A uniqueness theorem for the Chaplygin-Frankl problem

John M.S. Rassias

In a paper dealing with trans-sonic jet flows Frankl (Bull. Acad. Sci. URSS Sér. Math. [Izv. Akad. Nauk SSSR] 9 (1945), 121-143) considered the following problem (T) by applying the condition

$$
F(y)=1+2\left(k / k^{\prime}\right)^{\prime}>0 \text { for } y<0,
$$

where $k=k(y)$ is a monotone increasing function with a continuous second derivative, $k(0)=0, F(0)>0, k^{\prime}(y) \neq 0$ for $y<0$. Consider an equation of the form

$$
\begin{equation*}
\bar{L}[u]=k(y) \cdot u_{x x}+u_{y y}=0 \tag{2}
\end{equation*}
$$

which is elliptic for $y>0$, hyperbolic for $y<0$, and parabolic for $y=0$. Consider equation (2) in a bounded simply connected region $D \subset R^{2}$ which is bounded by the following three curves: a piecewise smooth curve Γ_{0} lying in the half-plane $y>0$ which intersects the line $y=0$ at the points $A(0,0)$ and $B(1,0)$; for $y<0$ by a smooth curve Γ_{2} through B which meets the characteristic of (2) issuing from $A(0,0)$ at the point P; and the curve Γ_{1} which consists of the portion $P A$ of the characteristic through A. The problem (T) (or problem of Tricomi-Frankl) consists of finding a solution
$u=u(x, y) \in C^{2}(D)$ assuming prescribed values on $\Gamma_{0} \cup \Gamma_{2}$. In the present paper we generalize Frankl's uniqueness theorem; our uniqueness theorem includes cases where $F(y)$ may be negative.

Received 19 February 1979.

The Chaplygin-Frankl problem

Consider the equation

$$
\begin{equation*}
L[u]=k(y) \cdot u_{x x}+u_{y y}+\lambda(x, y) \cdot u=f(x, y) \tag{3}
\end{equation*}
$$

in a bounded simply connected region $G \subset R^{2}$, where $k=k(y)$ is a monotone increasing function with a continuous second derivative, $k(0)=0$, $k^{\prime}(y) \neq 0$ for $y<0$, and the region G is bounded by the following curves: a piecewise smooth curve Γ_{0} lying in the half-plane $y>0$ which intersects the line $y=0$ at the points $A(0,0)$ and $B(1,0)$; for $y<0$ by a smooth curve Γ_{2} through B which meets the characteristic of (3) issuing from $A(0,0)$ at the point P; and the curve Γ_{1} which consists of the portion $P A$ of the characteristic through A; $\lambda(x, y) \in C^{l}(\bar{G}), \quad f(x, y) \in C^{0}(\bar{G})$.

The Chaplygin-Frankl Problem, or problem (F), consists in finding a solution $u=u(x, y) \in C^{2}(\bar{G})$ assuming prescribed values on $\Gamma_{0} \cup \Gamma_{2}$; that is,

$$
\begin{equation*}
u=0 \text { on } \Gamma_{0} \cup \Gamma_{2} . \tag{4}
\end{equation*}
$$

DEFINITION ([2], p. 234, [3], [4]). A function $u=u(x, y)$ is called a quasi-regular solution of problem (F) if u satisfies equation (3) in $G \subset R^{2}$ and in addition the following conditions:
(i) the integral $\int_{A}^{B} u(x, 0) \cdot u_{y}(x, 0) d x$ exists;
(ii) if $G_{+}=G \cap\{y>0\}, G_{-}=G \cap\{y<0\}$, and if $G_{ \pm(\varepsilon)}$
are regions with boundaries $\partial G_{ \pm(\varepsilon)}$ lying entirely in $G_{ \pm}$, then the line integrals along $\partial G_{ \pm(\varepsilon)}$ which result from the application of Green's Theorem to the integrals

$$
\iint_{G_{ \pm(\varepsilon)}} u \cdot L[u] \cdot d x d y, \iint_{G_{ \pm(\varepsilon)}} u_{x} \cdot L[u] \cdot d x d y, \iint_{G_{ \pm(\varepsilon)}} u_{y} \cdot L[u] \cdot d x d y
$$

have a limit when $\partial G_{ \pm(\varepsilon)}$ approaches the boundary of $G_{ \pm}$.

THEOREM. Let $k(y)$ be a monotone increasing function with a continuous second derivative, $k(0)=0, F(0)>0, k^{\prime}(y) \neq 0$ for $y<0, \lambda(x, y) \in C^{l}(\bar{G}), f(x, y) \in C^{0}(\bar{G})$, where G is the domain described above. Moreover, assume the conditions $\left.\lambda\right|_{\Gamma_{1}} \leq 0$ and

$$
\begin{aligned}
k \cdot a_{x x}+ & +\prime \prime+2 \lambda \cdot a \geq d_{1}>0 \text { in } G_{+}, \text {and } \\
R(x, y) & =a^{\prime \prime}-4 \lambda \cdot\left(k / k^{\prime}\right) \cdot\left[a^{\prime}+a_{x} \cdot(-k)^{\frac{3}{2}} \cdot e^{\beta x}\right]+k \cdot a_{x x} \\
& +2 \alpha \cdot\left\{(-2) \cdot\left(k / k^{\prime}\right) \cdot\left[\lambda^{\prime}+\left(\lambda_{x}+\beta \cdot \lambda\right) \cdot(-k)^{\frac{3}{2}} \cdot e^{\beta x}\right]+\lambda \cdot R(y)\right\} \geq d_{2}>0 \text { in } G_{-},
\end{aligned}
$$

where $R(y)=1-2 \cdot\left(k / k^{\prime}\right)^{\prime}$, and $a=a(x, y) \in c^{2}(\bar{G})$ is a given negative function of the independent variables $x, y \in R$, such that
$\lim \left(k / k^{\prime}\right)=0$, and B is a given positive constant $R(x)=e^{B x}-1 \geq 0$ $y \rightarrow 0-$
in G. In addition, we assume $R^{*}(x, y)=\left[a^{\prime}-\left(\beta \cdot a+a_{x}\right) \cdot e^{\beta \cdot x} \cdot(-k)^{\frac{1}{2}}\right] \geq 0$ in G_{-}, and if $R^{*}(x)=e^{2 \beta \cdot x}-1$, then $V(x, y)=A \cdot F^{2}+B \cdot F+C \leq 0$ in G_{-}, where

$$
\begin{aligned}
& A=a^{2} \cdot R^{*}(x), \\
& B=4 \cdot\left(R^{*}(x) \cdot a^{\prime}+\beta \cdot e^{\beta \cdot x} \cdot a \cdot(-k)^{\frac{1}{2}}\right) \cdot a \cdot\left(k / k^{\prime}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& C=4\left\{-\left[\beta \cdot a\left(\beta \cdot a+2 \cdot a_{x}\right) \cdot e^{2 \beta \cdot x}+R^{*}(x) \cdot\left(a_{x}\right)^{2}\right] \cdot k\right. \\
&\left.+2 \beta \cdot e^{\beta \cdot x} \cdot a \cdot a^{\prime} \cdot(-k)^{\frac{3}{2}}+R^{*}(x) \cdot\left(a^{\prime}\right)^{2}\right\} \cdot\left(k / k^{\prime}\right)^{2} .
\end{aligned}
$$

Finally, we assume

$$
\begin{aligned}
& R_{1}(x, y)=a k \cdot F(y)+2 \cdot R^{*}(x, y) \cdot\left(k^{2} / k^{\prime}\right) \geq d_{3}>0, \\
& R_{2}(x, y)=(-a) \cdot F(y)-2 \cdot R^{*}(x, y) \cdot\left(k / k^{\prime}\right) \geq d_{4}>0 \text { in } G_{-},
\end{aligned}
$$

and

$$
-a_{x}(-k)^{\frac{3}{2}}+\left.\left(\left(a \cdot k^{\prime}\right) / 4 k\right)\right|_{\Gamma_{1}}=\left.R_{3}(x, y)\right|_{\Gamma_{1}} \geq 0,
$$

$$
\left.\left[(-k)^{\frac{3}{2}} \cdot e^{\beta \cdot x} \cdot v_{1}+v_{2}\right] \cdot\left[k \cdot v_{1}^{2}+v_{2}^{2}\right]\right|_{\Gamma_{2}}=\left.R_{4}(x, y)\right|_{\Gamma_{2}} \geq 0,
$$

where $v=\left(v_{1}, v_{2}\right)$ is the outer normal unit vector on Γ_{2}.
The prime (') differentiation is meant with respect to the variable y.

If the above hypotheses hold, then there exist a constant $d_{0}<0$, and another constant $d^{0}>0$ such that if $d_{0} \leq F(y) \leq d^{0}$ in G_{-}, and $u(x, y)$ is a quasi-reguzar solution of (3) which vanishes on $\Gamma_{0} \cup \Gamma_{2}$, then $u=0$ in G.

Proof. We investigate the expression

$$
\begin{equation*}
2(Z[u], L[u])=2 \cdot \iint_{G} \tau[u] \cdot L[u] \cdot d x d y \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\tau[u]=a(x, y) \cdot u \text { in } G_{+}, \tag{6}
\end{equation*}
$$

and

$$
\tau[u]=a(x, y) \cdot\left[u+4\left((-k)^{\frac{2}{2}} \cdot e^{\beta x} \cdot u_{x}+u_{y}\right) \cdot(k / k)\right] \text { in } G_{-},
$$

where $a=a(x, y) \in C^{2}(\bar{G})$ is a given negative function of the independent variables $x, y \in R$, and β is a given positive constant.

If $u(x, y)$ is a solution of (3), then (5) will vanish.
We note the following identities:

$$
\begin{aligned}
2 a k \cdot u u_{x x} & =2\left(a k \cdot u u_{x}\right)_{x}-2 a k \cdot u_{x}^{2}-\left(a_{x} k \cdot u^{2}\right)_{x}+k a_{x x} \cdot u^{2}, \\
2 a \cdot u u_{y y} & =2\left(a \cdot u u_{y}\right)_{y}-2 a \cdot u_{y}^{2}-\left(a_{y} \cdot u^{2}\right)_{y}+a_{y y} \cdot u^{2}, \\
2 b k \cdot u_{x} u_{x x} & =\left(b k \cdot u_{x}^{2}\right)_{x}-k b_{x} \cdot u_{x}^{2}, \\
2 b \cdot u_{x} u_{y y} & =2\left(b \cdot u_{x} u_{y}\right)_{y}-2 b_{y} \cdot u_{x} u_{y}-\left(b \cdot u_{y}^{2}\right)_{x}+b_{x} \cdot u_{y}^{2},
\end{aligned}
$$

$$
\begin{aligned}
2 c k \cdot u_{y} u_{x x} & =2\left(c k \cdot u_{x} u_{y}\right)_{x}-\left(c k \cdot u_{x}^{2}\right)_{y}+(c k)_{y} \cdot u_{x}^{2}-2 k c_{x} \cdot u_{x} u_{y} \\
2 c \cdot u_{y} u_{y y} & =\left(c \cdot u_{y}^{2}\right)-c_{y} \cdot u_{y}^{2} \\
2 \lambda \cdot b \cdot u u_{x} & =\left(b \lambda u^{2}\right)_{x}-(b \lambda)_{x} \cdot u^{2} \\
2 c \cdot u u_{y} & =\left(b \lambda \cdot u^{2}\right)_{y}-(b \cdot \lambda)_{y} \cdot u^{2}
\end{aligned}
$$

where $b=b(x, y) \in C^{1}(\bar{G})$ and $c=c(x, y) \in C^{1}(\bar{G})$ are defined from (6) as the coefficients of u_{x} and u_{y}, respectively, in \bar{G}.

Substitution of these identities into (5) and an application of Green's Theorem yield
(7) $0=2(Z[u], L[u])$

$$
\begin{aligned}
= & 2 \iint_{G} \tau[u] \cdot L[u] \cdot d x d y \\
= & \iint_{G}\left\{k a_{x x}+a_{y y}+2 \lambda \cdot a-\left[(\lambda \cdot b)_{x}+(\lambda \cdot c)_{y}\right]\right\} \cdot u^{2} \cdot d x d y \\
& +\iint_{G}\left[\left(-2 a k-k \cdot b_{x}+(c k)_{y}\right) \cdot u_{x}^{2}-2 \cdot\left(k c_{x}+b_{y}\right) \cdot u_{x} u_{y}+\left(-2 a+b_{x}-c_{y}\right) \cdot u_{y}^{2}\right] \cdot d x d y \\
& +\int_{\partial G} \lambda \cdot\left(b \cdot v_{1}+c \cdot v_{2}\right) \cdot u^{2} \cdot d s \\
& +\int_{\partial G}\left[\left(2 a k \cdot u u_{x} \cdot v_{1}+2 a \cdot u u_{y} v_{2}\right)-\left(k a_{x} \cdot v_{1}+a_{y} v_{2}\right) \cdot u^{2}\right] \cdot d s \\
& +\int_{\partial G}\left[\left(k b \cdot v_{1}-k c \cdot v_{2}\right) \cdot u_{x}^{2}+\left(-b \cdot v_{1}+c \cdot v_{2}\right) \cdot u_{y}^{2}+2\left(b \cdot v_{2}+k c \cdot v_{1}\right) \cdot u_{x} u_{y}\right] \cdot d s \\
= & J_{1}+J_{2}+J_{3}+J_{4}+J_{5},
\end{aligned}
$$

where $b=c=0$ in G_{+}, and

$$
\begin{equation*}
b=c(-k)^{\frac{2}{2}} \cdot e^{B x}, \quad c=\left(4 a k / k^{\prime}\right) \text { in } G_{-} . \tag{8}
\end{equation*}
$$

LEMMA 1.

$$
\begin{equation*}
J_{5}^{(1)}=\int_{\Gamma_{1}} Q\left(u_{x}, u_{y}\right) \cdot d s \geq 0 \tag{9}
\end{equation*}
$$

where $Q=Q\left(u_{x}, u_{y}\right)=\alpha_{1} \cdot u_{x}^{2}+2 \beta_{1} \cdot u_{x} u_{y}+\gamma_{1} \cdot u_{y}^{2}$ is a quadratic form with
respect to u_{x}, u_{y}, where $\alpha_{1}=k b \cdot v_{1}-k c \cdot v_{2}, \beta_{1}=b \cdot v_{2}+k c \cdot v_{1}$, $\gamma_{1}=-b \cdot v_{1}+c \cdot v_{2}$, and where $v=\left(v_{1}, v_{2}\right)$ is the outer normal unit vector on Γ_{2}.

Proof.

$$
\begin{aligned}
& \alpha_{1} \cdot d x=k b \cdot d y+k c d x=\left(k b\left(-1 /(-k)^{\frac{3}{2}}\right)+k c\right) \cdot d x=\left(b(-k)^{\frac{1}{2}}+k c\right) \cdot d x \\
& =k c\left(-e^{B x}+1\right) \cdot d x=(-k) \cdot c \cdot R(x) \cdot d x \geq 0 \quad(d s>0) ; \\
& \beta_{1} \cdot d s=-b \cdot d x+k c \cdot d y=\left(-b+k c \cdot\left(-1 /(-k)^{\frac{1}{2}}\right)\right) \cdot d x=\left(-b+c(-k)^{\frac{1}{2}}\right) \cdot d x \\
& =-c(-k)^{\frac{3}{2}} \cdot R(x) \cdot d x ; \\
& \gamma_{1} \cdot d s=\left(-b \cdot v_{1}+c \cdot v_{2}\right) \cdot d s=-b \cdot d y-c \cdot d x=-\left(b\left(-1 /(-k)^{\frac{1}{2}}\right)+c\right) \cdot d x \\
& =-\left(-e^{\beta \cdot x}+1\right) \cdot c \cdot d x=c \cdot R(x) \cdot d x \geq 0 ; \\
& \beta_{1}^{2}-\alpha_{1} \cdot \gamma_{1}=0 \text { since } k \cdot v_{1}^{2}+v_{2}^{2}=0 \text { on } \Gamma_{1} \text {. }
\end{aligned}
$$

Therefore
(10) -

$$
J_{5}^{(1)}=\int_{\Gamma_{1}}\left((-k)^{\frac{3}{2}} \cdot u_{x}-u_{y}\right)^{2} \cdot c \cdot R(x) \cdot d x \geq 0
$$

LEMMA 2.

$$
\begin{equation*}
J_{5}^{(2)}=\int_{\Gamma_{0} \cup \Gamma_{2}} Q\left(u_{x}, u_{y}\right) \cdot d s \geq 0 \tag{11}
\end{equation*}
$$

where $Q=Q\left(u_{x}, u_{y}\right)$ is defined as in Lemma 1 , such that $\left.R_{4}(x, y)\right|_{\Gamma_{2}} \geq 0$.

Proof. By (4) we get $d u=u_{x} d x+u_{y} d y$, and $u_{x}=N \cdot v_{1}$, $u_{y}=N \cdot v_{2}$, where N is a normalizing factor. By substituting these expressions in $Q\left(u_{x}, u_{y}\right)$ we obtain
(12) $Q=\left[\left(k b \cdot v_{1}-k c \cdot v_{2}\right) \cdot v_{1}^{2}+2\left(b \cdot v_{2}+k c \cdot v_{1}\right) \cdot v_{1} v_{2}+\left(-b \cdot v_{1}+c \cdot v_{2}\right) \cdot v_{2}^{2}\right] \cdot N^{2}$

$$
=N^{2} \cdot\left(b \cdot v_{1}+c \cdot v_{2}\right) \cdot\left(k \cdot v_{1}^{2}+v_{2}^{2}\right) \geq 0
$$

on $\Gamma_{0} \cup \Gamma_{2}$, because $b=c=0$ on Γ_{0}, and $\left.\left(b \cdot v_{1}+c \cdot v_{2}\right) \cdot\left(k \cdot v_{1}^{2}+v_{2}^{2}\right)\right|_{\Gamma_{2}}$

$$
=\left.c \cdot\left[(-k)^{\frac{2}{2}} \cdot e^{\beta x} \cdot v_{1}+v_{2}\right] \cdot\left[k \cdot v_{1}^{2}+v_{2}^{2}\right]\right|_{\Gamma_{2}}=\left.c \cdot R_{4}(x, y)\right|_{\Gamma_{2}} \geq 0,
$$

by hypothesis.

LEMMA 3.

$$
\begin{equation*}
J_{4}=\int_{\partial G}\left[2 a\left(k \cdot u_{x} \cdot v_{1}+u_{y} \cdot v_{2}\right) \cdot u-\left(k a_{x} \cdot v_{1}+a_{y} \cdot v_{2}\right) \cdot u^{2}\right] \cdot d s \geq 0, \tag{13}
\end{equation*}
$$

where $a=a(x, y) \in c^{2}(\bar{G})$ is a given negative function of the independent variables $x, y \in R$, such that $\left.R_{3}(x, y)\right|_{\Gamma_{1}} \geq 0$.

Proof. Condition (4) implies

$$
\begin{aligned}
& J_{4}=\int_{\Gamma_{1}}\left[2 a\left(k \cdot u_{x} \cdot v_{1}+u_{y} \cdot v_{2}\right) \cdot u-\left(k a_{x} \cdot v_{1}+a_{y} \cdot v_{2}\right) \cdot u^{2}\right] \cdot d s \\
&=\int_{\Gamma_{1}}\left[2 a(-k)^{\frac{3}{2}} u d u-(-k)^{\frac{3}{2}} \cdot u^{2} \cdot d a\right]=-\int_{\Gamma_{1}}\left(a_{x}(-k)^{\frac{3}{2}}-a_{y}+\left(a k^{\prime} /-4 k\right)\right) \cdot u^{2} \cdot d x \\
&=\int_{\Gamma_{1}} R_{3}(x, y) \cdot u^{2} \cdot d x \geq 0
\end{aligned}
$$

by hypothesis.
LEMMA 4.

$$
\begin{equation*}
J_{3}=\int_{\partial G} \lambda \cdot\left(b \cdot v_{1}+c \cdot v_{2}\right) \cdot u^{2} \cdot d s \geq 0 \tag{14}
\end{equation*}
$$

where $\left.\lambda\right|_{\Gamma_{1}} \leq 0$.
Proof. Condition (4) implies
$J_{3}=\int_{\Gamma_{1}} \lambda \cdot\left(b \cdot v_{1}+c \cdot v_{2}\right) \cdot u^{2} \cdot d s=\int_{\Gamma_{1}} \lambda \cdot(b d y-c d x) \cdot u^{2}$.

$$
=\int_{\Gamma_{1}} \lambda \cdot u^{2} \cdot\left(b\left(-1 /(-k)^{\frac{1}{2}}\right)-c\right) \cdot d x=\int_{\Gamma_{1}}(-\lambda) \cdot c \cdot\left(e^{\beta x}+1\right) \cdot u^{2} \cdot d x \geq 0,
$$

because $\left.\lambda\right|_{\Gamma_{1}} \leq 0$, by hypothesis.
LEMMA 5.

$$
\begin{equation*}
J_{1}=\iint_{G}\left\{k \cdot a_{x x}+a_{y y}+2 \lambda \cdot a-\left[(\lambda \cdot b)_{x}+(\lambda \cdot c)_{y}\right]\right\} \cdot u^{2} \cdot d x d y \geq 0 \tag{15}
\end{equation*}
$$

if $k \cdot a_{x x x}+a_{y y}+2 \lambda \cdot a \geq d_{1}>0$ in G_{+}, and $R(x, y) \geq d_{2}>0$ in G_{-}.
LEMMA 6.

$$
\begin{equation*}
J_{2}^{(1)}=\iint_{G_{+}} \tilde{Q}\left(u_{x}, u_{y}\right) \cdot d x d y \geq 0, \tag{16}
\end{equation*}
$$

where $\tilde{Q}\left(u_{x}, u_{y}\right)=\alpha_{2} \cdot u_{x}^{2}+2 \beta_{2} \cdot u_{x} u_{y}+\gamma_{2} \cdot u_{y}^{2}$ is a quadratic form with respect to u_{x}, u_{y}, where $\alpha_{2}=-2 a k-k \cdot b_{x}+(c k)_{y}, \beta_{2}=-\left(k c_{x}+b_{y}\right)$, $\gamma_{2}=-2 a+b_{x}-c_{y}$.

Proof. Condition (6) implies that $\tilde{Q}=2(-a) \cdot\left(k \cdot u_{x}^{2}+u_{y}^{2}\right) \geq 0$ in G_{+}.
LEMMA 7.

$$
\begin{equation*}
J_{2}^{2}=\iint_{G_{-}} \tilde{Q}\left(u_{x}, u_{y}\right) \cdot d x d y \geq 0, \tag{17}
\end{equation*}
$$

if \tilde{Q} is defined as in Lerma 6, and if conditions $R^{*}(x, y) \geq 0$, $V(x, y) \leq 0, R(x)>0, R_{1}(x, y) \geq d_{3}>0, R_{2}(x, y) \geq d_{4}>0$, and $\lim (k / k)=0$, hold in G_{-}. $y \rightarrow 0-$

Proof. From (6), and by differentiation with respect to x and y, we find

$$
\begin{aligned}
& c_{x}=4\left(k / k^{\prime}\right) \cdot a_{x}, \\
& c_{y}=4\left[a_{y} \cdot\left(k / k^{\prime}\right)+a \cdot\left(k / k^{\prime}\right)^{\prime}\right], \\
& \begin{aligned}
& b_{x}=(-k)^{\frac{3}{2}}\left(c_{x}+\beta \cdot c\right) \cdot e^{\beta x}=4(-k)^{\frac{3}{2}} \cdot\left(k / k^{\prime}\right) \cdot\left(a_{x}+\beta \cdot a\right) \cdot e^{\beta x}, \\
& b_{y}=\left(c_{y} \cdot(-k)^{-\frac{3}{2}}+c \cdot\left(-k^{\prime} / 2 \cdot(-k)^{\frac{3}{2}}\right)\right) \cdot e^{\beta x} \\
&=4 \cdot(-k)^{\frac{3}{2}}\left(a_{y} \cdot\left(k / k^{\prime}\right)+a \cdot\left(k / k^{\prime}\right)^{\prime}+\left(\frac{3}{2}\right) \cdot a\right) \cdot e^{\beta x},
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{2}=2 a k \cdot F(y)-4 \cdot\left[\left(\beta \cdot a+\alpha_{x}\right) \cdot(-k)^{\frac{1}{2}} \cdot e^{\beta x}-a_{y}\right] \cdot\left(k^{2} / k^{\prime}\right) \\
&=2\left[a k \cdot F(y)+2 \cdot R^{*}(x, y) \cdot\left(k^{2} / k^{\prime}\right)\right] \geq 0,
\end{aligned}
$$

by hypothesis $\left(R_{1}(x, y) \geq d_{3}>0\right)$,
$\beta_{2}=-2\left[2 a_{x} \cdot\left(k^{2} / k^{\prime}\right)+\left(a \cdot F(y)+2 a_{y} \cdot\left(k / k^{\prime}\right)\right) \cdot(-k)^{\frac{1}{2}} \cdot e^{\beta x}\right]$,
$\gamma_{2}=2\left[(-a) \cdot F(y)+2 R^{*}(x, y) \cdot\left(-k / k^{\prime}\right)\right] \geq 0$,
by hypothesis $\left(R_{2}(x, y) \geq d_{4}>0\right)$,

$$
\begin{aligned}
& \Delta=\left(\beta_{2}^{2}-\alpha_{2} \gamma_{2}\right) / 4=\left(1-e^{2 \beta \cdot x}\right) \cdot a^{2} \cdot k \cdot F^{2}(y)+4 {\left[\left(1-e^{2 \beta \cdot x}\right) \cdot a_{y}-\beta \cdot a \cdot(-k)^{\frac{3}{2}} \cdot e^{\beta \cdot x}\right] } \\
& \cdot a \cdot\left(k^{2} / k^{\prime}\right) \cdot F(y)+4\left\{\left[\left(\left(\beta \cdot a+a_{x}\right) \cdot e^{\beta x}\right)^{2}-\left(a_{x}\right)^{2}\right] \cdot k+\left(1-e^{2 \beta \cdot x}\right) \cdot\left(a_{y}\right)^{2}\right. \\
&\left.-2 \beta \cdot e^{\beta x} \cdot a \cdot a_{y} \cdot(-k)^{\frac{1}{2}}\right\} \cdot\left(k^{3} /\left(k^{\prime}\right)^{2}\right) \leq 0,
\end{aligned}
$$

because $V(x, y) \leq 0$ in G_{-}, and $B^{2}-4 A C \geq 0$ always in G_{-}.
From hypotheses, $V(x, y) \leq 0, R_{1}(x, y) \geq d_{3}>0$, $R_{2}(x, y) \geq d_{4}>0$, implies that there exist two constants $d_{0}<0$ and $d^{0}>0$, such that $d_{0} \leq F(y) \leq d^{0}$ in G_{-}.

Lemmas 1 to 7 imply the required result.

References

[1] Ф.И. Франнль [F. Frankl], "О задачах С.А. Чаплыгина для смешанных дои сверхэвуновых течений" [On the problems of Chaplygin for mixed sub- and supersonic flows], Bull. Acad. Sci. URSS Sér. Math. [Izv. Akad. Nauk SSSR] 9 (1945), 121-143.
[2] M.B. Kapilevich, "Equations of mixed elliptic and hyperbolic type", Linear equations of mathematical physics, 215-243 (Holt, Rinehart and Winston, New York, Chicago, San Francisco, Toronto, London, 1967).
[3] M.H. Protter, "Uniqueness theorems for the Tricomi problem", J. Rational Mech. Anal. 2 (1953), 107-114.
[4] John Michael Rassias, "Mixed type partial differential equations in R^{n} " (PhD dissertation, University of California, Berkeley, 1977).

II Dervenakion Str.,
Daphne,
Athens,
Greece.

