prescribed values on Y u F? ;

that is,

= o on rQ u r2 .

DEFINITION ([2] , p . 23U, [3], [4]). A function u = uix, y) is

called a quasi-regular solution of problem (F) if u satisfies equation
o

(3) in G c R and in addition the following conditions:

(i) the integral uix, 0)'u (x, 0)dx exists;
J A &f
>A

( i i ) i f G+ = G n {y > 0} , G_ = G n {y < 0} , and i f G+, >

are regions with boundaries 9G+, > lying entirely in G+ ,

then the line integrals along 3(7+, > which result from the

application of Green's Theorem to the integrals
wL[u]'dxdy , ux'L[u]'dxdy , u mL[u]-dxdy

have a limit when 3G+(_\ approaches the boundary of G+ .

https://doi.org/10.1017/S0004972700010881 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700010881


A un iqueness theorem 219

THEOREM. Let k{y) be a monotone increasing function with a

continuous second derivative, k(0) = 0 , F(0) > 0 , k'(y) t 0 for

y < 0 , X(x, y) € (^{G) , f(x, y) € C°(G) , where G is the domain

described above. Moreover, assume the conditions XL 5 0 and

k-a + a" + 2X*a 2 d> 0 in G , and

R(x, y) = a" - h\'{k/k')-^*ax'(-k)h-e^ + k-a^

[ ( ) l ! f & * \ \ d2 > 0 in G ,

where R(y) = 1 - 2-(k/k')' , and a = a(x, y) € C (G) is a given negative

function of the independent variables x, y € R , such that

lim (k/k1) = 0 , and 3 is a given positive constant i?(x) = e - 1 > 0

in G . In addition, we assume R*{x, y) = \a'-(fi'a+a ) -e '(-^) > 0

in G , and if R*(x) = e - 1 , then V{x, y) = A-F2 + B-F + C £ 0 in

G , where

A = c°

B = !J

C = k{-[&'a{Z'a+2-ax)'e
2&'x+R*(x)'[ax)2}-k

+2&'e&'x>a'a''(-k)KR*(x)>(al)2\'(k/k')2

Finally, we assume

i?1(x, j/) = ak'F(y) + 2»i?*(x, y)'[k
2/k') > d3 > 0 ,

i?2U, t/) = (-a)-F(j/) - 2-R*(x, y)-(k/k') > d^ > 0 in G_ ,

and
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=Rk(x, y)\T > 0

where v = [y , v ) is the outer normal unit vector on V .

The prime (') differentiation is meant with respect to the variable

y •

If the above hypotheses hold, then there exist a constant i < 0 ,

and another constant a > 0 such that if d. s Fly) i <f in G , and

u{x, y) is a quasi-regular solution of (3) which vanishes on V u V ,

then u = 0 in G .

Proof. We investigate the expression

(5) 2(l[u], L[u}) = 2 • ff l[u]-L[u]-dxdy ,

"G

where

(6) l[u] = a(x, y)'U i n G+ ,

a n d

= a(x, j/).£+lt((-fc)%-e
6a:-ua.+MJ*(*/fc )] in G ,

o
where a = a(x, y) € C (G) i s a given negative function of the independent

variables x, y € R , and 3 is a given positive constant.

If u{x, y) i s a solution of (3), then (5) will vanish.

We not.e''the following identi t ies:

Sak'vuxx = 2(ak'uuxL - 2ak'ul -

2a-uu = 2[a'uu 1 - 2a'u - \a 'u \ + a 'u ,

yy v yJy y I y ) y yy

2bk-u u = \bk'u\ - kb 'u2 ,x xx [ x) xx'
3C
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2ak'UyUxx = zi°kmuxuyh - [°k'Ux)y
 + {ck\'ul ' 2koxUxUy '

y yy { y) y y

2\-b-uu = [bXu2]^ - {b\)-u2 ,

2cuuy = [b\-u2)y - {b'\)y-u
2 ,

where b = b(x, y) € C1^) and o = a{x, y) € C^G) are defined from (6)

as the coefficients of u and u , respect ively, in G .
is

Substitution of these iden t i t i es into (5) and an application of

Green's Theorem yield

(7) 0 = 2(l[u), L[u])

= 2 l[u]'L[u]-dxdy
>G

\[-2ak-k-b +{ak) )-u2-2-[kc +b ) -u u +[-2a+b -a )'u2\'dxdy
}}G L x y x x y x y x y ul

X • [b 'V +a 'V ) 'u 'ds
' dG

J
J ^{kb'v^kc-v^ •u2+[-b-vi+c-v2) -u^ib-v^ka-vj -u^ |

+
' dG

+ I I [2ak'uu_'v^ +2a-uu_ vj-[ka..-v, +a.pj -u^\ -ds

he

where b = a = 0 in G+ , and

(8) b = c(-k)h-e^ , c = {hak/k') in

LEMMA 1 .

(9) J(
5

1} = | Q[ux, uy)-ds 2 o ,

where Q = Q[u U ) = a •vrt + 23, 'u u + y •ur -Is a quadratic form with.x y 1 x i x i / X y
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res-peat to u , u , where a = kb-v - kcv , 6 = b-v0 + kcv }cc y x x ^ x *_ x

Y = -b'V + cv , and where v = [v , i>2) is the outer normal unit

vector on T .

Proof.

ax'dx = kb-dy + kadx = {kb{-l/(-k)*)+ke) 'dx = [b(-k)^+ka)-dx

= kai-e^+lj'dx = (-k) 'O'R(x) 'dx 5 0 (ds > 0) ;

3x'ds = -b'dx + kc-dy = (-i+te- (-l/(-fc)^)) •&; = {-b+ci-k)*)-dx

«u tc'jj ) -ds = -fc'dy - cdx = -[b(-l/(-k) )+a) 'dx

= -{-e +l)'cdx - e'R{x)'dx 2: 0 ;

2 2 2
8 - a «y = 0 since k'V + V = 0 on T .

Therefore

( 1 0 ) " 4 1 ) = [ {{-kfi-u -u )2-a'R{x)'dx> 0 . P

LEMMA 2.

(11)
= f

Jr 0ur2

where Q = Q[U , u ) is defined as in Lemma lj such that

Rh(x, y)\T » 0 .

Proof. By (It) we get du = u dx + u dy , and u = N'V ,
x y xx

u = N'V , where N is a normalizing factor. By substituting these

expressions in Q{ux> " ) we obtain
(12) Q= Ukb'v^kc'V^ 'V±+2[b'V2+kcv ) «u u +(-Z>«u +cv ) -u^pV2
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on r u r , because b = a = 0 on TQ , and

F2

'ds

u ' r2

by h y p o t h e s i s . D

LEMMA 3 .

'dG •- x l y 2 x l j / 2 J

o

where a = a{x, y) € C (C) is a given negative function of the independent

variables x, y € R , such that RAx, j / ) L 5 0 .

Proof. Condi t ion (It) impl ies

2]

r2a(-k)KdM-(-fe) *u 'da] = - a

i? (x, j/)«Mc-dx > 0 ,
jp J

by hypothesis. ^

LEMMA 4 .

(lit) J- = X» (i«U +CV j 'U 'ds > 0 ,

uftere XL < 0 .

Proof. Condition (U) implies

[ 1 \ 2 f 2
J_, = X- [b'V^+c'vJ] 'u 'ds = X'(bdy-cdx)»u .3 J r ' • 1 2 - ' • J r

1 1

p

u2'

= f X-H2-(fo(-l/(-fc)*)-c).dx = f
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because X|p £ 0 , by hypothesis. •

LEMMA 5.

(15) J, = ff {k-a +a +2X-a-[(X-b) +(X-e) ~\)-u2-dxdy 2 0 ,
1 J i Q xx yy x ir

if k-a + a + 2X-a > d > 0 in G , and R{x, j ) ; d , > 0 in Gxx yy j. + d —ayy

LEMMA 6 .

(16)

where Q[u , u ) = ao
#u + 2$'u u + y'u is a quadratic form withx y d. x d. x y d y

respect to u , u 3 where a2 = -2ak - k'b + (ck) , 32
 = -[ka +b ) ,

Y 2 = -2a + bx - cy .

Proof. Condition (6) implies that Q = 2(-a)'\k'u +u > 0 in G .
(. x y) +

LEMMA 7 .

(IT) j \ = ^ Q[ux, uy)-dxdy > 0 ,

if Q is defined as in Lemma 6, and if conditions R*{x, y) > 0 3

7(x, y) 5 0 , i?(x) > 0 , E±(x, y) > d^ > 0 , i?2(x, j ) > ^ > 0 , and

lim (fe/fe ) = 0 , hold in G_ .
y-o-

Proof. From (6 ) , and by different ia t ion with respect to x and y ,

we find

cx = k(k/k')>ax ,

oy = U [ < ( f c /

(a • (k/k')+a-(k/k')'+(%) -a)
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r.
a = 2ak'F(y) - h

= 2[ak-F(y)+2'R*(x,

by hypothesis [R^x, y) 2 d^ > o) ,

Y 2 = 2[(-a)-F(y)+2R*(x, y)'(.-k/k')] 5 0 ,

by hypothesis (i?2(x, y) ± d^ > o) ,

A = ( ^ J

.a.(k
2/k').F(y) + ^ J

-W-e^-a-a <-k)h\-{ki/{k')2) ^0 ,
ij )

because V(x, y) S 0 in G , and B2 - hAC 2 0 always in G_ .

From hypotheses, V(x, y) 5 0 , i ^ U , y) 2 d > 0 ,

i?p(x, i/) - dx > 0 , implies that there exist two constants cL. < 0 and

d° > 0 , such that dQ £ F(j/) S d° in C_ .

Lemmas 1 to 7 imply the required r e s u l t .
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