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The role of vibrations for reducing the resistance
in the relative movement of parallel plates
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The effect of surface vibrations on the propulsion augmentation and resistance in the
relative movement of parallel plates has been studied. The analysis was focused on
monochromatic waves and laminar flows. The effectiveness of the vibrations was gauged
by determining the external force required to maintain the movement of one of the plates
at a prescribed velocity. It is shown that waves propagating upstream always increase
the resistance but the flow response to waves propagating downstream is more intricate
and is a function of the flow Reynolds number. In general, waves must be sufficiently
fast to reduce the flow resistance. This leads to a natural division between slow and
fast waves; a characterization that is helpful for flows at a sufficiently small Reynolds
number Re. An increase in Re brings into play the complication of possible resonances
with the natural flow frequencies. Resonances are not possible with waves faster than the
plate velocity and these supercritical waves generally decrease the flow resistance. More
complex flow responses can occur with slower (subcritical) waves which tend to increase
the flow resistance. A complete elimination of the resistance is possible if the waves are
of sufficiently short wavelength and travel quickly. This suggests that our mechanism has
great potential in the development of propulsion augmentation systems. None of the waves
produced net energy savings.

Key words: drag reduction

1. Introduction

The relative movement of two parallel plates is a paradigm for testing new propulsion
concepts including the development of strategies for reducing flow resistance or
intensifying mixing. This class of flows is of importance in many applications involving
the relative motion of components. In these cases, resistance can often be reduced by
inserting lubricating fluid between moving surfaces. This both provides energy savings
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and can reduce the wear (Gropper, Wang & Harvey 2016). The flow is characterized by the
absence of a streamwise pressure gradient, a linear velocity distribution across the gap in
the laminar regime and no linear stability limit (Romanov 1972). Shear-driven instabilities
may occur in the annular version of this flow (Gittler 1993; Moradi & Floryan 2016).
Possible routes to secondary states and to turbulence have been described by Deguchi &
Nagata (2011) and Tillmark & Alfredsson (1992). It is known that bypass transition can be
initiated by wall transpiration (Floryan 2003), by adding transverse ribs (Floryan 2002) or
by using grooves (Mohammadi & Floryan 2014).

An external force needs to be applied to a moving plate in order to maintain its
movement, which necessarily implies an expenditure of energy. Our concern in the current
work lies with the development of strategies that may lead to a reduction in this loss.
In essence, our strategy will aim to generate a propulsion effect that will mean that the
magnitude of the required external force can be reduced by way of compensation and
will determine if net energy savings are possible. One way this can be achieved is by
reducing the shear stresses that act on the moving plate. Our analysis is focused on laminar
flows, but the same strategy could be extended to apply to turbulent flows. Various passive
approaches have been proposed that may help reduce the resistance to motion. Included
in these is the incorporation of surface grooves or corrugations for laminar (Mohammadi
& Floryan 2013a,b, 2014, 2015; Moradi & Floryan 2013; Yadav, Gepner & Szumbarski
2021) and turbulent (Walsh 1983; Chen et al. 2016; DeGroot, Wang & Floryan 2016)
flows. An extension of this approach is based on the use of hydrophobic surfaces (Perot
& Rothstein 2004). More active techniques involve the application of suitable distributed
heating (Hossain, Floryan & Floryan 2012; Floryan & Floryan 2015; Floryan, Shadman
& Hossain 2018), wall transpiration (Jiao & Floryan 2021), surface vibrations (Floryan &
Zandi 2019), plasma actuators (Inasawa, Ninomiya & Asai 2013), sound (Kato, Fukunishi
& Kobayashi 1997) or piezoelectric actuators (Fukunishi & Ebina 2001). An excellent
review of some of these ideas has been given by Cattafesta & Sheplak (2011). An obvious
question that must be asked when assessing the practicality of the various resistance
reduction ideas is whether the energy cost of implementing the method exceeds the
likely energy savings resulting from the flow modulations. Laminar unmodulated flow
represents the lowest-energy state when modified by wall transpiration (Bewley 2009) but
this may not be the case for other control strategies. It is known that modifications of
surface topography result in a resistance reduction (Fukagata, Sugiyama & Kasagi 2009;
Mohammadi & Floryan 2013a,b, 2014, 2015; Moradi & Floryan 2013) and can go as far
as producing chaotic stirring at energy cost less than that required by unmodified flow
(Gepner & Floryan 2020). As our interest is with laminar flow, the reader is reminded
that our objective might be achieved indirectly through judicious flow modifications that
may prevent the formation of secondary states, thus side-stepping an increase in the flow
resistance at larger Reynolds numbers. Such an indirect approach is not followed in this
work.

The use of active flow modification can be viewed as an alternative (or distributed)
propulsion system in which part of the energy is used to reduce the resistance rather
than overcoming it. This device is attractive as it provides a means for improving the
performance of a system beyond what might be possible using purely classical propulsion.
Any decrease in the wall shear stress, which reduces the long-term wear and thermal stress
on bounding surfaces, provides additional benefit. The concept of distributed propulsion
is quite familiar in biological systems, e.g. cilia and flagella (Taylor 1951; Blake &
Sleigh 1974; Katz 1974; Brennen & Winet 1977; Lauga 2016) and snail locomotion
(Chan, Balmforth & Hosoi 2005; Lauga 2007; Lee et al. 2008). These are small-scale
objects that move very slowly and so scaling up to practical physical systems is not

949 A28-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

75
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.752


Reducing resistance in relative movement of parallel plates

necessarily straightforward. The creation of distributed forcing in technical systems
involves the imposition of forcing patterns along fluid–solid boundaries to reduce the
relative velocity of the two mediums. Known physical manifestations of these effects
include nonlinear streaming created by wall transpiration (Jiao & Floryan 2021), the
pattern interaction effect (Floryan & Inasawa 2021) that leads to thermal drift (Abtahi
& Floryan 2017; Inasawa, Hara & Floryan 2021) and surface vibrations (Floryan & Zandi
2019). Flow relaminarization using transpiration waves (Lieu, Moarref & Jovanović 2010;
Moarref & Jovanović 2010; Mamori, Iwamoto & Murata 2014; Kaithakkal, Kametani &
Hasegawa 2020) or surface vibrations (Nakanishi, Mamori & Fukagata 2012; Nabae &
Fukugata 2021) represent interesting alternatives for the control of turbulent flows.

Vibrations activate the peristaltic effect, the properties of which are of interest to
the current analysis. Its basic elements are well known (Fung & Yih 1968; Shapiro,
Jaffrin & Weinberg 1969; Jaffrin & Shapiro 1971) and its use to date is based on the
Stokes approximation and long-wavelength waves (Lauga 2007, 2016). A recent review
of peristaltic flows has been given by Ali, Ullah & Rasool (2020). Until quite recently
only waves with phase speeds comparable to those found in various biological systems
(such as urine flow from kidney to bladder, movement of food through the digestive tract,
transport of ova through fallopian tubes, cilia and flagella, snail movement, etc.) have been
explored. The first analysis of short, fast waves has been recently described by Floryan,
Faisal & Panday (2021); some earlier work by Hoepffner & Fukagata (2009) considered a
few cases of fast waves but their study was restricted to O(1) wavelengths.

The goal of this investigation is to make a systematic analysis of the effects of vibrations
on the resistance to the flow between parallel plates in relative motion while avoiding
some of the limitations commonly found in the literature such as long-wavelength or
small-Reynolds-number approximations. We explore the complete range of wavelengths
and phase speeds, but we restrict the size of the vibrations to less than 5 % of the
channel opening. This limit is motivated by the fact that our interests are partly with the
practical use of piezoelectric actuators which have high-frequency response, but which are
characterized by small-amplitude displacements. We also limit the flow Reynolds number
to less than 2000 (this quantity is defined in (2.4) below). There is a welter of experimental
evidence that Couette flow becomes turbulent at larger Reynolds numbers and our interests
are with laminar flows (Tillmark & Alfredsson 1992).

The presence of wall vibrations gives rise to a moving boundary problem with the
motion of the boundary prescribed. The sustained character of the vibrations leads to
a preference for employing an Eulerian-type algorithm (Floryan & Rasmussen 1989).
There are several candidate techniques that might be considered for modelling our
time-dependent geometry including the use of numerical grid generation, analytical
mappings or boundary condition transfer procedures and the advantages and drawbacks of
each of these have been discussed by Cabal, Szumbarski & Floryan (2001). One essential
requirement for the present analysis is that both high accuracy and geometric flexibility are
required. Given these needs we chose to base our computations on the spectrally accurate
immersed boundary conditions (IBC) method (Szumbarski, & Floryan 1999).

The remainder of this paper is structured as follows. First, in § 2, we describe a
two-dimensional model problem which takes the form of an infinite slot with a moving
smooth upper plate and a lower plate which is subject to a vibration that takes the form
of a travelling wave. In § 3 we describe our numerical methods method and illustrate the
peristaltic effect.

The scene is set for the remainder of the study in § 4 where we consider the question
of resistance reduction. Section 4.1 discusses the global properties of vibration-induced
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Figure 1. A sketch of the flow configuration.

flow modifications. In §§ 5–7 we consider the behaviours in the cases of slow, medium
and fast plate velocities, respectively. The division of the plate velocities in this way is
somewhat arbitrary, but we shall see that the properties of the flow do differ between the
three classes. Moreover, we also find that as the Reynolds number grows the flow response
can be affected by near resonances with the natural flow frequencies. The somewhat
complicated picture that emerges is summarized in § 8 which provides a precis of the
main conclusions and some associated discussion.

Two rather more technical issues are relegated to appendices in order not to detract
from the main flow of the paper. In Appendix A we detail the analytical solution that
describes long-wavelength waves. In Appendix B we outline the method used to identify
and determine the natural flow frequencies associated with the underlying Couette flow.

2. Problem formulation

To study the effect of vibrations on the resistance present in the relative movement of
parallel plates, consider two surfaces that extend to ±∞ in the X direction and placed a
distance 2h apart; see figure 1. The lower plate is stationary whilst the upper plate is driven
by an external force at a constant prescribed velocity Utop. The external force required to
maintain this movement provides a measure of the movement resistance. In an attempt to
reduce this resistance travelling-wave vibrations are imposed on the lower plate so that the
dimensionless slot geometry is defined by

YU(X, t) = 1, (2.1a)

YL(X, t) = −1 + A cos[α(X − ct)], (2.1b)

where the subscripts U and L refer to the upper and lower plates, respectively, and A is the
wave amplitude. Furthermore c and α denote the wave phase speed and wavenumber and
the half-mean slot opening h has been adopted as the length scale.

When the system is in a steady state the external force pulling the plate is balanced by
the shear force that acts on it. The flow field is determined by solving the Navier–Stokes
and continuity equation written the form

∂u
∂t

+ u
∂u
∂X

+ v
∂u
∂Y

= − ∂p
∂X

+ ∂2u
∂X2 + ∂2u

∂Y2 ,

∂v

∂t
+ u

∂v

∂X
+ v

∂v

∂Y
= − ∂p

∂Y
+ ∂2v

∂X2 + ∂2v

∂Y2 ,
∂u
∂X

+ ∂v

∂Y
= 0,

(2.2a–c)
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Reducing resistance in relative movement of parallel plates

where u = (u, v) denotes the velocity vector with components in the (X, Y) directions
scaled on Uv = ν/h, where ν denotes the kinematic viscosity. The dimensionless pressure
p is scaled on ρU2

v and the time t is based on h/Uv; here ρ denotes the fluid density. The
relevant boundary conditions are then

Y = 1 : u = Re, v = 0; Y = YL(X, t) : u = 0, v = ∂YL

∂t
, (2.3a–d)

where
Re ≡ Utoph/ν (2.4)

is the Reynolds number and the normal velocity component at the lower plate is
determined by the imposed vibrations. As our interest is in the fluid movement generated
by relative movement of the plate as opposed to any pressure gradient that may be present,
it is specified that

∂p
∂X

∣∣∣∣
m

= 0, (2.5)

where subscript m denotes the mean value. The translation of the upper plate in the absence
of any vibrations creates a simple Couette flow. In this motion the dimensionless velocity
field v0, pressure p0, pulling force (per unit length and width) F0, shear acting on the upper
plate τ0 and the flow rate Q0 are given by

v0(x, y) = [u0, v0] = [ 1
2(1 + Y), 0], p0(x, y) = const., F0 = 1

2 ,

τ0 = −1
2 , Q0 = 1.

(2.6a–e)

Here Utop has been adopted as the velocity scale, ρU2
top as the pressure scale and Utopμ/h

as the surface force scale; further the flow rate has also been scaled using Utop.
To evaluate the pulling force after the vibrations have been added we integrate the shear

stress on the upper plate over a wavelength. The viscous part of the x component of the
stress vector σXv,U that acts on the fluid and the external pulling force (per unit length and
width) on the plate F are given by

σXv,U = ∂u
∂Y

∣∣∣∣
Y=1

, F = λ−1
∫ λ

0

∂u
∂Y

∣∣∣∣
Y=1

dX; (2.7a,b)

here the wavelength λ ≡ 2π/α. The ultimate effectiveness of the vibrations depends on
their potential to reduce the shear stress at the upper plate – this can be achieved by
propelling the fluid through the slot thereby reducing its velocity relative to the moving
plate. The propulsion can be generated by a combination of viscous and pressure forces
that act on the fluid at the vibrating plate. An appreciation of these forces provides a
foundation from which more effective forms of vibrations may be developed. The stress
vector at the lower plate σ L is

σ L = [
σX,L σY,L

] = [
nX,L nY,L

] ⎡⎢⎣ 2
∂u
∂X

− p
∂u
∂Y

+ ∂v

∂X
∂u
∂Y

+ ∂v

∂X
2
∂v

∂Y
− p

⎤⎥⎦
Y=YL

, (2.8)

where the normal unit vector nL that points outwards has the form

nL = (nX,L, nY,L ) = NL

(
dYL

dX
, −1

)
, NL =

[
1 +

(
dYL

dX

)2
]−1/2

. (2.9a,b)
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The explicit form of the X component of the stress vector can be written as

σX,L = σXv,L + σXp,L = NL

[
2

dYL

dX
∂u
∂X

∣∣∣∣
YL

−
(
∂u
∂Y

+ ∂v

∂X

)∣∣∣∣
YL

]
− NL

dYL

dX
p
∣∣∣∣
YL

, (2.10)

where (σXv,L, σXp,L) denote the viscous and pressure contributions, respectively. The X
component of the total force FX,L acting on the fluid at the lower plate per unit length is
given by

FX,L = FXv,L + FXp,L = λ−1
∫ λ

0

[
2

dYL

dX
∂u
∂X

∣∣∣∣
YL

−
(
∂u
∂Y

+ ∂v

∂X

)∣∣∣∣
YL

]
dX

− λ−1
∫ λ

0

dYL

dX
p|YL

dX, (2.11)

where FXp,L and FXv,L denote the pressure and viscous contributions.
In what follows it is helpful to monitor the changes in various quantities that result from

the inclusion of vibrations rather than tracking the total values themselves. Accordingly,
we express the flow field v, the pressure p, the mean flow rate Qmean, the shear τ and the
pulling force F as

v(X, Y) = [u(X, Y), v(X, Y)] = [ 1
2 Re(1 + Y)+ u1(X, Y), v1(X, Y)],

p(X, Y) = C + p1(X, Y),
(2.12a,b)

Qmean = Re + Q1,mean, τ (X) = −1
2 Re + τ1(X), F = 1

2 Re + F1. (2.12c–e)

Then, when there are no vibrations, all the quantities with a subscript 1 are zero. A negative
value of F1 indicates that the resistance is reduced and if we can identify conditions when
F = 0 this implies that the pulling force is reduced to zero. Of course, a negative value for
F would indicate the need to reverse the direction of this force so that the pulling force
would need to be replaced by a braking force to maintain the prescribed plate velocity.

3. The solution method

Having developed our model we next set out the numerical strategy that was used to
generate the solutions described in subsequent sections. We begin by noting that the
transformations

y = Y, x = X − ct (3.1)

introduce a frame of reference that moves with the wave phase speed (a Galileo
transformation). This leads to the steady problem

(u − c)
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+ ∂2u
∂x2 + ∂2u

∂y2 ,

(u − c)
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ ∂2v

∂x2 + ∂2v

∂y2 ,
∂u
∂x

+ ∂v

∂y
= 0,

(3.2a–c)

subject to

u(1) = Re, v(1) = 0, u[yL(x)] = 0, v[yL(x)] = −c
dyL

dx
,

∂p
∂x

∣∣∣∣
mean

= 0,

(3.2d–h)
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Reducing resistance in relative movement of parallel plates

with the position of the lower plate given by

yL(x) = −1 + A cos(αx). (3.2i)

The above system was solved numerically by first introducing a stream function ψ defined
by

u = ∂ψ

∂y
, v = −∂ψ

∂x
, (3.3a,b)

which automatically satisfies the continuity equation. The pressure is eliminated by taking
the derivative of (3.2a) with respect to y and the derivative of (3.2b) with respect to x and
subtracting the results. This reduces the flow problem to the following form:

∇2(∇2ψ)+ c
∂

∂x
∇2ψ = Nuv where Nuv ≡ ∂

∂y

(
∂

∂x
(ûu)+ ∂

∂y
(ûv)

)
− ∂

∂x

(
∂

∂x
(ûv)+ ∂

∂y
(v̂v)

)
,

(3.4a)

y = 1 :
∂ψ

∂y
= Re,

∂ψ

∂x
= 0; y = yL(x) :

∂ψ

∂y
= 0,

∂ψ

∂x
= c

dyL

dx
; ∂p

∂x

∣∣∣∣
m

= 0.

(3.4b–f )

The penultimate condition (3.4e) can be written in an alternative way by noting that
variations in ψ along the lower plate can be expressed as

dψL =
(
∂ψ

∂x
dx + ∂ψ

∂y
dy

)∣∣∣∣
yL(x)

= c
dyL

dx
dx. (3.5)

Integrating (3.5) along this plate yields

ψL(x) = c[yL(x)− yL(x0)], (3.6)

Where the constant of integration has been fixed by assuming that ψL(x0) = 0, where x0
is some arbitrary point along the plate. The stream function ψ is constant along the upper
plate and its value can be determined from the pressure gradient constraint.

The system of equations (3.4)–(3.6) was solved to spectral accuracy by representing the
unknowns in terms of Fourier expansions in the streamwise direction so that

ψ(x, y) =
n=+∞∑
n=−∞

ψ(n)( y) ei nαx (3.7)

for modal functions ψ(n)( y) to be determined. The boundary conditions at the upper plate
are

y = 1 :
dψ(0)

dy
= Re,

dψ(n)

dy
= 0, n /= 0, (3.8a,b)

with the constraint (3.8a) specifying the mean part of the streamwise velocity field; the
requirement (3.8b) states that all the periodic components must be zero on the upper
surface. While equations (3.8) provide explicit values for each modal function, they
do not provide any coupling owing to the simple geometry. By way of contrast, the
boundary conditions at the lower plate couple all the modes through the more complicated
surface geometry. These boundary conditions were enforced using the concept of IBC.
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Figure 2. (a) Variations in the external force FX,U/A2 required to keep the upper plate stationary (Re = 0) as
a function of α and c. The dividing red line shows the parameters for which FX,U = 0 and the grey shading
identifies those conditions for which FX,U is negative. (b) Some horizontal cuts taken through the results shown
in (a) for the two wave speeds c = 500 and 1000. (c) Some vertical cuts taken through the results in (a) for the
four wavenumbers α = 0.5, 1.7, 5and 10.

The modal functions ψ(n)( y) were written as Chebyshev expansions while the flow
boundary conditions were imposed as constraints. The overall algorithm is grid-less and is
very flexible when changes in wave shape are of interest for it can be adjusted to account for
multiple geometries with minimal user intervention. Our computations were carried out to
ensure at least five-digit accuracy and this requirement dictated the choice of the number
of Fourier modes and Chebyshev polynomials. The algorithm can be used to obtain results
to machine accuracy if required. We have deliberately kept our description of the IBC
strategy to a summary of the main points in the interest of brevity. Readers who desire a
more leisurely and detailed discussion of the numerical method may consult with any of
the papers by Szumbarski & Floryan (1999), Husain & Floryan (2008a,b, 2010) or Husain,
Szumbarski & Floryan (2009).

3.1. The peristaltic effect
Before we embark on addressing the principal aim of the present study that concerns
the reduction in the resistive forces, we quickly demonstrate the key properties of the
peristaltic effect. We remark that vibrations imposed on the lower surface pump the fluid
in the direction of the wave motion. The fluid movement exerts a shear stress on the upper
plate which then requires an external force FX,U to keep it stationary. The sample of results
presented in figure 2 demonstrates that FX,U increases with growth of α and c, which
suggests that short, fast waves potentially provide the most effective form of pumping.
Waves with α ≈ 0.5 provide a local maximum in FX,U which can be used to advantage in
those applications where the creation of fast waves might prove difficult.

4. The reduction of resistance

When an external force is applied to the upper plate it accelerates and tends to pull the fluid
along with it. Eventually an equilibrium is achieved in which the resistance generated by
shear stresses balances the external force. The imposition of vibrations on the lower plate
tends to force the fluid to move in the direction of the wave. This reduces the relative
velocity of the fluid with respect to the upper plate and so lessens the shear that acts on
that plate. It is likely that there will be a minimum wave velocity required for this effect to
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come into play and that this least value will be a function of the plate velocity. We shall
return to this issue a little later, but first probe the properties of the flow dynamics.

In an effort to understand these dynamics we look at the problem when the waves are
long. We develop the detailed form of the long-wave structure in Appendix A and, for the
purposes of the present discussion, borrow some of the key results derived there. In the
limit α → 0 the streamwise velocity component has the form

u = 1
2

Re(η + 1)− 3
4

Re
[

1 − 4(4 − A2)

(8 + A2)[2 − A cos(ξ)]

]
(1 − η2)

− c
A

2 − A cos(ξ)

[
3
2

cos(ξ)− 9A
8 + A2

]
(1 − η2)+ 0(α), (4.1)

where ξ ≡ αx and η is a transformed cross-slot coordinate so that the two plates are given
by η = ±1.

This expression is comprised of three terms, the first being just the original Couette
flow written in the new coordinates. The second term represents a Poiseuille-flow-type
correction which we refer to as the ‘groove effect’; we notice that this term does not
depend on the wave phase speed but is a function of the groove amplitude so represents
the effect of stationary grooves. The last term is proportional to the phase speed c so
may be thought of as a ‘wave effect’. We see that the groove effect is always negative;
it leads to a retardation of the fluid and thus increases the resistance. On the other hand,
the sign of the wave effect term depends on the direction of c; the wave must both travel
in the flow direction and be sufficiently fast to overcome the groove effect. The interplay
between these two effects can be explored by looking at the force required to maintain the
movement of the upper plate. The component of this force that is attributable to vibrations
can be written as

F1 = F̃0 − 1
2

Re + 0(α2)

= Re

[
4(2 + A2)

(8 + A2)(4 − A2)
1/2 − 1

2

]
− c

6A2

(8 + A2)(4 − A2)
1/2 + 0(α2), (4.2)

a result that is noted in equation (A23). The two terms here represent the groove and wave
effects, respectively. Reducing the amplitude to zero (A → 0) eliminates this force which
is proportional to A2 for small wave amplitudes. When the phase speed is made zero the
grooves create an additional resistance (F1 > 0) but reducing Re results in a peristaltic
pumping within a slot with a fixed upper plate which produces a force acting on this
plate in the direction of wave propagation. When waves are present and the upper plate is
moving, waves propagating upstream (c < 0) increase the resistance encountered by the
plate. The use of downstream-propagating waves decreases the resistance but only if the
waves are fast enough – the pumping effect must be strong enough to overcome the effects
of the grooves. We remark that vibrations with phase speed

c = Re A−2
[

2
3
(2 + A2)− 1

12
(8 + A2)(4 − A2)

1/2
]

(4.3)

make F1 zero and a further increase to

c = 2
3

Re A−2(2 + A2) (4.4)
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brings the total force to zero. Then there is no need for an external force to maintain
the specified plate velocity as the vibrations provide sufficient propulsion themselves. Of
course, any further increase of c would require the use of a braking force to prevent plate
acceleration.

A secondary quantity of interest is the flow rate driven by movement of the upper plate.
Part of this flow can be attributed to the vibrations and equals

Q1,mean = Q̃m,0 − Re + 0(α2) = c
6A2

8 + A2 − Re
3A2

8 + A2 + 0(α2). (4.5)

We can see that the elimination of the grooves makes Q1,mean zero and that waves
propagating upstream (c < 0) always reduce the flow rate. Waves propagating downstream
help with propelling the fluid, but their phase speed needs to be at least c = (1/2)Re to
neutralize the groove effect.

This preliminary analysis already suggests that the wave speed relative to the fluid
velocity may well prove to be important. It is not immediately clear how one should
measure the fluid velocity unambiguously as it varies across the slot; consequently, we
use the speed of the upper plate as a proxy for the fluid velocity. Thus far we have been
concerned with long-wavelength modes and to assess other cases we need to resort to
suitable numerical calculations.

4.1. Vibration-induced flow modifications
We have already noted that vibrations produce flow modifications that change the shear
stress acting at, and hence the resistance experienced by, the upper plate. We now aim
to characterize and understand some of the properties of this phenomenon and start by
looking at how the flow is modified with changes in Re and c.

We start by plotting some representative instantaneous vector lines for the velocity
modifications umod = u − Reu0 at a few typical wavenumbers α. The results shown in
figure 3 suggest that the qualitative flow topologies appear to change little with variations
in Re. Vibrations of a small wavenumber (figure 3a,d,g,j) lead to a sloshing pattern with
forward movement around the wave troughs and backward movement near the crests. In
contrast, at a large wavenumber α = 10 (figure 3c,f ,i,l) a boundary layer is formed near
the vibrating plate and a uniform flow persists above it; we refer to this as a moving-wall
regime. Patterns at intermediate values of α appear as a hybrid between the sloshing and
the moving-wall structures.

We provide more insight into the velocity modifications by plotting the profiles of
this quantity at four streamwise locations. In figure 4(a,d,g,j) we see that at a small
wavenumber the modifications are of appreciable size over the entire width of the
slot. In contrast, in the case of short waves (figure 4c,f ,i,l) the modifications have a
somewhat involved x-dependent form near the vibrating plate, but they smoothly morph
into an almost x-independent, Couette-like flow outside the boundary layer. These velocity
distributions are only slightly modified by variations in Re and their profiles are hardly
affected by changes in c although their magnitude is roughly proportional to c.

It is instructive to discuss further the flow modifications at a high wavenumber as they
demonstrate explicitly the process of transferring wave propulsion from the lower to the
upper plate. Vibrations tend to pump the fluid to the right within the boundary layer
whose edge acts rather like a moving wall with an apparent velocity Uapp. An estimate
of Uapp can be obtained by looking at the value of umod at the edge of the boundary layer
(figure 5a) and it seems that Uapp increases proportional to α2 as α → ∞ (figure 5b,c).
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Figure 3. Distributions of the modified streamwise flow field for groove amplitude A = 0.0025. The
wavenumber α = 0.1 (a,d,g,j), 1 (b,e,h,k) and 10 (c,f,i,l) and the results are shown for two wave speeds c = 600
and 5000 and two Reynolds numbers Re = 10 and 1000.

The flow outside the boundary layer is essentially of Couette type driven by this moving
wall in the direction of wave motion and this flow is responsible for transferring the
vibration-generated propulsion to the upper plate.

We now look in detail at the resistance experienced by the upper plate. In order to
simplify the presentation, we divide the results into three parts according to the speed of
the upper plate. We start with relatively slow motions.
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Figure 4. The distributions of the velocity modification at the four streamwise locations x/λ =
0, 0.25, 0.5, 0.75 when the groove amplitude A = 0.0025. The wavenumber α = 0.1 (a,d,g,j), 1 (b,e,h,k) and
10 (c,f,i,l) and the results are shown for two wave speeds c = 600 and 5000 and two Reynolds numbers Re = 10
and 1000.

5. Slow plate movement (Re ≤ 100)

The fact that the upper plate moves breaks the symmetry that would otherwise be present
between waves that move to the left or to the right. Forward-moving waves, that is, those
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as a function of α (b) when c = 1000 for various Re and (c) when Re = 500 for various c. In all cases
groove amplitude A = 0.0025.
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Figure 6. Variations in the normalized force correction Fnorm = F1/ReF0A2 as a function of α and c when (a)
Re = 1 and (b) Re = 100. The grey shading indicates negative values while the red line shows those values that
give F1 = 0. Zones between the blue lines in (b) denote the range of natural frequencies of the Orr–Sommerfeld
modes (see Appendix B).

that move in the same direction as the plate, may well reduce the necessary pulling force
required to maintain motion, while backward-moving waves are more likely to increase
this force. This speculation is confirmed by the results shown in figure 6.

If the waves move more slowly than the fluid, the plate modifications associated with
vibrations play a role akin to that of surface roughness. By way of contrast, if the waves
are quicker than the fluid this activates peristaltic pumping which decreases the external
pulling force. While these comments are somewhat qualitative in nature, we can be more
precise as to the divide between slow and fast waves in the case of long wavelengths. The
reader is reminded that in the case α → 0 the form of the force correction F1 is given by
(4.2), and then since this quantity needs to be negative to achieve a force reduction, we can
determine the phase speed cb which separates the ‘faster’ and ‘slower’ waves as

cb = Re
1 + Re

(6A2)−1
[

4 + A2 − 1
2
(8 + A2)(4 − A2)

1/2
]
. (5.1)

The situation is somewhat more involved for waves with α = 0(1). Now an increase in
the upper plate velocity Re leads to a discernible dependence of cb on α; if we examine
the red dividing lines in figure 6 then if Re = 1 the value of cb appears to be virtually
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Figure 7. The variations of the normalized force correction Fnorm = F1/ReF0A2. (a) Force as a function of α
for the three Reynolds numbers Re = 1, 10 and 100 and the two speeds c = 500 and 1000. The dark shading
identifies conditions which require an external braking force while the lighter shading shows those parameters
that lead to at least a 50 % reduction in the pulling force. (b) Force as a function of c for the same three values
of Re and the three wavenumbers α = 0.5 (red), 1.8 (blue) and 30 (green).

independent of α but this is certainly not the case in figure 6(b) for which Re = 100. The
size of the resistance reduction correlates reasonably well with the strength of peristaltic
effect discussed earlier in the sense that fast, short waves appear to be the most effective.
We also point out that there is a local maximum in F1 near α ≈ 0.5 which suggests that if
high-velocity waves cannot easily be created, then a good compromise might be achievable
using modes of this wavenumber.

More detailed information concerning the dependence of F1 on the various parameters
can be obtained by looking at the results at a fixed value of c. The results shown
in figure 7(a) reveal that F1 varies nonmonotonically with α and this quantity has
turning points near α ≈ 0.5 and α ≈ 1.8. The effectiveness of the vibrations increases
as Re falls since momentum inserted at the lower plate is transferred to the upper plate
through viscous effects. A reduction in Re can be interpreted as a shortening of the
distance between the plates which naturally increases the effectiveness of shear stresses.
Sufficiently short-wavelength, fast vibrations can eliminate the required external force
completely and may even lead to situations when this force changes direction so that a
braking force is needed otherwise the plate would accelerate. If we examine the form of
the force F1 as a function of c at a fixed value of α we obtain the results sketched in
figure 7(b). We see that F1 increases with c in a somewhat complicated way when Re is
relatively small but at higher values the rise in F1 becomes almost exactly proportional
to c.

We can put a fresh interpretation on the role played by the wavenumber α with reference
to the earlier results shown in figures 3 and 4. There we identified three distinct regimes:
at small wavenumbers we have a sloshing motion, at large wavenumbers a moving-wall
motion and there is an intermediate transitional regime between these extremes. The
characteristics of the flow affect the shear exerted on the upper plate, which is the principal
factor in achieving the desired resistance reduction. Different processes lead to shear
reduction in the sloshing and moving-wall scenarios while the transition regime can
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be viewed as hybrid of the two; the existence of the three separate cases is evident in
figure 7(a).

The underlying Couette flow possesses a collection of natural frequencies which can be
determined by methods outlined in Appendix B. These frequencies are associated with
travelling waves whose phase speeds Cr are known to lie between 0 and Re (Schmid &
Henningson 2001). Tighter bounds on these speeds have been determined numerically for
each α and are superimposed on figure 6. These waves are highly attenuated and can persist
only with a continuous addition of energy. It is possible that the vibrations of the lower
plate could provoke near-resonances with the natural frequencies and could conceivably
drive instabilities (Floryan, Szumbarski & Wu 2002). The fact that the phase speed Cr
of the travelling cannot exceed Re suggests that our imposed vibration waves might be
distinguished depending on whether they are fast (c > Re) or slow (0 < c < Re); clearly
fast waves cannot interact with the natural frequencies. As Re increases so the natural
waves become less attenuated and can interact more effectively with the vibrations thereby
restricting the opportunities for resistance reduction. The results displayed in figure 6(a)
for Re = 1 do not show interactions as the natural modes are highly attenuated but these
interactions become noticeable by the stage Re = 100 (see figure 6b). We remark that the
natural frequencies of the reference Couette flow provide only a guideline as to possible
interactions with the vibration modes. This is because the flow modified by vibrations is
likely to possess a much more complex spectrum of natural frequencies as evidenced by
analogous calculations pertaining to Poiseuille flow in a grooved channel (Asai & Floryan
2006; Floryan 2007). To the best of our knowledge the stability analysis of Couette flow
modified by vibrations has yet to be examined.

5.1. A simple energy budget
Next, we examine the various energy fluxes in the system as the imposition of vibrations
requires an expenditure of energy. The energy fluxes are determined by multiplying the
x-momentum equation by u, the y-momentum equation by v, adding them together and
then integrating over the control volume which extends between the plates in the y
direction and over one wavelength in the x direction (Bewley 2009; Jiao & Floryan 2021).
The resulting balance has the form

∫ λ
0

∫ 1

yL

(
u2 ∂u
∂x

+ uv
∂u
∂y

+ uv
∂v

∂x
+ v2 ∂v

∂x

)
dy dx

= −
∫ λ

0

∫ 1

yL

(
u
∂p
∂x

+ v
∂p
∂y

)
dy dx +

∫ λ
0

∫ 1

yL

(
u
∂2u
∂x2 + u

∂2u
∂y2 + v

∂2v

∂x2 + v
∂2v

∂y2

)
dy dx.

(5.2)

We can write this result in a more convenient way by integrating each term by parts,
simplifying using continuity and then imposing the requisite streamwise periodicity
properties. This process leads to the result that

Reλ−1
∫ λ

0

(
∂u
∂y

)
y=1

dx = Pε − Pwv − Pk − Pwp, (5.3a)
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where the left-hand side of this balance denotes the external power (per unit length of the
slot) required to drive the upper plate. The four terms on the right-hand side are defined by

Pε ≡ λ−1
∫ λ

0

∫ 1

−1

[(
∂u
∂x

)2

+
(
∂u
∂y

)2

+
(
∂v

∂x

)2

+
(
∂v

∂y

)2
]

dy dx,

Pwv ≡ λ−1
∫ λ

0

(
v
∂u
∂x

)
y=yL

dx,

(5.3b,c)

Pk ≡ λ−1
∫ λ

0

[
v

(
1
2
v2

)]
y=yL

dx and Pwp ≡ λ−1
∫ λ

0
(vp)y=yL

dx, (5.3d,e)

with Pε representing the rate of energy dissipation, Pwv denoting the rate of work done by
viscous forces at the vibrating plate, Pk representing the rate of injection of kinetic energy
into the flow at the vibrating plate and Pwp standing for the rate of work done by pressure
forces at the vibrating plate. We point out that Pk ≡ 0 for sinusoidal vibrations and that
the application of this balance to a smooth slot leads to the simple expression for the
external power, i.e. 1

2 Re2 (= Pε) with Pwv,Pk and Pwp all zero. This enables us to derive
an expression for the change in the external energy required to generate the vibrations
which is given by Pwv + Pwp. The introduction of vibrations changes the velocity field
thereby increasing dissipation by �Dis = Pε − 1

2 Re2 and moderating the external power
�Pwe (= �Dis − Pwv − Pwp) necessary to maintain the plate motion. Rearranging terms
in (5.3a) we get

Pε = Re λ−1
∫ λ

0

(
∂u
∂y

)
y=1

dx + Pwv + Pk + Pwp, (5.3f )

which shows how to reduce dissipation to achieve net energy savings. Sample forms of
the pressure work term Pwp are shown in figure 8(a,e) as a function of α and c, and
equivalent results for Pwv and the dissipation �Dis are presented in figures 8(b,f ) and
8(c,g), respectively. Inspection of the form of �Pwr required by the upper plate suggests
that a reduction in power requirements is necessary for sufficiently fast forward-moving
waves with larger reductions obtained for shorter waves (see figure 8d,h). It would
seem that Pwp represents the dominant energy flux and most of it is consumed by the
increase of dissipation with only small fraction that can be ascribed to a reduction in the
power required to maintain the plate movement. So, it can be inferred that the vibration
configurations considered within the scope of this analysis do not produce net energy
saving.

6. Intermediate plate speeds (100 < Re < 1000)

We have seen that an increase in the plate velocity much above about Re = 100 requires
faster waves to achieve a reasonable reduction in the resistance. Once we reach this
regime, the waves may approach a near resonance with the natural flow frequencies and
this plausibly could result in a significant deterioration of the system performance. This
problem can be circumvented by working with waves that are faster than the plate velocity;
we have already noted that such waves will then be outside the range within which the
natural flow frequencies must lie. This allows us to divide the waves into two classes:
waves with c > Re are subsequently referred to as supercritical as they cannot interact with
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modes. The black dots identify conditions used in the later figures 12–16.

the natural frequencies; those waves with 0 < c < Re will be deemed to be subcritical and
interaction may be possible.

The form of F1 as a function of c and α is illustrated in figure 9. Supercritical waves
appear to reduce the magnitude of F1 although the functional from of F1(α, c) is very
reminiscent of the results found for the slow-plate problem. In contrast, subcritical waves
lead to a complex structure in which zones of resistance reduction are interspersed with
regions of parameter space in which the resistance increases; this is qualitatively different
behaviour from that found at smaller Re.

The subcritical waves generally lead to an increase in the resistance. A reduction in
resistance may be possible using waves with velocities towards the upper limit of the
subcritical range. The cross-over point where there is no change in the resistance (F1 = 0)
is a function of α and is delineated by the red lines in figure 9. There are also small isolated

949 A28-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

75
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.752


J.M. Floryan and N.N. Haq

100

102

–F
no

rm
α = 0.5 1.8

Re = 250

2500

α2

c = 1500

500
700

c

10–2

100

102

30

α = 0.5700
500
Re = 250

1.8

c

10–2 100

α
10110–1 101 102 103

(b)(a)

Figure 10. Variations of the normalized force correction Fnorm = F1/ReF0A2. (a) The correction as a function
of α for the Reynolds numbers Re = 250, 500 and 700 and wave speeds c = 1500 and 2500. (b) The correction
as a function of c for the same Reynolds numbers and wavenumbers α = 0.5, 1.8 and 30.

regions of negative F1 centred near α ≈ 0.8 and c/Re ≈ 0.3 and these zones identify
additional conditions under which force reduction is possible. These regions appear to
expand as Re increases. There are also other regions of parameter space in which the
opposite effect occurs and an anomalously large increase in resistance is seen. These zones
seem to be centred around α ≈ 0.8 and c/Re ≈ 0.7 and, again, they spread out with an
increase of Re with most of the expansion occurring in the α direction.

Cuts taken through the contour plots at a fixed c within the force-reducing zone are
shown in figure 10(a). These results demonstrate that F1 varies as function of α in a
somewhat complicated fashion. We see that the magnitude of the correction force has a
local maximum near α ≈ 0.5 and a local minimum around α ≈ 1.8; this is not dissimilar
to what was seen for slow plate movements (figure 7). The effectiveness of the vibrations
diminishes with Re, but this can be compensated for by a concomitant increase in the
wave speed. The influence of short waves appears to grow approximately proportional
to α2; see figure 10(a). The form of the correction force as a function of c at fixed α is
shown in figure 10(b). We conclude that the magnitude of F1 increases in a non-simple
manner for slow (subcritical) waves with this growth becoming nearly proportional to c
for supercritical modes.

Supercritical waves are associated with energy fluxes whose variations with c and α are
qualitatively not dissimilar to those seen relating to the slow plate movements (figures 8
and 11). Subcritical waves lead to intricate and quite different variations as illustrated in
figure 11 – we shall look at these in some detail. Vibrations do the work for waves with
velocities near the upper limit of the subcritical range, with the borderline Pwp = 0 being
a function of α and being marked red in figure 11(a). There are small parameter regions
where Pwp > 0 and these are centred around α ≈ 0.8 where the vibrations also do the
work. The flow appears to perform most of the work in the remaining part of the parameter
space displayed in figure 11(a) with the maximum of this effort occurring near α ≈ 0.8,
c ≈ 0.7. Variations in the power required to maintain the plate movement show similar
areas of decreased external power as well as regions where a reduction in this power is
possible (figure 11d). The variations in the viscous work are quite regular (figure 11b) with
this work increasing with both c and α. Rapid changes in the dissipation (see figure 11c)
appear at those parts of the parameter conditions corresponding to the islands identified
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Figure 11. (a) The work done by the pressure at the lower plate Pwp and (b) the work done by viscous forces
at the lower plate Pwv . (c) The increase in dissipation above its reference value and (d) the change in power
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in figure 11(a); outside this zone dissipation increases monotonically with an increase of
both c and α. There is no net energy savings associated with such waves.

We next look in detail at the variations in the various forces and energies as functions
of the wave speed and focus on the case Re = 500 for definiteness. We summarize the
main findings in figure 12. The key quantities, being the pressure component of the force
on the lower plate FXp,L (2.11), the work done by the pressure at the lower plate Pwp
(5.3), the force correction F1 and the change in power�Pwe, change in smooth monotonic
ways for supercritical waves but behave in a rather complicated manner when the waves
are subcritical. These complications simplify somewhat for shorter waves as then the
corresponding natural frequencies are highly attenuated.

To probe further into the system dynamics for subcritical waves, we reconfigure the
data from figure 12 and discuss the results for fixed values of the wavenumber α; see
figure 13. The results confirm significant intricacies in the flow response for long waves.
The waves with α = 0.5 in figure 13(a) include a cross-section that cuts through an
island of decreased F1 in figure 9(b) as well as a zone of significant increase in F1.
This cut also contains regions of positive and negative pressure work (figure 11a). Our
results demonstrate a change in the direction of the pressure force as c increases; this
force opposes the fluid movement for 0 < c < 0.25 Re, then weakly encourages the
fluid movement and then opposes the fluid movement again when 0.5 Re < c < 0.75 Re.
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Figure 13. The x component of the pressure force FXp,L, the pressure work done at the lower plate Pwp, the
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upper plate all plotted as functions of c/Re. All results relate to Re = 500, a groove amplitude A = 0.01 and
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Any further increase in c just results in an ever-increasing force that promotes the fluid
movement. The external force applied to the upper plate increases when the pressure force
opposes the fluid movement and decreases when it is supporting (figures 12c and 13a) and
changes in the external power display similar variation (figures 12d and 13a).
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Reducing resistance in relative movement of parallel plates

A slight increase in the wavenumber to α = 1 largely preserves the qualitative character
of variations of all the quantities depicted in figure 13(a). A further increase to α = 2
decreases the amplitude of oscillation in F1 and �Pwe almost tenfold (figure 13c) and
growth in both Pwp and FXp,L is noted once c > 0.4Re. With α = 5 (figure 13d) the
growing trend in Pwp and FXp,L sets it at smaller values of c.

To explain the observed variations in forces and power, we present in figure 14
streamwise profiles of the pressure at the lower plate pL together with the x component of
the pressure force σxp,L. We fix the wavenumber α = 1 and consider two ranges of wave
speed. When c = 0 the groove is stationary, and the minimum pressure occurs slightly
downstream from the peaks with the maximum positioned slightly near the troughs. The
distribution of the force σxp,L shows that it is directed upstream and so is opposing the
fluid movement. As the wave speed increases, so the motion drives the pressure minimum
downstream with the size of the pressure variations remaining virtually unchanged until
c ≈ 0.1Re but these tend to grow thereafter with the greatest amplitude occurring when
c ≈ 0.3Re. The evolution of σxp,L follows a broadly similar pattern as illustrated in
figure 14(c,d). Once the wave speed exceeds c ≈ 0.45Re the pressure distribution shifts
by a half-period with respect to the wave and any further increase in c leads only to an
increase in the pressure amplitude but with no change in the position of the pressure
peaks. The profile of σxp,L also shows the formation of a regular pattern characterized by
an increasing amplitude of oscillation. We saw in figure 13(b) that for Re = 500 and α = 1
there are ranges of c over which the pressure force opposes fluid movement interspersed
with regimes over which it promotes it. This suggests that it is the combination of the size
of pressure variations in conjunction with the position of the pressure pattern relative to the
wave which together determine whether the vibration-created force reduces or increases
the movement resistance.

To complement the results displayed in figure 14 we investigate how the properties of
pL and σxp,L behave as functions of the wavenumber for a fixed wave speed c. We chose to
focus on the case c = 0.3Re and this is motivated by the observation that this cross-section
in figure 9(b) includes regions in which the overall resistance grows and others in which it
decreases. It is seen that the pressure maxima for the long waves are located near the wave
crests and minima near the troughs. There is a half-wavelength phase shift in the pressure
distribution when α increases much beyond about α = 1.5 and any further increase in
α leads only to an increase in the size of the pressure variations. The forms of σxp,L
illustrate the effects of both a phase change and a monotonic increase of amplitude when
α increases beyond α = 1.5. We remark that the results summarized in figure 9(b) suggest
that when Re = 500 and c = 0.3Re, the force correction is positive for longish (α < 0.33)
or shortish (α > 1.35) waves but is negative otherwise. At the lower speed c = 0.1Re we
note from figure 9(b) that the resistance always increases irrespective of the value of α.
At this relatively slow speed the results in figure 15 demonstrate that the maximum in
the surface pressure when α is small tends to be located near wave troughs but it shifts
downstream towards the crests as α increases. There is no discernible phase shift such
as that associated with the waves at the higher speed c = 0.3 Re. We also note that the
distribution of σxp,L is characterized by a large amplitude which seems to increase with α
up to the point when α ≈ 1 and that the pressure force always opposes the fluid movement.

7. Fast plate speeds (Re ≥ 1000)

In order to explore the characteristics of the flow when the upper plate moves much more
quickly, we focus on the two Reynolds numbers Re = 1000 and 2000. We find that the
overall properties of the force correction term F1 remain somewhat like those already
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pressure force acting on the fluid at the lower plate σxp,L (c,d). All results are for α = 1, Re = 500, A = 0.01.

seen in as much that short, fast waves seem to be the most effective in reducing the
resistance. It, however, becomes increasingly difficult to achieve a significant reduction
as high wave speeds are required to achieve supercritical performance. This brings into
play the importance of understanding the flow modulations caused by subcritical waves
which, it should be stressed, though slower than the speed of the upper plate, are by no
means slow in any absolute sense. The complexities of the system response to such waves
are illustrated in figure 16 which shows islands of reduced values of F1 surrounded by
regions in which the resistance increases.

If we look at the results summarized figure 16 but at a fixed value of c that lies solidly
in the region where F1 < 0 we obtain profiles of the type shown in figure 17(a). It is clear
that F1 has a local maximum around α ≈ 0.5, not dissimilar to the case of smaller Re
(see figures 7 and 10), but the local minimum moves to α ≈ 2.2. The overall effectiveness
of vibrations decreases but this can be compensated for by reducing the wavelength and
increasing the phase speed. Results at a fixed value of α, see figure 17(b), show that F1
increases in a somewhat intricate way for slow waves but the growth becomes nearly
proportional to c for sufficiently fast modes.
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Figure 16. The normalized force correction Fnorm = (F1/ReF0A2) as a function of α and c for the two
Reynolds numbers (a) Re = 1000 and (b) Re = 2000. The grey shading identifies resistance-reducing
conditions while the red lines show the parameters for which F1 = 0. The regions between the blue lines
denote the range of natural frequencies of the Orr–Sommerfeld modes.
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Figure 17. The normalized force correction Fnorm = F1/ReF0A2. (a) This quantity plotted as a function of
α for the two Reynolds numbers used in figure 16 and the two wave speeds c = 3000 and c = 5000. (b) The
normalized force as a function of c for the wavenumbers α = 0.5, 1.8 and 30.

We conclude our brief look at the fast-wave problem by examining the various energy
terms relevant to the vibrations. The distributions in figure 18 show significant complexity
for subcritical waves owing to phase changes between the wave and pressure patterns.
These structures are somewhat reminiscent of those relating to flows and are like those
when 100 ≤ Re < 1000 so are not discussed further here. There is no net energy saving
achieved by these waves.

8. Conclusions

This study has been focused on the question as to whether the use of surface vibrations
might constitute a viable alternative propulsion and resistance-reducing method. This has
been tackled by attempting to understand the mechanisms that underpin these effects. Our
model problem consists of a laminar kinematically driven flow subjected to vibrations
at the stationary plate and the key issue is whether the wave changes the external force
required to maintain a prescribed upper plate speed. Our chosen vibrations have a very
specific structure: they are assumed to be monochromatic waves that are parametrized
by a phase speed, an amplitude and the wavenumber. We solved the relevant moving
boundary problem using a discretization coupled to the spectrally accurate IBC method
used to handle the irregularity of the solution domain. The analytical solution for long
waves (see Appendix A) provides some qualitative insight into the flow response.

It has been shown that the upstream-propagating waves always seem to increase the
flow resistance but that the situation for downstream-propagating waves is more involved.
The calculations show that the waves must be of a certain minimum speed before they
can reduce the flow resistance, so it is convenient to distinguish slow and fast waves,
with the latter being potentially able to reduce the resistance. While this distinction is
adequate at small Reynolds number, as Re grows so the picture changes. Increasingly
the flow response is affected by the near resonances with the natural flow frequencies;
these necessarily correspond to wave speeds less than the upper plate velocity. We can
consequently divide the vibration waves into subcritical and supercritical varieties; the
resistance reduction achieved by the supercritical waves appears to be proportional to the
wave speed c and to the square of the wave wavenumber α. Of significance, we have
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Figure 18. (a) The work done by the pressure at the lower plate Pwp and (b) the work done by viscous forces
at the lower plate Pwv . (c) The increase of dissipation above its reference value and (d) the change in power
�Pwe required to drive the upper plate. Solid (dashed) lines represent positive (negative) values. The red lines
denote zero contours and the zones between the blue lines indicate the range of natural frequencies of the
Orr–Sommerfeld modes. All results given are for Re = 2000 and A = 0.01. The grey shading identifies the
region of Pwp > 0 in (a) and �Pwe < 0 in (d).

seen that it is theoretically possible to reduce the resistance down to zero if the waves
are sufficiently short and fast. While the effect of supercritical waves can be summarized
relatively neatly, the corresponding situation for subcritical waves is rather less clear-cut.
Most subcritical waves seem to increase the flow resistance albeit the parameter space is
punctuated with small pockets within which the flow resistance is mitigated. These effects
are characterized by a phase shift between the surface pressure and the wave and have been
documented for Re ≤ 2000. Such waves could be of interest when mixing intensification
is desired.

The reduction of resistance can be viewed as a propulsion augmentation strategy in
which energy is spent not on the propulsion by itself, but rather on the reduction of
resistance which potentially improves system performance. The results show that while
the waves reduce resistance, they increase the overall energy expenditure. It seems that the
use of fast, short waves is desirable to achieve the maximum resistance reduction. This
suggests that one way to advance our knowledge of this process is to develop rational
asymptotic theories that might shed light on the various mechanisms at work. While we
describe the appropriate long-wavelength structure in Appendix A, there is the potential
to conduct short-wavelength (α � 1) or high-speed (c � 1) studies of the governing
system of equations. Work in these areas has been started and it is hoped that results
will help clarify some of the issues that have been uncovered by the largely numerical
work described herein. Further computational studies are suggested that might improve
the energy efficiency by exploring the effect of changing the properties of the vibration
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waves. Here we have looked at simple monochromatic wave shapes, but it is almost certain
that improved propulsion augmentation could be achieved with the use of a more carefully
chosen mode of vibration.

Acknowledgements. This work has been carried out with support from NSERC. The authors would like to
thank Dr A. Bassom from the University of Tasmania for careful review of the text as well as the unnamed
reviewers for their suggestions which resulted in a significant improvement of the presentation.

Funding. This work was supported by the Natural Sciences and Engineering Research of Canada (NSERC).

Declaration of interest. The authors report no conflict of interest.

Author ORCIDs.
J.M. Floryan https://orcid.org/0000-0003-3296-4122;
N.N. Haq https://orcid.org/0000-0002-5934-791X.

Appendix A. Long-wavelength vibrations

In this appendix we outline the analytical solution of the flow problem in the case of
long-wavelength vibrations. In view of the geometry of the domain, we introduce the new
coordinates

η = ( y − 1)[1 − 1
2 A cos(αx)]−1 + 1, ξ = αx, (A1a,b)

which map the irregular region into the strip η ∈ −1, 1. The field equations then become

∂2u
∂η2 + [F1 − F2(u − c)− F3v]

∂u
∂η

+ F4
∂2u
∂ξ∂η

+ F5
∂2u
∂ξ2

−F6(u − c)
∂u
∂ξ

− F6
∂p
∂ξ

− F2
∂p
∂η

= 0, (A2a)

∂2v

∂η2 + [F1 − F2(u − c)− F3v]
∂v

∂η
+ F4

∂2v

∂ξ∂η
+ F5

∂2v

∂ξ2 − F6(u − c)
∂v

∂ξ
− F3

∂p
∂η

= 0,

(A2b)

α
∂u
∂ξ

+ F7
∂u
∂η

+ F8
∂v

∂η
= 0, (A2c)

in which the coefficients F1–F8 are defined by

F1 = ηxxG−1
3 = [−α2G1A cos(ξ)+ 2α2A2sin2(ξ)](η − 1)G−1

2

= 1
4α

2[−G1A cos(ξ)+ 2A2sin2(ξ)](η − 1)+ O(α4), (A3a)

F2 = ηxG−1
3 = −α A sin(ξ)G1(η − 1)G−1

2 = −1
4α G1A sin(ξ)(η − 1)+ O(α3), (A3b)

F3 = ηyG−1
3 = 2 G1G−1

2 = 1
2 G1 − 1

8 G1(G2 − 4)+ O(α4), (A3c)

F4 = 2αηxG−1
3 = −2α2A sin(ξ)G1(η − 1)G−1

2 = −1
2α

2G1A sin(ξ)(η − 1)+ O(α4),

(A3d)

F5 = α2G−1
3 = α2G2

1G−1
2 = 1

4α
2G2

1 + O(α4), (A3e)

F6 = α G−1
3 = α G2

1G−1
2 = 1

4α G2
1 + O(α3), (A3f )

F7 = ηx = −α A(η − 1) sin(ξ)G−1
1 , F8 = ηy = 2G−1

1 , (A3g,h)
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Reducing resistance in relative movement of parallel plates

and in which
G1 ≡ 2 − A cos(ξ ), G2 ≡ 4 + α2A2sin2(ξ)(η − 1)2 and G3 ≡ η2

x + η2
y . (A3i–k)

The boundary conditions and the mean pressure constraint then become
u(1) = Re, v(1) = 0, u(−1) = 0, v(−1) = c A α sin(ξ), (A4a–d){

α
∂p
∂ξ

+ A sin(ξ)
2 − A cos(ξ)

(1 − η)
∂p
∂η

}
m

= 0. (A4e)

We expand the unknowns in the forms

(u, v) = (ũ0, ṽ0)+ α(ũ1, ṽ1)+ O(α2), p = α−1p̃−1 + p̃0 + O(α), (A5a,b)

F = F̃0 + αF̃1 + 0(α2), Qmean = Q̃m,0 + αQ̃m,1 + 0(α2), (A5c,d)
where the subscript m is used to denote a mean value. If expansions (A5) are substituted
into (A2), we find that

∂2ũ0

∂η2 − 1
2

G1ṽ0
∂ ũ0

∂η
− 1

4
G2

1
∂ p̃−1

∂ξ
+ 1

4
A sin(ξ ) G1(η − 1)

∂ p̃−1

∂η
= 0, (A6a)

∂ p̃−1

∂η
= 0,

∂ṽ0

∂η
= 0, (A6b,c)

ṽ0(1) = 0, ũ0(1) = Re, ũ0(−1) = 0, ṽ0(−1) = 0,{
∂ p̃−1

∂ξ
+ A sin(ξ)

2 − A cos(ξ)
(1 − η)

∂ p̃−1

∂η

}
mean

= 0,
(A6d–h)

whose solution can be written as

ũ0 = 1
8

G2
1

dp̃−1

dξ
(η2 − 1)+ 1

2
Re(1 + η), ṽ0 = 0, p̃−1 = g−1(ξ), (A7a–c)

and in which the form of function g−1(ξ) remains to be fixed. In the light of (A6b) the
pressure gradient constraint (A6h) becomes simply

dp̃−1

dξ

∣∣∣∣
mean

= 0. (A8)

To satisfy this requirement we derive an expression for variations in the function ψ̃ defined
by

u = ∂ψ̃

∂y
, v = −∂ψ̃

∂x
. (A9a,b)

Along the lower plate we have that

dψ̃ = ∂ψ̃

∂x
dx + ∂ψ̃

∂y
dy = −v dx = c

dyL

dx
= −αcA sin(ξ), (A10)

so that one integration gives
ψ̃L = cA cos(ξ)+ CL, (A11)

where CL is an integration constant and which is the mean value of ψ̃L along the plate.
Furthermore, we know that ψ̃ is constant along the upper plate so that

ψ̃U = CU, (A12)
where CU is a second unknown constant. One of these constants can be chosen arbitrarily
while the other needs to be determined using the zero mean pressure gradient constraint.
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If we subtract (A11) from (A12) we have

ψ̃U − ψ̃L = CU − CL − cA cos(ξ) = Q̃m,0 − cA cos(ξ). (A13)

This difference may alternatively be found using the expression for the flow rate that
follows from integrating the x velocity across the slot. Then

ψ̃U − ψ̃L =
∫ yU

yL

ũ0 dy = 1
2

∫ 1

−1
[2 − A cos(ξ)]ũ0 dη = − 1

12
[2 − A cos(ξ)]3 dp̃−1

dξ

+ 1
2

[2 − A cos(ξ)]Re, (A14)

and results (A13) and (A14) together show that

dp̃−1

dξ
= − 12Q̃m,0

[2 − A cos(ξ)]3 + 12c A cos(ξ)

[2 − A cos(ξ)]3 + 6Re

[2 − A cos(ξ)]2 . (A15)

The mean value of this pressure gradient is

dp̃−1

dξ

∣∣∣∣
mean

= −6Q̃m,0(8 + A2)

(4 − A2)
5/2 + 36cA2

(4 − A2)
5/2 + 12Re

(4 − A2)
3/2 , (A16)

and for this to equal zero requires that

Q̃m,0 = c
6 A2

8 + A2 + Re
2(4 − A2)

8 + A2 . (A17)

The substitution of expression (A17) into (A7) leads to the determination of ũ0 and the
other quantities of interest so that

ũ0 = 3
4

Re
[

1 − 4(4 − A2)

(8 + A2)[2 − A cos(ξ)]

]
(η2 − 1)

+ c
A

2 − A cos(ξ)

[
3
2

cos(ξ)− 9A
8 + A2

]
(η2 − 1)+ 1

2
Re(η + 1), (A18)

while the pressure term is

p̃−1 = Re
6A sin(ξ)

(4 − A2)[2 − A cos(ξ)]2

[−32 + 2A2 + 12A cos(ξ)
8 + A2 + 2 − A cos(ξ)

]
+ c

12A sin(ξ)

(4 − A2)
2[2 − A cos(ξ)]2

×
[

3A2

8 + A2 [−16 + A2 + 6A cos(ξ)] + 8 + A2 − A(2 + A2) cos(ξ)
]
. (A19)
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We can then determine the viscous and pressure parts of the stress at the lower and upper
plates to be

σxv,L = σ̃ xv0,L + 0(α) = Re
2

2 − A cos(ξ)

[
1 − 6(4 − A2)

(8 + A2)[2 − A cos(ξ)]

]
+ c

6A

[2 − A cos(ξ)]2

[
cos(ξ)− 6A

8 + A2

]
+ 0(α), (A20a)

σxv,U = σ̃ xv0,U + 0(α) = Re
4

2 − A cos(ξ)

[
1 − 3(4 − A2)

(8 + A2)[2 − A cos(ξ)]

]
+ c

6A

[2 − A cos(ξ)]2

[
cos(ξ)− 6A

8 + A2

]
+ 0(α) , (A20b)

σxp,L = σ̃ xp0,L + 0(α) = Re
6A2sin2(ξ)

(4 − A2)[2 − A cos(ξ)]2

×
[−32 + 2A2 + 12A cos(ξ)

8 + A2 + 2 − A cos(ξ)
]

+ c
12A2sin2(ξ)

(4 − A2)
2[2 − A cos(ξ)]2

×
[

3A2

8 + A2 [−16 + A2 + 6A cos(ξ)] + 8 + A2 − A(2 + A2) cos(ξ)
]

+ 0(α),

(A20c)

and the total forces (per unit width and unit length) are given by

Fxv,L = F̃xv0,L + 0(α) = −2Re(4 − A2)+ 6cA2

(8 + A2)(4 − A2)
1/2 + 0(α),

Fxp,L = F̃xp0,L + 0(α) = −6ReA2 + 12cA2

(8 + A2)(4 − A2)
1/2 + 0(α), (A21a,b)

F = F̃0 + 0(α) = 4Re(2 + A2)− 6cA2

(8 + A2)(4 − A2)
1/2 + 0(α). (A21c)

The next-order system can be cast as

∂2ũ1

∂η2 − 1
2

G1
∂ ũo

∂η
ṽ1 − 1

4
G2

1
∂ p̃0

∂ξ
+ 1

4
A sin(ξ )G1(η − 1)

∂ p̃0

∂η

= − 1
4

A sin(ξ )G1(η − 1)(ũ0 − c)
∂ ũ0

∂η
+ 1

4
G2

1(ũ0 − c)
∂ ũ0

∂ξ
, (A22a)

∂ṽ1

∂η
= 1

2
A(η − 1)sin(ξ )

∂ ũ0

∂η
− 1

2
G1
∂ ũ0

∂ξ
,

∂ p̃0

∂η
= 0, (A22b,c)

η = 1 : ũ1 = 0, ṽ1 = 0, (A22d,e)

η = −1 : ũ1 = 0, ṽ1 = c A sin(ξ ), (A22f,g){
∂ p̃0

∂ξ
+ A sin(ξ)

2 − A cos(ξ)
(1 − η)

∂ p̃0

∂η

}
mean

= 0. (A22h)
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We remark that this system does not contribute to mean quantities as it admits only purely
periodic solutions.

The primary quantity of interest is the force F which needs to be applied to the upper
plate to maintain its movement. The component of this force that can be attributed to the
vibrations is

F1 = F̃0 − 1
2

Re + 0(α2) = Re

[
4(2 + A2)

(8 + A2)(4 − A2)
1/2 − 1

2

]

− c
6A2

(8 + A2)(4 − A2)
1/2 + 0(α2), (A23)

while the part of the flow rate owing to vibrations is

Q1,mean = Q̃m,0 − Re + 0(α2) = c
6 A2

8 + A2 − Re
3A2

8 + A2 + 0(α2). (A24)

The flow topology possesses numerous interesting features exemplified within the result

ψ = 3
8

Re
[

2 − A cos(ξ)− 4(4 + A2)

8 + A2

] (
1
3
η3 − η + 2

3

)
+ 1

4
Re[2 − A cos(ξ)]

(
1
2
η2 + η − 3

2

)
+ 1

2
cA

[
3
2

cos(ξ)− 3A
8 + A2

] (
1
3
η3 − η + 2

3

)
− 1

2
c[2 − A cos(ξ)](η − 1), (A25)

which can be viewed as the stream function expressed within the moving reference frame.
The conditions that lead to the formation of separation zones near the vibrating plate can
be found by looking for a zero in the normal-to-plate velocity derivative. The relevant
expression is precisely that for the shear stress σt,L acting on this plate:

σt,L = σ L · tL = [σx,L, σy,L][tx,L, ty,L]T = 2Re
2 − A cos(ξ)

[
1 − 6(4 − A2)

(8 + A2)[2 − A cos(ξ)]

]
+ 4Ac

[2 − A cos(ξ)]2

[
3
2

cos(ξ)− 9A
8 + A2

]
; (A26)

here tL is the unit vector tangential to the plate with components tx,L = NL, ty,L =
NL(df /dx) and the subscript T denotes the usual transpose. If we demand that σt,L = 0
we have

cos(ξ) = 8Re(1 − A2)+ 18cA2

A(8 + A2)(3c − Re)
, (A27)

and the requirement | cos ξ | ≤ 1 tells us if and where separation may take place for a given
combination of flow parameters (Re, A, c). For stationary waves c = 0 separation occurs
whenever A > −3 + √

13 ≈ 0.606 and ξ = π is the incipient point irrespective of the
value of Re (Floryan et al. 2021). To identify separation points in a more general setting, it
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Figure 19. (a) The magnitude of the force correction |F1| and (b) the difference between the numerically and
analytically (F1,analytical) determined force corrections |F1 − F1,analytical|. Results shown as functions of α for
the parameter choices Re = 500, A = 0.0025 and the five values c/Re = 0.5, 1, 2, 5 and 10. There is evidence
of the emergence of a zone in which |F1| varies proportional to α0.45 for the larger values of c prior to the
analytical small-α limit is reached.

is helpful to recast (A18) as

ũ0/Re = 3
4

[
1 − 4(4 − A2)

(8 + A2)[2 − A cos(ξ)]

]
(η2 − 1)

+ ĉ
A

2 − A cos(ξ)

[
3
2

cos(ξ)− 9A
8 + A2

]
(η2 − 1)+ 1

2
(η + 1), (A28)

where ĉ = c/Re. It is evident that ũ0 is an even function of ξ and it is therefore sufficient to
consider ξ = 0 (a wave crest) and ξ = π (a wave trough) to identify the onset conditions.
Routine analysis shows that separation at the crest can be produced only by waves with
phase speed c/Re > (A2 − 6A − 4)/3A(A − 4) and these waves propagate in the same
direction as the upper plate. The situation at the trough is more complex as waves that
propagate forward can induce separation only if they are not too fast, c/Re < (A2 + 6A −
4)/3A(A + 4), and only then if they are of sufficient amplitude A > −3 + √

13. Waves that
propagate backwards can lead to separation if their phase velocity is sufficiently negative
c/Re < (A2 + 6A − 4)/3A(A + 4), and their amplitude is not too large A < −3 + √

13.
These results prove that it is not possible to have a reflux situation in which there is a
stream tube that carries fluid in the direction opposite to the movement of the upper plate.

In passing we mention that waves which propagate both forward and backward can
theoretically capture fluid in boluses and transport it at the speed of the wave if the
amplitude of the wave is large. Proof of the existence of boluses relies on numerical work
but this is not pursued here as the focus of our analysis is on waves at amplitudes well
below the typical bolus-formation threshold.

A comparison of the numerical and analytic solutions is presented in figure 19 and
provides a benchmark for assessing the likely range over which the small-α solution is
reasonably accurate This range seems to decrease as the ratio c/Re grows and tests confirm
that our analytic solution is correct to O(α) with error of size O(α2).
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Figure 20. Spectra of the Orr–Sommerfeld problem when Re = 500 and the three wavenumbers α = 0.5 (red
stars), 1.7 (blue circles) and 5 (black squares). The horizontal arrows show the distance ws between the fastest
and the slowest wave for a given α.

Appendix B. The natural frequencies of Couette flow

In this appendix we sketch the method used to determine the natural flow frequencies of
the underlying Couette flow. Consider small unsteady disturbances that are superposed on
the flow between two parallel smooth plates with the upper plate moving with a prescribed
velocity while the lower plate is stationary. The flow quantities can be written as

v(X, Y, t) = [u(X, Y, t), v(X, Y, t)] = [ 1
2 Re(1 + Y)+ u1(X, Y, t), v1(X, Y, t)],

p(X, Y, t) = p0 + p1(X, Y, t).

}
(B1a,b)

The substitution of expressions (B1) in (2.2), followed by linearization and the assumption
of the wave form ansatz

[u1, v1, p1](X, Y, t) = [û1, v̂1, p̂1](Y) eiα(X−Ct) + complex conjugate, (B2)

leads to the standard Orr–Sommerfeld problem:

[(D2 − α2)2 − 1
2 iα(Re(1 + Y)− 2C)(D2 − α2)]v̂1 = 0 subject to v̂1(±1) = 0,

Dv̂1(±1) = 0.
(B3)

Here D ≡ d/dY and the wave phase speed Cr, which is the real part of C, is bounded
according to Howard’s semicircle theorem so that 0 < Cr < Re (Schmid & Henningson
2001).

The solutions of the eigenproblem (B3) describe the possible Tollmien–Schlichting
waves. It was solved numerically by writing the unknowns as Chebyshev expansions
and then constructing linear algebraic equations for the expansion coefficients using the
Galerkin projection method. Boundary conditions were enforced using the τ -procedure
(Canuto et al. 1992) and the spectral decomposition of the coefficient matrix was achieved
using standard methods (Garbow et al. 1977; Moler 2004). The inverse iteration technique
was used to enhance the accuracy of the computed eigenvalues when necessary (Moradi
& Floryan 2014). It is known that these disturbances are attenuated (Romanov 1972) so
their long-term existence requires a continuous energy input.
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Some typical spectra of the Orr–Sommerfeld problem are depicted in figure 20. The
distance ws between the fastest and the slowest disturbances is marked in some figures in
the main text (see, for example, figure 6b).
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