BULL. AUSTRAL. MATH. SOC. VOL. 20 (1979), 217-226.

A uniqueness theorem for the Chaplygin-Frankl problem

John M.S. Rassias

In a paper dealing with trans-sonic jet flows Frank! (Bull. Acad. Sci. URSS Sér. Math. [Izv. Akad. Nauk SSSR] 9 (1945), 121-143) considered the following problem (T) by applying the condition

(1)
$$F(y) = 1 + 2(k/k')' > 0$$
 for $y < 0$,

where k = k(y) is a monotone increasing function with a continuous second derivative, k(0) = 0, F(0) > 0, $k'(y) \neq 0$ for y < 0. Consider an equation of the form

(2)
$$\overline{L}[u] = k(y) \cdot u_{xx} + u_{yy} = 0$$

which is elliptic for y > 0, hyperbolic for y < 0, and parabolic for y = 0. Consider equation (2) in a bounded simply connected region $D \subset R^2$ which is bounded by the following three curves: a piecewise smooth curve Γ_0 lying in the half-plane y > 0 which intersects the line y = 0 at the points A(0, 0)and B(1, 0); for y < 0 by a smooth curve Γ_2 through Bwhich meets the characteristic of (2) issuing from A(0, 0) at the point P; and the curve Γ_1 which consists of the portion PAof the characteristic through A. The problem (T) (or problem of Tricomi-Frankl) consists of finding a solution $u = u(x, y) \in C^2(D)$ assuming prescribed values on $\Gamma_0 \cup \Gamma_2$. In the present paper we generalize Frankl's uniqueness theorem; our uniqueness theorem includes cases where F(y) may be negative.

Received 19 February 1979.

The Chaplygin-Frankl problem

Consider the equation

(3)
$$L[u] = k(y) \cdot u_{xx} + u_{yy} + \lambda(x, y) \cdot u = f(x, y)$$

in a bounded simply connected region $G \subset R^2$, where k = k(y) is a monotone increasing function with a continuous second derivative, k(0) = 0, $k'(y) \neq 0$ for y < 0, and the region G is bounded by the following curves: a piecewise smooth curve Γ_0 lying in the half-plane y > 0 which intersects the line y = 0 at the points A(0, 0) and B(1, 0); for y < 0 by a smooth curve Γ_2 through B which meets the characteristic of (3) issuing from A(0, 0) at the point P; and the curve Γ_1 which consists of the portion FA of the characteristic through A; $\lambda(x, y) \in C^1(\overline{G})$, $f(x, y) \in C^0(\overline{G})$.

The Chaplygin-Frankl Problem, or problem (F), consists in finding a solution $u = u(x, y) \in C^2(\overline{G})$ assuming prescribed values on $\Gamma_0 \cup \Gamma_2$; that is,

(4)
$$u = 0 \text{ on } \Gamma_0 \cup \Gamma_2$$
.

DEFINITION ([2], p. 234, [3], [4]). A function u = u(x, y) is called a quasi-regular solution of problem (F) if u satisfies equation (3) in $G \subset R^2$ and in addition the following conditions:

- (i) the integral $\int_{A}^{B} u(x, 0) \cdot u_{y}(x, 0) dx$ exists;
- (ii) if $G_{\pm} = G \cap \{y > 0\}$, $G_{\pm} = G \cap \{y < 0\}$, and if $G_{\pm}(\varepsilon)$ are regions with boundaries $\partial G_{\pm}(\varepsilon)$ lying entirely in G_{\pm} , then the line integrals along $\partial G_{\pm}(\varepsilon)$ which result from the application of Green's Theorem to the integrals

$$\iint_{G_{\pm}(\varepsilon)} u \cdot L[u] \cdot dxdy , \quad \iint_{G_{\pm}(\varepsilon)} u_x \cdot L[u] \cdot dxdy , \quad \iint_{G_{\pm}(\varepsilon)} u_y \cdot L[u] \cdot dxdy$$

have a limit when $\partial G_{\pm(\epsilon)}$ approaches the boundary of G_{\pm} .

THEOREM. Let k(y) be a monotone increasing function with a continuous second derivative, k(0) = 0, F(0) > 0, $k'(y) \neq 0$ for y < 0, $\lambda(x, y) \in C^{1}(\overline{G})$, $f(x, y) \in C^{0}(\overline{G})$, where G is the domain

described above. Moreover, assume the conditions $\lambda|_{\Gamma_1} \leq 0$ and

$$k \cdot a_{xx} + a'' + 2\lambda \cdot a \ge d_1 > 0$$
 in G_+ , and

$$\begin{split} R(x, y) &= a'' - 4\lambda \cdot (k/k') \cdot \left[a' + a_x \cdot (-k)^{\frac{1}{2}} \cdot e^{\beta x} \right] + k \cdot a_{xx} \\ &+ 2a \cdot \left\{ (-2) \cdot (k/k') \cdot \left[\lambda' + (\lambda_x + \beta \cdot \lambda) \cdot (-k)^{\frac{1}{2}} \cdot e^{\beta x} \right] + \lambda \cdot R(y) \right\} \ge d_2 > 0 \quad in \quad G_{-}, \end{split}$$

where $R(y) = 1 - 2 \cdot (k/k')'$, and $a = a(x, y) \in C^2(\overline{G})$ is a given negative function of the independent variables $x, y \in R$, such that

lim (k/k') = 0, and β is a given positive constant $R(x) = e^{\beta x} - 1 \ge 0$ $y \neq 0$ -

in G. In addition, we assume $R^*(x, y) = \left[a' - (\beta \cdot a + a_x) \cdot e^{\beta \cdot x} \cdot (-k)^{\frac{1}{2}}\right] \ge 0$ in G_, and if $R^*(x) = e^{2\beta \cdot x} - 1$, then $V(x, y) = A \cdot F^2 + B \cdot F + C \le 0$ in G_, where

$$A = a^2 \cdot R^*(x) ,$$

$$B = 4 \cdot \left(R^*(x) \cdot a' + \beta \cdot e^{\beta \cdot x} \cdot a \cdot (-k)^{\frac{1}{2}}\right) \cdot a \cdot (k/k') ,$$

and

$$C = 4 \left\{ - \left[\beta \cdot a \left(\beta \cdot a + 2 \cdot a_x \right) \cdot e^{2\beta \cdot x} + R^*(x) \cdot \left(a_x \right)^2 \right] \cdot k + 2\beta \cdot e^{\beta \cdot x} \cdot a \cdot a' \cdot \left(-k \right)^{\frac{1}{2}} + R^*(x) \cdot \left(a' \right)^2 \right\} \cdot \left(k/k' \right)^2 \right\}$$

Finally, we assume

$$\begin{split} R_1(x, y) &= ak \cdot F(y) + 2 \cdot R^*(x, y) \cdot \left(k^2/k'\right) \ge d_3 > 0 , \\ R_2(x, y) &= (-a) \cdot F(y) - 2 \cdot R^*(x, y) \cdot (k/k') \ge d_4 > 0 \quad in \quad G_3, \end{split}$$

and

$$-a_{x}(-k)^{\frac{1}{2}} + ((a \cdot k')/4k)|_{\Gamma_{1}} = R_{3}(x, y)|_{\Gamma_{1}} \ge 0,$$

$$\left[(-k)^{\frac{1}{2}} \cdot e^{\beta \cdot x} \cdot v_1 + v_2 \right] \cdot \left[k \cdot v_1^2 + v_2^2 \right] \Big|_{\Gamma_2} = R_{\downarrow}(x, y) \Big|_{\Gamma_2} \ge 0 ,$$

where $v = (v_1, v_2)$ is the outer normal unit vector on Γ_2 .

The prime (') differentiation is meant with respect to the variable $\mathcal Y$.

If the above hypotheses hold, then there exist a constant $d_0 < 0$, and another constant $d^0 > 0$ such that if $d_0 \le F(y) \le d^0$ in $G_{_}$, and u(x, y) is a quasi-regular solution of (3) which vanishes on $\Gamma_0 \cup \Gamma_2$, then u = 0 in G.

Proof. We investigate the expression

(5)
$$2(l[u], L[u]) = 2 \cdot \iint_G l[u] \cdot L[u] \cdot dxdy$$

where

(6)
$$\mathcal{I}[u] = a(x, y) \cdot u \quad \text{in } G_{\perp},$$

and

$$l[u] = a(x, y) \cdot \left[u + 4 \left((-k)^{\frac{1}{2}} \cdot e^{\beta x} \cdot u_x + u_y \right) \cdot (k/k) \right] \quad \text{in } G_{-},$$

where $a = a(x, y) \in C^2(\overline{G})$ is a given negative function of the independent variables $x, y \in R$, and β is a given positive constant.

If
$$u(x, y)$$
 is a solution of (3), then (5) will vanish
We note the following identities:

$$2ak \cdot uu_{xx} = 2(ak \cdot uu_{x})_{x} - 2ak \cdot u_{x}^{2} - (a_{x}k \cdot u^{2})_{x} + ka_{xx} \cdot u^{2} ,$$

$$2a \cdot uu_{yy} = 2(a \cdot uu_{y})_{y} - 2a \cdot u_{y}^{2} - (a_{y} \cdot u^{2})_{y} + a_{yy} \cdot u^{2} ,$$

$$2bk \cdot u_{x}u_{xx} = (bk \cdot u_{x}^{2})_{x} - kb_{x} \cdot u_{x}^{2} ,$$

$$2b \cdot u_{x}u_{yy} = 2(b \cdot u_{x}u_{y})_{y} - 2b_{y} \cdot u_{x}u_{y} - (b \cdot u_{y}^{2})_{x} + b_{x} \cdot u_{y}^{2} ,$$

$$2ck \cdot u_{y}u_{xx} = 2(ck \cdot u_{x}u_{y})_{x} - (ck \cdot u_{x}^{2})_{y} + (ck)_{y} \cdot u_{x}^{2} - 2kc_{x} \cdot u_{x}u_{y},$$

$$2c \cdot u_{y}u_{yy} = (c \cdot u_{y}^{2}) - c_{y} \cdot u_{y}^{2},$$

$$2\lambda \cdot b \cdot uu_{x} = (b\lambda u^{2})_{x} - (b\lambda)_{x} \cdot u^{2},$$

$$2c \cdot uu_{y} = (b\lambda \cdot u^{2})_{y} - (b \cdot \lambda)_{y} \cdot u^{2},$$

where $b = b(x, y) \in C^{1}(\overline{G})$ and $c = c(x, y) \in C^{1}(\overline{G})$ are defined from (6) as the coefficients of u_{x} and u_{y} , respectively, in \overline{G} .

Substitution of these identities into (5) and an application of Green's Theorem yield

$$\begin{array}{ll} (7) & 0 = 2(l[u], \ L[u]) \\ & = 2 \iint_{G} \ l[u] \cdot L[u] \cdot dxdy \\ & = \iint_{G} \ \left\{ ka_{xx} + a_{yy} + 2\lambda \cdot a - \left[(\lambda \cdot b)_{x} + (\lambda \cdot c)_{y} \right] \right\} \cdot u^{2} \cdot dxdy \\ & + \iint_{G} \ \left[\left(-2ak - k \cdot b_{x} + (ck)_{y} \right) \cdot u^{2}_{x} - 2 \cdot \left(kc_{x} + b_{y} \right) \cdot u_{x}u_{y} + \left(-2a + b_{x} - c_{y} \right) \cdot u^{2}_{y} \right] \cdot dxdy \\ & + \int_{\partial G} \ \lambda \cdot \left(b \cdot v_{1} + c \cdot v_{2} \right) \cdot u^{2} \cdot ds \\ & + \int_{\partial G} \ \left[\left(2ak \cdot uu_{x} \cdot v_{1} + 2a \cdot uu_{y}v_{2} \right) - \left(ka_{x} \cdot v_{1} + a_{y}v_{2} \right) \cdot u^{2} \right] \cdot ds \\ & + \int_{\partial G} \ \left[\left(kb \cdot v_{1} - kc \cdot v_{2} \right) \cdot u^{2}_{x} + \left(-b \cdot v_{1} + c \cdot v_{2} \right) \cdot u^{2}_{y} + 2\left(b \cdot v_{2} + kc \cdot v_{1} \right) \cdot u_{x}u_{y} \right] \cdot ds \\ & = J_{1} + J_{2} + J_{3} + J_{4} + J_{5} \end{array}$$

where b = c = 0 in G_{+} , and

(8)
$$b = c(-k)^{\frac{1}{2}} e^{\beta x}$$
, $c = (\frac{4ak}{k'})$ in G_{-} .

LEMMA 1.

(9)
$$J_{5}^{(1)} = \int_{\Gamma_{1}} Q(u_{x}, u_{y}) \cdot ds \ge 0 ,$$

where $Q = Q(u_x, u_y) = \alpha_1 \cdot u_x^2 + 2\beta_1 \cdot u_x u_y + \gamma_1 \cdot u_y^2$ is a quadratic form with

respect to u_x , u_y , where $\alpha_1 = kb \cdot v_1 - kc \cdot v_2$, $\beta_1 = b \cdot v_2 + kc \cdot v_1$, $\gamma_1 = -b \cdot v_1 + c \cdot v_2$, and where $v = (v_1, v_2)$ is the outer normal unit vector on Γ_2 .

Proof.

$$\alpha_{1} \cdot dx = kb \cdot dy + kcdx = \left(kb\left(-1/(-k)^{\frac{1}{2}}\right) + kc\right) \cdot dx = \left(b(-k)^{\frac{1}{2}} + kc\right) \cdot dx$$
$$= kc\left(-e^{\beta x} + 1\right) \cdot dx = (-k) \cdot c \cdot R(x) \cdot dx \ge 0 \quad (ds > 0) ;$$
$$\beta_{1} \cdot ds = -b \cdot dx + kc \cdot dy = \left(-b + kc \cdot \left(-1/(-k)^{\frac{1}{2}}\right)\right) \cdot dx = \left(-b + c(-k)^{\frac{1}{2}}\right) \cdot dx$$
$$= -c(-k)^{\frac{1}{2}} \cdot R(x) \cdot dx ;$$

$$\begin{aligned} u_1 \cdot ds &= (-b \cdot v_1 + c \cdot v_2) \cdot ds &= -b \cdot dy - c \cdot dx = -(b(-1/(-k)^{\frac{1}{2}}) + c) \cdot dx \\ &= -(-e^{\beta \cdot x} + 1) \cdot c \cdot dx = c \cdot R(x) \cdot dx \ge 0 ; \\ \beta_1^2 - \alpha_1 \cdot \gamma_1 &= 0 \quad \text{since} \quad k \cdot v_1^2 + v_2^2 = 0 \quad \text{on} \quad \Gamma_1 . \end{aligned}$$

Therefore

$$(10) - J_{5}^{(1)} = \int_{\Gamma_{1}} \left((-k)^{\frac{1}{2}} \cdot u_{x} - u_{y} \right)^{2} \cdot c \cdot R(x) \cdot dx \ge 0 . \quad \Box$$

LEMMA 2.

(11)
$$J_{5}^{(2)} = \int_{\Gamma_{0} \cup \Gamma_{2}} Q(u_{x}, u_{y}) \cdot ds \ge 0 ,$$

where $Q = Q(u_x, u_y)$ is defined as in Lemma 1, such that $R_{l_4}(x, y)|_{\Gamma_2} \ge 0$.

Proof. By (4) we get $du = u_x dx + u_y dy$, and $u_x = N \cdot v_1$, $u_y = N \cdot v_2$, where N is a normalizing factor. By substituting these expressions in $Q(u_x, u_y)$ we obtain (12) $Q = \left[(kb \cdot v_1 - kc \cdot v_2) \cdot v_1^2 + 2(b \cdot v_2 + kc \cdot v_1) \cdot v_1 v_2 + (-b \cdot v_1 + c \cdot v_2) \cdot v_2^2 \right] \cdot N^2$ $= N^2 \cdot (b \cdot v_1 + c \cdot v_2) \cdot \left[k \cdot v_1^2 + v_2^2 \right] \ge 0$

on $\Gamma_0 \cup \Gamma_2$, because b = c = 0 on Γ_0 , and $(b \cdot v_1 + c \cdot v_2) \cdot \left[k \cdot v_1^2 + v_2^2\right] \Big|_{\Gamma_2}$ $= c \cdot \left[(-k)^{\frac{1}{2}} \cdot e^{\beta x} \cdot v_1 + v_2\right] \cdot \left[k \cdot v_1^2 + v_2^2\right] \Big|_{\Gamma_2} = c \cdot R_{\downarrow}(x, y) \Big|_{\Gamma_2} \ge 0$,

by hypothesis. 🛛

LEMMA 3.

(13)
$$J_{4} = \int_{\partial G} \left[2a \left(k \cdot u_{x} \cdot v_{1} + u_{y} \cdot v_{2} \right) \cdot u - \left(ka_{x} \cdot v_{1} + a_{y} \cdot v_{2} \right) \cdot u^{2} \right] \cdot ds \ge 0 ,$$

where $a = a(x, y) \in C^2(\overline{G})$ is a given negative function of the independent variables $x, y \in R$, such that $R_3(x, y)|_{\Gamma_1} \ge 0$.

Proof. Condition (4) implies

$$J_{4} = \int_{\Gamma_{1}} \left[2a(k \cdot u_{x} \cdot v_{1} + u_{y} \cdot v_{2}) \cdot u - (ka_{x} \cdot v_{1} + a_{y} \cdot v_{2}) \cdot u^{2} \right] \cdot ds$$

$$= \int_{\Gamma_{1}} \left[2a(-k)^{\frac{1}{2}} u du - (-k)^{\frac{1}{2}} \cdot u^{2} \cdot da \right] = - \int_{\Gamma_{1}} \left[a_{x}(-k)^{\frac{1}{2}} - a_{y} + (ak'/-4k) \right] \cdot u^{2} \cdot dx$$

$$= \int_{\Gamma_{1}} R_{3}(x, y) \cdot u^{2} \cdot dx \ge 0 ,$$

by hypothesis.

LEMMA 4.

(14)
$$J_{3} = \int_{\partial G} \lambda \cdot (b \cdot v_{1} + c \cdot v_{2}) \cdot u^{2} \cdot ds \ge 0$$

where $\lambda |_{\Gamma_{\gamma}} \leq 0$.

Proof. Condition (4) implies

$$J_{3} = \int_{\Gamma_{1}} \lambda \cdot (b \cdot v_{1} + c \cdot v_{2}) \cdot u^{2} \cdot ds = \int_{\Gamma_{1}} \lambda \cdot (b dy - c dx) \cdot u^{2}$$
$$= \int_{\Gamma_{1}} \lambda \cdot u^{2} \cdot (b (-1/(-k)^{\frac{1}{2}}) - c) \cdot dx = \int_{\Gamma_{1}} (-\lambda) \cdot c \cdot (e^{\beta x} + 1) \cdot u^{2} \cdot dx \ge 0,$$

because $\lambda |_{\Gamma_1} \leq 0$, by hypothesis. \Box

LEMMA 5.

$$(15) \qquad J_{1} = \iint_{G} \left\{ k \cdot a_{xx} + a_{yy} + 2\lambda \cdot a - \left[(\lambda \cdot b)_{x} + (\lambda \cdot c)_{y} \right] \right\} \cdot u^{2} \cdot dxdy \ge 0 ,$$

if $k \cdot a_{xx} + a_{yy} + 2\lambda \cdot a \ge d_{1} > 0$ in G_{+} , and $R(x, y) \ge d_{2} > 0$ in G_{-} . \Box

LEMMA 6.

(16)
$$J_2^{(1)} = \iint_{G_+} \tilde{Q}(u_x, u_y) \cdot dx dy \ge 0 ,$$

where $\tilde{Q}(u_x, u_y) = a_2 \cdot u_x^2 + 2\beta_2 \cdot u_x u_y + \gamma_2 \cdot u_y^2$ is a quadratic form with respect to u_x , u_y , where $\alpha_2 = -2ak - k \cdot b_x + (ck)_y$, $\beta_2 = -(kc_x + b_y)$, $\gamma_2 = -2a + b_x - c_y$.

Proof. Condition (6) implies that $\tilde{Q} = 2(-a) \cdot \left(k \cdot u_x^2 + u_y^2\right) \ge 0$ in G_+ . LEMMA 7.

(17)
$$J_2^2 = \iint_{G_x} \tilde{Q}(u_x, u_y) \cdot dx dy \ge 0 ,$$

if \tilde{Q} is defined as in Lemma 6, and if conditions $R^*(x, y) \ge 0$, $V(x, y) \le 0$, R(x) > 0, $R_1(x, y) \ge d_3 > 0$, $R_2(x, y) \ge d_4 > 0$, and lim (k/k) = 0, hold in G_2 . $y \rightarrow 0-$

Proof. From (6), and by differentiation with respect to x and y, we find

$$\begin{split} c_{x} &= 4(k/k') \cdot a_{x} , \\ c_{y} &= 4 \left[a_{y} \cdot (k/k') + a \cdot (k/k')' \right] , \\ b_{x} &= (-k)^{\frac{1}{2}} (c_{x} + \beta \cdot c) \cdot e^{\beta x} = 4 (-k)^{\frac{1}{2}} \cdot (k/k') \cdot (a_{x} + \beta \cdot a) \cdot e^{\beta x} , \\ b_{y} &= \left[c_{y} \cdot (-k)^{-\frac{1}{2}} + c \cdot \left(-k'/2 \cdot (-k)^{\frac{1}{2}} \right) \right] \cdot e^{\beta x} \\ &= 4 \cdot (-k)^{\frac{1}{2}} \left[a_{y} \cdot (k/k') + a \cdot (k/k')' + (\frac{1}{2}) \cdot a \right] \cdot e^{\beta x} , \end{split}$$

$$\begin{aligned} \alpha_{2} &= 2ak \cdot F(y) - 4 \cdot \left[\left(\beta \cdot a + a_{x} \right) \cdot \left(-k \right)^{\frac{1}{2}} \cdot e^{\beta x} - a_{y} \right] \cdot \left(k^{2}/k^{\prime} \right) \\ &= 2 \left[ak \cdot F(y) + 2 \cdot R^{*}(x, y) \cdot \left(k^{2}/k^{\prime} \right) \right] \geq 0 \end{aligned}$$

by hypothesis $(R_1(x, y) \ge d_3 > 0)$,

$$\begin{split} \beta_2 &= -2 \left[2a_x \cdot \left(k^2/k'\right) + \left(a \cdot F(y) + 2a_y \cdot \left(k/k'\right)\right) \cdot \left(-k\right)^{\frac{1}{2}} \cdot e^{\beta x} \right] , \\ \gamma_2 &= 2 \left[\left(-a\right) \cdot F(y) + 2R^*(x, y) \cdot \left(-k/k'\right) \right] \ge 0 , \\ \text{by hypothesis} \quad \left(R_2(x, y) \ge d_4 > 0\right) , \end{split}$$

$$\begin{split} \Delta &= \left(\beta_{2}^{2} - \alpha_{2} \gamma_{2}\right) / 4 = \left(1 - e^{2\beta \cdot x}\right) \cdot a^{2} \cdot k \cdot F^{2}(y) + 4 \left[\left(1 - e^{2\beta \cdot x}\right) \cdot a_{y} - \beta \cdot a \cdot (-k)^{\frac{1}{2}} \cdot e^{\beta \cdot x} \right] \\ &\cdot a \cdot \left(k^{2} / k^{\prime}\right) \cdot F(y) + 4 \left\{ \left[\left[\left(\beta \cdot a + a_{x}\right) \cdot e^{\beta x} \right]^{2} - \left(a_{x}\right)^{\frac{2}{2}} \right] \cdot k + \left(1 - e^{2\beta \cdot x}\right) \cdot \left(a_{y}\right)^{2} \\ &- 2\beta \cdot e^{\beta x} \cdot a \cdot a_{y} \cdot (-k)^{\frac{1}{2}} \right\} \cdot \left(k^{3} / (k^{\prime})^{2}\right) \leq 0 \end{split}$$

because $V(x, y) \leq 0$ in G_{-} , and $B^2 - 4AC \geq 0$ always in G_{-} . From hypotheses, $V(x, y) \leq 0$, $R_1(x, y) \geq d_3 > 0$,

 $R_2(x, y) \ge d_1 > 0$, implies that there exist two constants $d_0 < 0$ and $d^0 > 0$, such that $d_0 \le F(y) \le d^0$ in G_1 .

Lemmas 1 to 7 imply the required result.

References

- Ф.И. Франкль [F. Frankl], "О задачах С.А. Чаплыстина для смешанных дои сверхзвуновых течений" [On the problems of Chaplygin for mixed sub- and supersonic flows], Bull. Acad. Sci. URSS Sér. Math. [Izv. Akad. Nauk SSSR] 9 (1945), 121-143.
- [2] M.B. Kapilevich, "Equations of mixed elliptic and hyperbolic type", Linear equations of mathematical physics, 215-243 (Holt, Rinehart and Winston, New York, Chicago, San Francisco, Toronto, London, 1967).
- [3] M.H. Protter, "Uniqueness theorems for the Tricomi problem", J. Rational Mech. Anal. 2 (1953), 107-114.

[4] John Michael Rassias, "Mixed type partial differential equations in R^n " (PhD dissertation, University of California, Berkeley, 1977).

```
II Dervenakion Str.,
Daphne,
Athens,
Greece.
```