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A POINT COUNTING ALGORITHM USING COHOMOLOGY
WITH COMPACT SUPPORT

GWELTAZ CHATEL and DAVID LUBICZ

Abstract

We describe an algorithm to count the number of rational
points of an hyperelliptic curve defined over a finite field of
odd characteristic which is based upon the computation of the
action of the Frobenius morphism on a basis of the Monsky-
Washnitzer cohomology with compact support. This algorithm
follows the vein of a systematic exploration of potential appli-
cations of cohomology theories to point counting.

Our algorithm decomposes in two steps. A first step which
consists of the computation of a basis of the cohomology and
then a second step to obtain a representation of the Frobe-
nius morphism. We achieve a Õ(g4n3) time complexity and
O(g3n3) memory complexity where g is the genus of the curve
and n is the absolute degree of its base field. We give a de-
tailed complexity analysis of the algorithm as well as a proof
of correctness.

1. Introduction

The problem of counting the number of rational points on a smooth projective
algebraic curve defined over a finite field has attracted a lot of attention in recent
years driven by well known cryptographic applications.

The known point counting algorithms for a curve C over a finite field k with
Jacobian J(C) can roughly be divided in two large classes, the `-adic algorithms
and the p-adic algorithms.

The `-adic point counting algorithms can be interpreted as the computation of
the action of the Frobenius morphism on the `-adic Tate module of the Jacobian,
` being prime to the characteristic of the base field. The `-adic point counting
algorithms all follow an original idea of Schoof [33] which consists in computing
the action of the Frobenius morphism on the group of `-torsion points of J(C)
for primes ` big enough to recover the zeta function of the curve by the Chinese
remainder theorem. In the case that C is an elliptic curve, this first algorithm
has subsequently been improved by Elkies, Atkin and other authors [10, 33] and
resulted in a very efficient algorithm. Some of these techniques have been adapted
in the case of higher genus curves [29] but some improvement have yet to be done
in order to be able to reach cryptographic size fields. Nevertheless some progress
has been made [13, 14] in that direction.

On the other side, the p-adic point counting algorithms can be interpreted as the
computation of the action of the Frobenius morphism on some p-adic cohomology
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group. The first such algorithm has been described by Satoh [32]. The algorithm
of Satoh relies on the computation of the action of the Frobenius morphism on the
invariant differential forms of the canonical lift of an ordinary Jacobian. It has been
generalized and made more efficient in a series of papers [31, 25, 26, 15, 23, 24].
Other authors have explored other possible representations of the Frobenius mor-
phism. In [17], Kedlaya explains how to obtain a basis of the Monsky-Washnitzer
cohomology of an hyperelliptic curve and compute the Frobenius morphism acting
on it. Lauder used Dwork cohomology to obtain general point counting algorithms
[20, 21]. Later on, Lauder introduced deformation techniques in which one consider
a one parameter family of curves and use the Gauss-Manin connection in order to
carry over this family the action of the Frobenius morphism [18].

Pursuing the exploration of possible p-adic cohomology theories, we propose
in this paper to use Monsky-Washnitzer cohomology with compact support. This
cohomology theory comes with a Lefschetz trace formula and as a consequence
can be used to compute the number of rational points of a curve defined over a
finite field. Starting with an hyperelliptic curve defined over a finite field of odd
characteristic, we explain how to represent elements of the Monsky-Washnitzer
cohomology with compact support and obtain a basis of this vector space. Then we
compute the representation of the Frobenius morphism.

Our algorithm breaks into two steps. The first step is the computation of a basis
of the Monsky-Washnitzer cohomology with compact support. Unlike the case of
the algorithm of Kedlaya this step is non trivial from an algorithmic point of view.
The two main features of this part of our algorithm are:

• The use of the stability of the cohomology of Monsky-Washnitzer with com-
pact support by finite étale descent to reduce the computation of a basis of
the cohomology to the computation of a basis of the global horizontal sections
of an isocrystal over the affine line. These global sections verify a differential
equation provided by the Gauss-Manin connection that we interpret as the
solutions of a linear system. This is the so called global method.

• Unfortunately, the global method is inefficient since it involves the inversion of
a matrix the size of which is in the order of the analytic precision required for
the computations. We explain how to speed up the computation of the basis
by taking advantage of local inhomogeneous differential equations deduced
from the Gauss-Manin connection. Once we have computed global solutions
for the Gauss-Manin connection up to a small analytic precision it is possible
to prolong them locally using an asymptotically fast algorithm such as [2].

The second step of the algorithm is the computation of a lift of the Frobenius
morphism as well as its action on a basis of the cohomology. The computation of
a lift of the Frobenius morphism that we describe in this paper is standard, being
just an adaptation of [17] to our case. Nonetheless, for the action of the Frobenius
morphism, we explain how it is possible to turn into an efficient algorithm the
knowledge of local differential equations deduced from the twist of the Gauss-Manin
connection by the Frobenius morphism.

We give a proof of correctness for our algorithm. As usual for the p-adic algo-
rithms, the main problem lies in the assessment of the analytic and p-adic precisions
necessary to recover the characteristic polynomial of the Frobenius morphism. For
this we used a variant of a result of Lauder [19]. We provide the algorithm with

296https://doi.org/10.1112/S1461157000001534 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001534


A point counting algorithm using cohomology with compact support

a detailed complexity analysis. In this complexity estimate, we suppose that the
characteristic p of the base field of the hyperelliptic curve is fixed and consider
complexity bounds when the genus g and the absolute degree n of the base field
increase. Using the soft-O notation to neglect the logarithmic terms, we obtain a
Õ(g4n3) time complexity with a O(g3n3) memory consumption. In order to achieve
this time complexity, we use in an essential manner asymptotically fast algorithms
to compute with power series [1, 3, 28, 2]. We remark that the time complexity
of our algorithm has the same complexity bounds as the algorithm of Kedlaya.

1.0.0.1. Organisation of the paper. In Section 2, we recall the basic construction
of the cohomology of an overconvergent isocrystal over the affine line. In Section
3, we deduce from it an algorithm to compute a basis of the cohomology. We
give a proof of correctness and a detailed complexity analysis of this algorithm in
Section 4. In Section 5, we explain how to compute the action of the Frobenius
morphism on this basis and recover the zeta function of the curve. In Section 6, we
obtain complexity estimates for the whole algorithm and discuss practical results
and implementations.

1.0.0.2. Notations. In all this paper, k is a finite field of odd characteristic p. We
denote by W (k) the ring of Witt vectors with coefficients in k and by K the field
of fractions of W (k). For all x ∈ K, vp(x) and |x| denote the usual p-adic valuation
and norm of x.

We use the notation ` for a multi-index (`0, . . . , `k) where k > 0 is an integer.
For instance, 0 is the k-fold multi-index (0, . . . , 0). For ` and m two multi-indexes
` > m means that for all i ∈ {0, . . . , k}, `i > mi. Moreover if ` is a multi-index, we
set |`| = max{|`i|, i = 0, . . . , k}.

We recall that an element f =
∑
` a`t

` of K[[t0, . . . , tk]] is called overconvergent

if there exists η0 > 1 such that lim |a`|η|`|0 = 0. The sub-ring of K[[t0, . . . , tk]]
consisting of overconvergent elements is denoted by K[t0, . . . , tk]† and is called the
weak completion of K[t0, . . . , tk]. Let (a`)`∈N be a sequence in W (k) and η > 0,
in the following we use the more compact notation, |a`|η` →±∞ 0 to say that
lim`→±∞ |a`|η` = 0.

If x ∈ W (k), we say that we have computed x to p-adic precision P2 ∈ N∗
if we have computed a representative of x in W (k)/pP2W (k). Let x ∈ K and
write x = pvp(x).z where z is an invertible element of W (k). We say that we have
computed x to relative precision P2 if we have computed z to precision P2. We
say that we have computed x to absolute precision P2 if we have computed z to
precision max(P2−vp(x), 0). Of course for an invertible element x of W (k) absolute
and relative precisions are the same and we say simply that this is the precision of
x.

The relative precision is the right notion to assess the time and memory con-
sumption of the algorithms. On the other side, the absolute precision is used to
prove the correctness of the result but is not sufficient to obtain complexity bounds
for our algorithms. One of the main results of the paper, Theorem 1 states that
the discrepancy between relative and absolute precision of all approximations of
elements of K computed in the course of our algorithm is in the order of log(P1)
where P1 is the analytic precision of the computations and as a consequence can
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be neglected in the complexity estimates.
In the same way, if f ∈ K[[t0, . . . , tk]], we say that we have computed f to

analytic precision P1 ∈ N∗ if we have computed a representative of f in the ring
K[[t0, . . . , tk]]/MP

1 K[[t0, . . . , tk]] where M is the ideal generated by (t0, . . . , tk).

2. Basic definitions

In order to fix the notations, we first recall some basic facts about Monsky-
Washnitzer cohomology with compact support. In the same way as the theory
without support, the Monsky-Washnitzer cohomology with compact support asso-
ciates to a smooth affine curve Ck of genus g over the finite field k a graded K-vector
space of finite dimension denoted by (Hi

MW,c(Ck/K))i∈{0,1,2}. There exists a trace
formula in this theory which can be used to recover the zeta function of Ck by
computing the action of the Frobenius morphism over the cohomology groups. We
remark that as we are dealing with curves, only H1

MW,c(Ck/K) is non trivial. More-
over, we will use the property of stability of this cohomology theory by finite étale
descent to do all our computations over the affine line. This entails working with
non-trivial coefficients which are overconvergent modules with connection.

2.1. The geometric setting
In the following, we focus on the case of hyperelliptic curves which constitute

the simplest family of curves with arbitrary genus. Let k be a finite field of odd
characteristic. Let Ck be the affine model of a smooth genus g hyperelliptic curve
over k given by an equation Y 2 =

∏2g+1
i=1 (X − λi) where λi ∈ k. Let πk : Ck → A1

k

be the projection along the Y -axis. If we denote by Uk the étale locus of πk and by
Vk its image, we have a diagram

Ck

πk

��

Uk

πk

��

? _oo

A1
k Vk? _oo

, (1)

where the horizontal maps are open immersions and where πk is finite étale over
Vk. We let Ak and Bk be the coordinate rings of Uk and Vk. By [11], Theorem 6,
we can lift diagram (1) to a diagram

C

π

��

U

π

��

? _oo

A1
W (k) V?

_oo

, (2)

of smooth W (k)-schemes where the horizontal maps are open immersions and π is
finite étale over V . Let A and B be the coordinate rings of U and V respectively.
Let Λk = {λ1, . . . , λ2g+1,∞} be the complement of Vk(k) in P1

k(k). We can suppose
that B = W (k)[t, (t − λ1)−1, . . . , (t − λ2g+1)−1] where t is an indeterminate and
where λi ∈ W (k) lifts λi for i = 1, . . . , 2g + 1. Let Λ = {λ1, . . . , λ2g+1,∞}, AK =
A⊗W (k)K and BK = B⊗W (k)K. By finite étale descent (cf Corollary 2.6.6 of [34])
we have H1

MW,c(Uk/K) = H1
MW,c(V, π∗A

†
K). In the following, we always consider

A†K with its B†K-module structure provided by π.
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There is a Gauss-Manin connection on A†K and the computation of a basis of
the cohomology of a curve comes to the computation of horizontal sections for this
connection. In the remaining, if t is an affine parameter, we will use the notation
(t−∞) = t−1 to indicate a local parameter at the infinity.

2.2. The space Bc
In this section, we give a definition of the Monsky-Washnitzer cohomology with

compact support over a Zariski open subset of the affine line. Note that in this
situation this theory coincides with the so-called dual theory of Dwork [8]. Let B,
Λ as before.

Definition 1. For λ ∈ P1
K rational, let

Rλ =
{∑
n∈Z

a`(t− λ)`|a` ∈ K,∀η < 1, |a`|η` →+∞ 0, and

∃η0 > 1, |a`|η|`|0 →−∞ 0
}
,

be the ring of power series converging on a subset η−1
0 < |t − λ| < 1 with η0 > 1.

The Robba ring associated to B is the ring

RB = ⊕ΛRλ.

We recall that the weak completion of BK = K[t, (t− λ1)−1, . . . , (t− λ2g+1)−1]
is

B†K =
{∑
`>0

a`t
`0(t− λ1)−`1 . . . (t− λ2g+1)−`2g+1 |a` ∈ K, ∃η0 > 1,

|a`|η|`|0 →|`|→∞ 0
}
.

The space Bc of analytic functions with compact support is by definition the
quotient of RB by the image of a certain map from B†K into RB that we describe
in the following. For λ ∈ Λ, let

φλ : B†K → Rλ (3)

be the injective map which sends bK ∈ B†K to the element bλ ∈ Rλ which is the
local development of bK at λ.

Let iD : B†K → RB , be defined as bK 7→
⊕

λ∈Λ φλ(bk). Obviously, iD is an
injection and by definition the space Bc is the quotient of RB by the image of iD.
As a consequence, we obtain the short exact sequence of K-vector spaces

0 // B†K
iD // RB

pc // Bc // 0 , (4)

where pc is the canonical projection.
Actually, the space Bc comes with a natural structure of B†K-module that we

describe now. To define it, we let

R†λ =
{∑
`<0

an(t− λ)`|a` ∈ K, ∃η0 > 1, |a−`|η`0 →+∞ 0
}
,

and
R̃†λ =

{∑
`60

a`(t− λ)`|a` ∈ K,∃η0 > 1, |a−`|η`0 →+∞ 0
}
.

299https://doi.org/10.1112/S1461157000001534 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001534


A point counting algorithm using cohomology with compact support

Definition 2. Let Λ0 = Λ\{∞}. The principal part at λ ∈ Λ0 is the function
defined by

Prλ : Rλ → R†λ,

Prλ(
∑
`∈Z

a`(t− λ)`) =
∑
`<0

a`(t− λ)`.

The principal part at ∞ is the function defined by

Pr∞ : R∞ → R̃†∞,

Pr∞(
∑
`∈Z

a`t
−`) =

∑
`60

a`t
−`.

We also define the analytic part at any λ ∈ Λ as the identity minus the principal
part at λ.

For all bc ∈ Bc, by the Mittag-Leffler theorem (see [30, VI.3.4]), there ex-
ists a unique element σ(bc) of RB , such that pc(σ(bc)) = bc and for all λ ∈ Λ,
Prλ(σ(bc)) = 0. In this way, we have defined a map σ from Bc to RB and it is
immediately verified that σ is a section of pc in the exact sequence (4). We now
identify Bc with its image by σ so that we can write

Bc = ⊕λ 6=∞R̃λ,c ⊕R∞,c
where we denote for λ ∈ P1

K rational

Rλ,c = {
∑
`>0

a`(t− λ)`|a` ∈ K, ∀η < 1, |a`|η` →+∞ 0},

and

R̃λ,c = {
∑
`>0

a`(t− λ)`|a` ∈ K, ∀η < 1, |a`|η` →+∞ 0}.

It is important for the following to remark that σ ◦pc is given locally as the identity
minus the local expansion of the sum of all the principal parts.

The action of B†K over Bc is given by

f.g = pc(iD(f).σ(g))

where f ∈ B†K , g ∈ Bc and . is the product in RB .

2.3. The space Mc

The computation of the space H1
MW,c(Uk/K) comes to the computation of the

de Rham module of analytic forms with compact support. Applying the finite étale
descent theorem [34, Cor.2.6.6], this space of analytic functions is

Mc = A†K ⊗B†K Bc.

For λ ∈ Λ0, let Mc,λ = A†K ⊗B†K R̃λ,c and let Mc,∞ = A†K ⊗B†K R∞,c. We have,

Mc =
⊕
λ∈Λ

Mc,λ.
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An element of Mc,λ can be written as

mλ =
∑
j=0,1

Y j
∞∑
`=0

bλj,`(t− λ)`.

with bλj,` ∈ K and with b∞j,0 = 0. We keep the convention of notation (t−∞) = t−1.
The finite B†K-module Mc comes with a connection given by

∇c : Mc →Mc ⊗B†K Ω1
B†K

,

m⊗ gc 7→ ∇GM (m)⊗ gc +m⊗ ∂

∂t
gc.dt,

where ∇GM is the natural Gauss-Manin connection on A†K . In our case this natural
connection is given by the partial derivative with respect to Y acting on the B†K-
module A†K . By definition, the space H1

MW,c(V, π∗A
†
K) is the kernel of ∇c. As a

consequence to compute a basis of H1
MW,c(V, π∗A

†
K) we have to compute a basis of

the space of solutions of the differential equation

∇c(mc) = 0 (5)

defined over Mc. An example of computation of ∇c is provided by (13). Note that
by classical results (see for example [22]) the dimension of this space is equal to 2g
plus the number of points we took off the affine line, which in our case gives 4g+ 1.

3. An algorithm to compute a basis of an overconvergent isocrystal

We show in this section that the solutions of Equation (5) can be computed
by solving a linear system over K. First, we explain how the action of a linear
endomorphism of Mc with rational coefficients can be computed up to a certain
analytic precision by solving a system of linear equations. From this, we deduce two
methods, the global method given in Section 3.2 and the local method presented in
Section 3.3, for the computation of a basis of solutions of Equation (5). The global
method is slow but useful to compute the first analytic development of the solutions
required for the quicker local method.

3.1. Action of a rational endomorphism of Mc

Let Mat be a square matrix of dimension 2 with coefficients in the field of
rational functions in the indeterminate t over K. We make the assumption that
the poles of the coefficients of Mat are contained in Λ. This is always true in the
case that Mat is the connection matrix of ∇GM since the connection can only
have poles in the locus of the ramification points. For m ∈ M and gc ∈ Bc, define
mc = m⊗ gc ∈Mc = M ⊗Bc. Using the basis {1, Y } of Mc over Bc to write mc as
a column vector of dimension 2 with coefficients in Bc, our aim is to compute

Mat.mc = (Mat.m)⊗ gc.

We rewrite Mat as the quotient of a matrix with polynomial coefficients by a
polynomial with the lowest possible degree denoted by ∆. Let oλ be the order of
the roots of ∆ at the point λ ∈ Λ0. Let mo = maxλ∈Λ0(oλ). For the rest of the
section, we denote by M∨ the transpose of a matrix M .
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We explain how we associate vectors with coefficients in K to elements of Mc.

Definition 3. Let n > 0 be a positive integer. Let mc ∈ Mc that we can write as
(mλ1 , . . . ,mλ2g+1 ,m∞) with

mλi =
∑
j=0,1

Y j ⊗
∞∑
`=0

bλi

j,`(t− λi)
`,

where bλi

j,` ∈W (k) and b∞j,0 = 0, following our conventions. For all λ ∈ Λ, we let

vλmc,n = (bλ0,0, b
λ
0,1, . . . , b

λ
0,n, b

λ
1,0, . . . , b

λ
1,n)∨, (6)

and denote by vmc,n the vector

vmc,n = (bλ1
0,0, b

λ1
0,1, . . . , b

λ1
0,mo+n, . . . , b

λ1
1,mo+n, . . . , b

∞
1,mo+n)∨, (7)

which can be written by blocks as

vmc,n = (vλ1,∨
mc,m0+n, . . . , v

∞,∨
mc,m0+n)∨. (8)

Definition 4. Let n > 0 be an integer. Let h be a rational function in the indeter-
minate t with coefficients in K. Let Sh,λ be the Laurent series obtained by expanding
h around λ ∈ Λ. We write

Sh,λ = ao(t− λ)−mo + a1(t− λ)−mo+1 + . . .+ amo+n(t− λ)n + . . .

and define M+
h,λ,n a matrix of size (n+ 1,mo + n+ 1), by

M+
h,λ,n =


amo

. . . a0 0 0 . . . 0
amo+1 . . . a1 a0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

amo+n . . . . . . . . . . . . . . . a0

 if λ 6=∞,

M+
h,λ,n =


0 0 . . . 0 0 0 . . . 0
0 amo . . . a1 a0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 amo+n−1 . . . . . . . . . . . . . . . a0

 if λ =∞.

We let M+
λ,n be the block matrix obtained by replacing in Mat each of its coeffi-

cient equal to a rational function h by M+
h,λ,n.

Definition 5. We keep the same notations as in the preceding definition. Let
λ′ 6= λ ∈ K. Let h be a rational function in the indeterminate t. Write

Sh,λ = ao(t− λ)−mo + a1(t− λ)−mo+1 + . . .+ amo+n(t− λ)n + . . .

For r > 0 an integer, let ηr0, η
r
1, . . . , η

r
n be the n+1 first coefficients of the expansion

of
∑r
`=0 a`(t− λ)−mo+` around λ′ (it is a power series). Let M−,λ

′

h,λ,n be the matrix
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of dimension (n+ 1,mo + n+ 1) given by

M−,λ
′

h,λ,n = −

 ηmo−1
0 . . . η0

0 0 . . . 0
. . . . . . . . . . . . . . . . . .

ηmo−1
n . . . η0

n 0 . . . 0

 if λ 6=∞,

M−,λ
′

h,λ,n = −

 ηmo
0 . . . η0

0 0 . . . 0
. . . . . . . . . . . . . . . . . .
ηmo
n . . . η0

n 0 . . . 0

 if λ =∞.

Let M−,λ
′

λ,n be the block matrix obtained by replacing in Mat each of its coefficient

equal to a rational function h by M−,λ
′

h,λ,n.

We remark that in this definition, if λ′ =∞, then the first line of M−,λ
′

h,λ,n is null,
which corresponds to our convention to set the constant term at the infinity to zero.
This convention implies that the mth

o column of M−,λ
′

h,λ,n is zero if λ =∞.

Definition 6. Still keeping the same notations, for n > 0 an integer, let Mn be
the matrix of dimension (2(1 + n)(2g + 2), 2(mo + n+ 1)(2g + 2)) given by

Mn =


M+
λ1,n

M−,λ1
λ2,n

. . . M−,λ1
∞,n

M−,λ2
λ1,n

M+
λ2,n

. . . M−,λ2
∞,n

. . . . . . . . . . . .

M−,∞λ1,n
M−,∞λ2,n

. . . M+
∞,n

 .

Lemma 1. Let Mat be a square matrix of dimension 2 with coefficients in the field
of rational functions in the indeterminate t over K. Let mc = m⊗ gc ∈Mc, then

vMat.m⊗gc,n−mo
= Mn.vm⊗gc,n,

where v is defined by (8).

Proof. We saw in the last section that the action of an overconvergent function
h ∈ B†K on gc ∈ Bc is given by multiplying iD(h) by σ(gc) in the Robba ring RB
and then apply σ ◦ pc. This last operation can be done by subtracting the sum of
all the principal parts in all the components of σ(Bc).

Now, the matrix M+
λ,n is such that for any mc ∈ Mc its product with the local

component vector vλ,∨mc,n gives the first n + 1 terms of the analytic parts of the

local product Mat.mλ. In the same manner, the matrix M−,λ
′

λ,n,mo+1 is such that its
product with the local component vector vλ,∨mc,n gives the first n + 1 terms of the
expansion locally around λ′ of the opposite of the principal part in λ of the local
product Mat.mλ.

3.2. Global method
We can use the notations introduced in Section 3.1 to rewrite the differential

equation (5). Here, we let Mat be the matrix Mat∇GM
of the Gauss-Manin con-

nection for the basis {1, Y } of Mc as a B†K-module. From the computation 13, it is
clear that we have mo = 1.
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Definition 7. Let n be a positive integer. Let Dn be the matrix with dimension
(2(1 + n)(2g + 2), 2(n+ 2)(2g + 2)) given by

D =


Dλ1,n 0 . . . . . . 0

0 Dλ2,n 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . . . . . . . D∞,n

 ,

where Dλi,n is the diagonal block matrix with dimension (2(n + 1), 2(n + 2)) such
that the diagonal blocks are given by the (n+ 1, n+ 2)-matrices

D̃λi,n =


0 1 0 . . . . . . . . . 0
0 0 2 0 . . . . . .
. . . . . . . . . . . . . . . . . . . . .
0 . . . . . . 0 n+ 1 0 . . .

 ,

and where D∞,n is the block diagonal (2(n+1), 2(n+2)) matrix the blocks of which
are all equal to the (n+ 1, n+ 2) matrix

D̃∞,n =


0 . . . . . . . . . . . . . . . 0
0 0 . . . . . . . . . . . . 0
0 −1 0 . . . . . . . . . 0
0 0 −2 0 . . . . . . 0
. . . . . . . . . . . . . . . . . . . . .
0 . . . . . . 0 −(n− 1) 0 . . .

 .

Proposition 1. Let n > 1 be an integer. Let mc ∈ Mc be a solution of Equation
(5). Then the vector vmc,n is a solution of the linear system (Mn +Dn).v = 0.

Proof. By definition of ∇c, this is a consequence of Lemma 1 and of the fact that
the matrix Dn is such that vm⊗ ∂

∂t gc,n−1 = Dnvm⊗gc,n.

3.3. Local method
Let λ ∈ Λ. To simplify the exposition, we suppose in the following that λ 6=∞.

The case λ =∞ can be treated exactly in the same way. In the following, K((t−λ))
denotes the field of Laurent series in the indeterminate (t− λ).

The local method rests on the remark that Equation (5) locally at λ can be
regarded as a classical inhomogeneous differential equation if we know enough terms
of the global solution.

Proposition 2. Let mc = (mλ1 , . . . ,mλ2g+1 ,m∞) ∈ H1
MW,c(V, π∗A

†
K). For λ ∈ Λ,

let ∇GM,λ be the action of the Gauss-Manin connection on the local component
in λ of an element of Mc. For all λ ∈ Λ, there exists a unique u = u0 + Y u1,
with (u0, u1) ∈ (K((t − λ)))2 such that mλ is a solution of a non-homogeneous
differential equation:

∂

∂t
mλ +∇GM,λmλ = u. (9)

Proof. Let mc = (mλ1 , . . . ,mλ2g+1 ,m∞) ∈ H1
MW,c(V, π∗A

†
K). By definition, it sat-

isfies the equation
∇c(mc) = 0.
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By rewriting each mλ, λ ∈ Λ, as

mλ =
∑
i=0,1

Y i ⊗ gλi ,

where gλi ∈ R̃λ,c we have

∇c(mc) =

∑
i=0,1

∇GM (Y i)⊗ gλ1
i +

∑
i=0,1

Y i ⊗ ∂

∂t
gλ1
i , . . . ,

∑
i=0,1

∇GM (Y i)⊗ g∞i +
∑
i=0,1

Y i ⊗ ∂

∂t
g∞i

 dt.

Let fi ∈ B†K be such that

∇c(mc) =

∑
i=0,1

fi.Y
i ⊗ gλ1

i +
∑
i=0,1

Y i ⊗ ∂

∂t
gλ1
i , . . . ,

∑
i=0,1

fi.Y
i ⊗ g∞i +

∑
i=0,1

Y i ⊗ ∂

∂t
g∞i

 dt.

Set

u =
∑
i=0,1

Y i ⊗ φλ

(∑
λ′∈Λ

Prλ′(φλ′(fi).gλ
′

i )

)
,

where φλ is defined by (3) and Prλ is given by Definition 2. We have

∂

∂t
mλ −∇GM,λmλ = u,

by definition of pc. This concludes the proof of the proposition.

Let mc = (mλ1 , . . . ,mλ2g+1 ,m∞) ∈ H1
MW,c(V, π∗A

†
K). For λ ∈ Λ, write

mλ =
∑
i=0,1

Y i ⊗ gλi ,

where gλi ∈ R̃λ,c. Let Φ be the morphism of K-vector spaces defined by Φ :
H1
MW,c(V, π∗A

†
K)→ (K[Y ])2g+2,

mλ =
∑
i=0,1

Y i ⊗ gλi 7→ (
∑
i=0,1

Y i ⊗ gλ1
i (0), . . . ,

∑
i=0,1

Y i ⊗ gλ2g+1
i (0), 0).

Corollary 1. The map Φ : H1
MW,c(V, π∗A

†
K) 7→ (K[Y ])2g+2 is injective.

Proof. Let mc = (mλ1 , . . . ,mλ2g+1 ,m∞) ∈ H1
MW,c(V, π∗A

†
K). By Proposition 2, for

all λ ∈ Λ, mλ satisfies a degree 1 local inhomogeneous differential equation and
there is a unique solution of this equation with constant term given by Φ(mc).

We have to check that the solution that we obtain satisfies the condition that
the constant term at the infinity point is zero.
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Definition 8. Let n > 0 be an integer. Let Reln be the sub-K-vector space of
K2(2g+2)(n+2) generated by the vectors

(e1, . . . , e2(2g+2)(n+2))∨

such that the ei are zero for

i ∈ {2((2g + 1)(n+ 2) + 1 + j(n+ 2)|j ∈ {0, 1}}.

The linear system we associated to the equation

∇c(mc) = 0

admits trivial solutions that we have to put aside. These solutions come from the
fact that the derivation with respect to t increases the degree locally at the point at
infinity. For instance, when truncating above the degree n > 0, then (0, . . . , 0, 1 ⊗
t−n) corresponds always to a solution of the linear system even though in general
it is not a solution of the equation ∇c(mc) = 0.

Definition 9. Let n > 0 be an integer. Let Trivn be the sub-K-vector-space of
K2(2g+2)(n+2) spanned by the vectors

(e1, . . . , e2(2g+2)(n+2))∨

such that the ei are zero, except for

i ∈ {2(2g + 1)(n+ 2) + j(n+ 3− s)|j ∈ {1, 2}, s ∈ {1, 2}}.

In order to get rid of the terms of Trivn, we simply truncate the solutions and
keep only the resulting independent vectors with coefficients in K. It would be
enough to truncate only the local part at infinity, but we truncate globally for the
sake of clarity. Note also that by Corollary 1, a solution with all local constant terms
equal to zero is globally equal to zero, so that we don’t drop any valid solution by
truncating.

Definition 10. If n > 2 and if v = (v1, . . . , v2(2g+2)(n+2)) is an element of
K2(2g+2)(n+2) we let

Tronc(v, n) = (v1, . . . , vn−2, vn+1, . . . , v2n−2, v2n+1, . . . , v2(2g+2)(n+2)−2)∨.

In particular, we have

Tronc(vmc,n, n) = vmc,n−2.

Proposition 3. Let n > 0 be an integer. Let v be a solution of the linear system

(Mn+2 +Dn+2)v = 0

in Reln. Then there exists a unique element m ∈ ⊕ΛMc,λ ⊗K[[t − λ]] solution of
the Equation (5) such that

vm,n = Tronc(v, n)

where we have generalized in an evident manner the definition vm,n to ⊕ΛMc,λ ⊗
K[[t−λ]]. More precisely, there exists vTriv ∈ Trivn+2 such that vm,n+2 = v+vTriv.

Proof. From Corollary 1, a solution is uniquely determined by its first terms.
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An approximation of a formal solution of a differential equation can be computed
by one or the other of the above explained methods, but nothing has been said, up
to now, about the convergence of the solutions that we approximate. We have yet
to prove that a formal solution of the differential equation is in Mc. This can be
done by finding some conditions for the convergence on the coefficients of a formal
solution.

3.4. Explicit upper bound of the coefficients of a basis of the cohomology
We present an upper bound on the valuation of the coefficients of a basis of the

space H1
MW,c(V ) = H1

MW,c(U, π∗A
†
K).

Proposition 4. Let mc = (mλ1 , . . . ,mλ2g+1 ,m∞) be an element of the vector
space H1

MW,c(U, π∗A
†
K). Let u = u0 +u1.Y , with for j = 0, 1, uj =

∑∞
`=0 u

j
`(t−λ)`.

Suppose that mλ is a solution of the equation

∂

∂t
mλ +∇GM,λmλ = u,

then there exists a real number B > 0 such that for j = 0, 1 and all `

vp(u
j
`) > B.

Proof. Let mc = (mλ1 , . . . ,mλ2g+1 ,m∞) ∈ H1
MW,c(V, π∗A

†
K) with

mλi
=
∑
j=0,1

Y j
∞∑
`=0

bλi

j,`(t− λi)
`,

with bλi

j,` ∈ K and with b∞j,0 = 0 (still keeping the convention t − ∞ = t−1). Let
λ ∈ Λ. Writing the Gauss-Manin connection as a quotient:

∇GM =
G(t)
∆(t)

,

where G(t) is a linear transformation which can be written in the basis {1, Y } as a
(2, 2)-matrix with coefficients in W (k)[t] and ∆(t) ∈ W (k)[t] has simple roots. By
Proposition 2, and because each λ′ ∈ Λ0 is at most a simple root of ∆, the vector
mλ satisfies the equation

∂

∂t
mλ +∇GM,λm

λ = u,

with

u =
∑
λ′∈Λ

G(λ′)
∆′(λ′)

cλ
′
(t− λ′)−1,

where cλ
′

= bλ
′

0,0 + Y bλ
′

1,0.
We have for all λ, λ′ ∈ Λ0,

vp(λ− λ′) = 0

by hypothesis. As a consequence, if one writes u = u0 + Y u1, with for j = 0, 1,
uj =

∑
uj`(t− λ)`, then

vp(u
j
`) > min

λ′∈Λ

(
vp

(
G(λ′)
∆′(λ′)

cλ
′
))

, (10)
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where we extend vp on vectors with coefficients in W (k) by taking the minimum of
the valuation of the components.

Equation (10) follows the remark that expanding in a neighbourhood of λ, we
find

(t− λ′)−1 = −
∞∑
`=0

1
(λ′ − λ)`+1

(t− λ)`.

As a consequence, we can take

B = min
λ′∈Λ

(
vp

(
G(λ′)
∆′(λ′)

cλ
′
))

,

in the statement of the theorem.

Theorem 1. Let mc = (mλ1 , . . . ,mλ2g+1 ,m∞) be an element of H1
MW,c(V, π∗A

†
K)

with

mλi
=
∑
j=0,1

Y j
∞∑
`=0

bλi

j,`(t− λi)
`,

with bλi

j,` ∈ W (k) and with b∞j,0 = 0. Let λ ∈ Λ. Then there exist α ∈ R and β ∈ R
such that

vp(bλj,`) > −(α logp(`) + β), (11)

for all j and all `. Moreover, α and β can be made explicit (see the Remark 1).

Proof. We prove that the hypothesis of the Theorem 2.3.3 of [4] are verified. By
a direct computation, we find that the local exponents of Mat∇GM

are in {0,− 1
2},

so that they are prepared and the hypothesis 1 is satisfied. The hypothesis 4 is
already contained in our statement. The hypothesis 2 can be checked by applying
the classical Dwork’s trick (see for example [16], Proposition 3.1). In order to be
able to apply this result, it is necessary to provide the B†K-module (π∗A

†
K ,∇GM )

with a Frobenius morphism. Fix a Frobenius morphism F on A†K lifting the pth

power on Ak such that F sends X over Xp and acting on K as the Frobenius
automorphism. Then F induces a Frobenius morphism FGM over (π∗A

†
K ,∇GM )

and the Dwork’s trick applies. In the same manner, we provide the dual module
with connection (π∗A

†
K ,∇∨) with the Frobenius morphism F−1

GM . The hypothesis 3
is true from Proposition 4, and the hypothesis 5 is easily verified in our case. The
expression of B given in the proof of the Proposition 4 gives the theorem.

The following proposition proves that the formal solutions of the differential
system 5 are in Mc. This indeed shows the correctness of the algorithm described
in Section 4.1.

Taking back the notation of the Section 3,

Proposition 5. Let v be a solution of the linear system (Mn+Dn)v = 0 belonging
to Reln and let m ∈ ⊕ΛMc,λ⊗K[[t−λ]] be the unique solution of the Equation (5)
such that vm,n = Tronc(v, n). Then m is an element of Mc.

Proof. From the Theorem 1, the coefficients of the local part mλ of m satisfy the
logarithmic bounds of Equation (11) for all λ ∈ Λ. In particular, this implies that
the mλ are all in Rλ,c.
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Remark 1. One can obtain explicit formulas for the constants α and β of the
theorem. The proof of Theorem 2.3.3 (inspired from methods of Alan Lauder) in [4]
gives the expressions

α = 2α′ + 2

and

β = 2β′ + 2 logp(3)−B

the constants α′ and β′ are computed in [19, Note 4.11], with the following expres-
sions:

α′ = 2(1 + logp(2)) + 3

and

β′ = α′ logp(5) + β2 + β3

where

β2 = 2(1 + logp(2)) + 3

and

β3 = 4(
2

p− 1
+ 4 logp(3) + 2 logp(2)).

Remark 2. Let us consider the term B. Recall that we saw in the proof of Propo-
sition 4 that we have (we keep the notations of the proof)

B > min
λ∈Λ

(
vp

(
G(λ)
∆′(λ)

cλ
))

. (12)

where cλ is formed by the constant terms of the element of the cohomology group
we consider so that we can suppose that its p-adic valuation is zero. Now since the
matrix of the connection is

Mat∇GM
= Q(t)−1

(
0 0
0 Q′(t)

2

)
the only non-zero term of G(λ′)

∆′(λ′) is 1/2 and we can suppose B = 0.

4. Description of the algorithm and complexity analysis

In this section, we present an algorithm, based on the results of Section 3, to
compute a basis of the Monsky-Washnitzer cohomology with compact support of
an hyperelliptic curve. The algorithm takes as input:

• a finite field of odd characteristic k,

• a genus g hyperelliptic curve Ck over k, given by an equation Y 2 =
∏2g+1
i=1 (X−

λi), with λi ∈ k distinct,

• two positive integers P1 and P2,

and returns a basis of the space H1
MW,c(V, π∗A

†
K) computed with analytic precision

P1 and absolute p-adic precision P2.
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4.1. An algorithm for the computation of a basis of the cohomology of Monsky-
Washnitzer of a curve

Denote by Ck an affine plane model of Ck. We denote by t the coordinate on
A1
k.

4.1.1. The set up
For i = 1, . . . , 2g + 1, let λi ∈ W (k) lifting λi. Let CK be the hyperelliptic curve
over K given by the equation

Y 2 = Q(X) with Q(X) =
2g+1∏
i=1

(X − λi).

Denote by ∞ the point an infinity of CK . Keeping the notations of Section 3,
we let Λ = {λ1, . . . , λ2g+1,∞} and Λ0 = Λ \ {∞}. Let V be the subvariety of P1

K

whose geometric point set is the complementary of Λ, let U = π−1(V ) where π is
the projection along the Y -axis. Let Uk and Vk be respectively U and V modulo p.

The algorithm goes through the following 3 steps.

4.1.2. Step 1: computation of the connection matrix
The Gauss-Manin connection matrix on A†K is easily described. We fix from now on
the basis {1, Y } of the B†K-module A†K . The matrix is given by the derivation with
respect to Y inA†K seen as aB†K-module. Since in Ω1

A we have dY = Q′(X)
2Q(X)Y.dX, the

Gauss-Manin connection matrix over A†K associated to the projection π : U → V
is:

Mat∇GM
= Q(t)−1

(
0 0
0 Q′(t)

2

)
. (13)

4.1.3. Step 2: Computation of the matrix Mn

(see Section 3.1) Here n is the analytic precision of the computation which will be
fixed later, depending on whether we use the local or the global method.

In order to obtain the matrix Mn, we have to compute for λ ∈ Λ the local
development in λ of Q′(t)/Q(t) that we denote by S∇,λ(t) and for each λ, λ′ ∈ Λ
the local development in λ′ of the principal part of S∇,λ(t).

The development of Q′(t) in λ is nothing but the evaluation Q′(t+λ) which can
be done using Horner’s method or the Paterson-Stockmeyer algorithm [28]. The
computation of a development of 1/Q(t) in λ can be done by

• computing a local development SQ,λ(t) of Q(t) in λ using Horner’s method;

• inverting SQ,λ(t) using a Newton iteration.

The case of λ =∞ can be treated in a similar manner.
Then we have to compute the product of the local developments in λ of Q′(t)

and 1/Q(t) to obtain S∆,λ(t).
As S∇,λ(t) can only have simple poles, the computation of a local development

of the principal part of S∇,λ(t) in λ′ comes to the computation of an inverse locally
at zero of a term of the form t+ λ− λ′ which can be done by a Newton iteration.
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4.1.4. Step 3: solving the equation ∇c(mc) = 0
The next step is to solve the equation ∇c(mc) = 0 on Mc. We have to compute
modulo (t−λ)P1 locally at λ ∈ Λ and modulo pP2 for the p-adic precision. In section
3, we have given two ways to obtain a basis of solutions of the differential equation
∇c(mc) = 0. We use the local method after determining the first terms of a basis
thanks to the global method. It should be remarked that due to the special form
of the connection associated to a hyperelliptic curve, it is possible in the case we
consider to compute directly these terms. Still we present the global method for its
general interest.

4.1.4.1. Global method. We first use the global method to compute a basis of
solutions at small fixed analytic precision. For this, we have to compute the matrices
M1 and D1 and solve the linear system

(M1 +D1)v = 0,

over K. Then it is necessary to put aside the trivial solutions belonging to Triv1

and project the remaining ones onto Rel1. To conclude, we truncate the remaining
vectors as explained in Proposition 9.

4.1.4.2. Local method. Denote by m1
c , . . . ,m

4g+1
c ∈ Mc the elements of a basis

of the space H1
MW,c(V, π∗A

†
K) computed up to analytic precision 1 with the global

method. For j = 1, . . . , 4g + 1, we write, mj
c = (mj

λ1
, . . . ,mj

λ2g+1,m
j
∞).

For a fixed λ ∈ Λ, we explain how to lift mj
λ, for j = 1, . . . , 4g + 1, using the

local differential equation provided by Proposition 2. For this, we have to compute
the constant term of Equation (9). The general expression of this coefficient is

uj =
∑
i=0,1

Y i ⊗ φλ

(∑
λ′∈Λ

Prλ′(φλ′(fi).gλ
′

j,i)

)
,

where fi depends only on the Gauss-Manin connection and for λ ∈ Λ, gλj,i ∈ R̃λ,c
is such that

mj
λ =

∑
i=0,1

Y i ⊗ gλj,i.

As fi has only simple poles, we can write

φλ

(∑
λ′∈Λ

Prλ′(φλ′(fi).gλ
′

j,i)

)
=
∑
λ′∈Λ

φλ(Prλ′(φλ′(fi))).gλ
′

j,i(0).

We remark that gλ
′

j,i(0) can be computed with the global method. As a consequence,
once we have computed for a fixed λ ∈ Λ, rλ,λ′ = φλ(Prλ′(φλ′(fi))), it is possible
to recover uj by computing a linear combination of the rλ,λ′ with coefficient in K.

Equation (9) can be rewritten as an equation of the form

Z ′ = AZ +B,

where A (resp. B) is a (2, 2)-matrix (resp. (2, 1)-matrix) with coefficients in K[[t]].
It is possible to compute an approximation of the unique solution Z of this equation
satisfying Z(0) = v with precision P1 using an asymptotically fast algorithm such
as given by Proposition 1 of [2]. The initial value v comes from the global method.
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Remark 3. It should be remarked that the algorithm described in Proposition 1
of [2] to compute a solution of a differential system to analytic precision P1 may
involve divisions by multiples of a uniformizing element of K. We explain that it
is easy in our case to control the loss of absolute p-adic precision induced by this
algorithm.

For this, we first recall the idea of the algorithm given in Proposition 1 of [2].
Denote by E(B, λ, P1) the vector equation

tZ ′ + (λI − tA) = B mod tP1 ,

where λ ∈ K. We remark that we want to solve E(tB, 0, P1).
Let d be a positive integer and let B0 and B1 be polynomials in t of respective

degrees d− 1 and P1 − d− 1 such that

B mod tP1 = B0 + tdB1 mod tP1 .

If z0 is a solution of E(B0, λ, d), we let

R(z0, B0, λ, d, P1) = (tz′0 + (λI − tA)z0 −B0)/td mod tP1−d, (14)

and denote by z1 a solution of E(B1−R, λ+d, P1−d) where R = R(z0, B0, λ, d, P1).
The algorithm described in Proposition 1 of [2] rests upon a divide and conquer
strategy based on the remark that z = z0 + tdz1 is a solution of E(B, λ, P 1). When
the required analytic precision is 1, a solution of E(B′, λ′, 1) is given by B′(0)/λ′.
It is easily seen that in the course of the algorithm λ′ is running over all the values
in {1, . . . , P1}.

Now, write B =
∑P1−1
i=0 Bit

i, Bi ∈ K and let z =
∑P1−1
i=0 zit

i, zi ∈ K be
the solution of E(B, 0, P1) satisfying a given initial condition. We explain that if
vp(zi) > −v0 and vp(Bi) > −v0 for v0 a positive integer, when doing all the com-
putations of the algorithm of [2] with relative p-adic precision v0 +P2 we obtain an
approximation of z with absolute p-adic precision P2. All the arithmetic operation
in the algorithm are sums except in the computation of R(z0, B0, λ, d, P1) and the
computation of terms of the form B′(0)/λ. First, the terms of the form B′(0)/λ are
coefficients of z and by hypothesis their valuation is bigger than −v0.

Next, if we write z0 =
∑d−1
i=0 z0,it

i, z0,i ∈ K and B0 =
∑d−1
i=0 B0,it

i, B0,i ∈ K,
we have:

R(z0, B0, λ, d, P1) = −Az0,d−1.

As a consequence, B1(0) − R = B1(0) + Az0,d−1 and we know that pursuing the
divide and conquer algorithm we end up by solving an equation of the form E(B1(0)−
R, λ, 1) for a certain λ ∈ {1, . . . , P1}. Thus (B1(0)−R)/λ is a coefficient of z and
vp(B1(0) + Az0,d−1) > −v0. But as vp(B1(0)) > −v0 by hypothesis (and an easy
recurrence), we have vp(R(z0, B0, λ, d, P1)) > −v0.

4.2. Complexity analysis
In order to assess the complexity of our algorithm we use the computational

model of a Random Access Machine [27]. In this paper, we use the soft-O notation
and choose to ignore logarithmic terms in the complexity functions. For instance,
using the algorithm of Schönhage-Strassen, the multiplication of two n-bit length
integers takes Õ(n) time. We suppose that k is a finite field of cardinality q and
characteristic p. In the following we assume the sparse modulus representation
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which is explained in [6, pp.239]. Let x, y ∈W (k)/pP2W (k), under this assumption
one can compute the product xy with precision P2 by performing M = Õ(log(q)P2)
bit operations. The storage requirement for an element of W (k) with precision P2

is O(log(q)P2).
Let h =

∑
`>0 a`t

` ∈ W (k)[[t]] with a` ∈ W (k). We say that we have computed
h up to precision P1 if we have computed a representative of h mod tP1 . Using the
algorithm given in [35], the multiplication of two polynomials of degree P1 with
coefficients in W (k) takes Õ(P1) operations in W (k). As a consequence, the multi-
plication of two elements of W (k)[[t]] with precision P1 takes N = Õ(log(q)P2P1)
time. The storage requirement for an element of W (k)[[t]] with analytic precision
P1 and p-adic precision P2 is O(log(q)P1P2).

Now, we give time and memory complexity bounds for the computation of a
basis of the cohomology with analytic precision P1 and absolute p-adic precision
P2 under the hypothesis that P1 = O(P2). In this case, Theorem 1 shows that
the p-adic valuation of the coefficients of the elements of the computed basis of
H1
MW,c(V, π∗A

†
K) is greater than − logp(P2). As a consequence, in order to perform

the computations with absolute p-adic precision P2 we have to compute with relative
p-adic precision at most P2 + logp(P2). In our complexity analysis, we neglect this
logp(P2) term and suppose that the absolute and relative precision are the same.

We refer to Section 4.1 for the description of each step.

4.2.1. Step 1:
The asymptotic running time of this step is clearly negligible with respect to the
other steps.

4.2.2. Step 2:
Using the local method, we only have to compute M1 which makes the running
time of this step also negligible with respect to the other steps.

4.2.3. Step 3:
In this step, we use the global method to compute the first terms of the solutions
required for the local method.

4.2.3.1. The global method. We have to inverse a matrix with coefficients in K
the dimension of which is in the order of g. The total cost is Õ(g3 log(q)P2) time
and O(g2 log(q)P2) memory.

4.2.3.2. The local method. We keep the notations of Section 4.1 Step 3. First, for
a fixed λ ∈ Λ, we give the running time and memory usage for the computation of
a lift of mλ

j for j running in {1, . . . , 4g + 1}.
We compute rλ,λ′ = φλ(Prλ′(φλ′(fi))) for λ′ ∈ Λ. In order to do this, we have to

develop fi in λ′. With our hypothesis the only non trivial fi has the form Q′(t)/Q(t).
Suppose that λ, λ′ ∈ Λ0. The computation of a local development of Q′ in λ′ can

be done with the evaluation Q′(t + λ′). Using Horner’s method or the Paterson-
Stockmeyer algorithm [28], it takes O(gM) time. The computation of a local de-
velopment of 1/Q(t) in λ′ with a Newton iteration takes O(log(P1)N) time. Then
we have to compute the product of the local developments of Q′ and 1/Q. This
product takes O(N) time. Taking the principal part is trivial. Then we use again
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a Newton iteration to compute a development in λ of a principal part of the form
1/(t− λ′). If λ =∞ or λ′ =∞, we have to adapt slightly the preceding algorithms
with no change on the complexity estimate. We are done for the computation of
rλ,λ′ .

We have to repeat this operation O(g) times to obtain all the coefficients rλ,λ′
at the expense of Õ(g log(q)P1P2) time and Õ(g log(q)P1P2) memory.

Then in order to lift mj
λ, for j = 1, . . . , 4g + 1, we have to solve an equation of

the form Z ′ = AZ+B. This is a first order linear differential equation and applying
Theorem 2 of [2] in conjunction with Remark 3, a solution of this equation with
analytic precision P1 and relative p-adic precision P2 can be computed in O(N)
time.

Now, we have to repeat all the preceding operations for λ running in Λ. In
all the computational time is Õ(g2 log(q)P1P2) and the memory consumption is
O(g log(q)P1P2)

Proposition 6. Let P1 and P2 be positive integers. The global time for the compu-
tation of a basis of H1

MW,c(V, π∗A
†
K) with analytic precision P1 and absolute p-adic

precision P2 under the hypothesis that P1 = O(P2) is bounded by Õ(g2 log(q)P1P2).
The memory consumption is O(g log(q)P1P2).

4.3. An example
In this section, we give a detailed example of computation. In order to simplify

the presentation, we represent the elements of Q5 as rational numbers so all our
computations with the p-adic numbers are exact. We consider the case of the elliptic
curve with equation Y 2 = X3−X over F5. We lift the equation to Y 2−X3 +X ∈
Z5[X,Y ] so that we are interested in the finite module M with basis {1, Y } over
Q5[t, t−1, (t− 1)−1, (t+ 1)−1]†. We denote as before Λ = {∞, 0, 1,−1} and consider
the connection on M given by the matrix

Mat∇GM
= (∆(t))−1

(
0 0
0 3t2−1

2

)
,

where ∆(t) = t3 − t. Let h(t) = 1/(2∆)(3t2 − 1) be the only non-zero term of this
matrix. Its local development in Laurent series at the elements of Λ are:

• at ∞: 3
2 t+ t3 +O(t4),

• at 0: 1
2 t
−1 − t− t3 +O(t4),

• at 1: 1
2 t
−1 + 11

8 −
5
8 t+ 9

16 t
2 − 17

32 t
3 +O(t4),

• at −1: 1
2 t
−1 − 11

8 −
5
8 t−

9
16 t

2 − 17
32 t

3 +O(t4).

So that we have:

M+
h,∞,1 =

(
0 0 0
0 0 0

)
,

M+
h,0,1 =

(
0 1

2 0
−1 0 1

2

)
,

M+
h,1,1 =

(
11
8

1
2 0

− 5
8

11
8

1
2

)
,
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M+
h,−1,1 =

(
− 11

8
1
2 0

− 5
8 − 11

8
1
2

)
.

Since h has no pole at infinity, the matrices M−,λhi,∞,1 are zero for λ = 0, 1,−1.
We expand 1

t locally
• at ∞: t,
• at 1: 1− t+ t2 − t3 +O(t4),
• at −1: −1− t− t2 − t3 +O(t4),

which gives:

M−,∞h,0,1 = −1
2

(
0 0 0
1 0 0

)
,

M−,1h,0,1 = −1
2

(
1 0 0
−1 0 0

)
,

M−,−1
h,0,1 = −1

2

(
−1 0 0
−1 0 0

)
.

We find similarly

M−,∞h,1,1 = −1
2

(
0 0 0
1 0 0

)
,

M−,0h,1,1 = −1
2

(
−1 0 0
−1 0 0

)
,

M−,−1
h,1,1 = −1

2

(
− 1

2 0 0
− 1

4 0 0

)
,

and

M−,∞h,−1,1 = −1
2

(
0 0 0
1 0 0

)
,

M−,0h,−1,1 = −1
2

(
1 0 0
−1 0 0

)
,

M−,1h,0,−1 = −1
2

(
1
2 0 0
− 1

4 0 0

)
.

Now we obtain the final matrix

1
2
.



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 1 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 −2 0 5 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 11

4 3 0 0 0 0 − 1
2 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 − 5
4

11
4 5 0 0 0 1

4 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

2 0 0 0 0 0 − 11
4 3 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
4 0 0 0 0 0 − 5

4 − 11
4 5


.
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Its kernel is spanned by the vectors:

• v1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)∨,
• v2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)∨,
• v3 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)∨,
• v4 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)∨,
• v5 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)∨,
• v6 = (0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)∨,
• v7 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)∨,
• v8 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)∨,
• v9 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)∨,
• v10 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1,− 1

3 ,
3
5 , 0, 0, 0, 0,

1
6 ,−

29
24 , 0, 0, 0,−1,− 5

4 ,−
91
80 )∨,

• v11 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,− 2
3 , 0, 0, 0, 0, 1,−

13
12 ,

43
48 , 0, 0, 0,−1,− 13

12 ,−
43
48 )∨.

The first six vectors are trivial or non-relevant solutions since either their trun-
cature is zero either setting their constant term at the infinity to zero makes them
null, so that we find that H1

MW,c(V, π∗A
†
K) has dimension 5. Since our curve is of

genus 1 and since we took off three points out of it, this agrees with the theoretical
dimension.

5. The action of Frobenius on the basis

We keep in this section the notations already introduced, and suppose further-
more that the roots λ of Q are Teichmüller elements [6]. We explain how to com-
pute a lifting of the Frobenius morphism to Mc and obtain its action on a basis of
H1
MV,c(U, π∗A

†
K). Of course all the computations are made with finite analytic and

p-adic precisions and the key point here is the determination of sufficient precisions
in order to guarantee the correctness of the final result.

5.1. Lifting the Frobenius morphism
Following Kedlaya [17], we define a lift F of the p-th Frobenius on A†K by setting

F (X) = Xp and

F (Y ) = Y p
(

1 +
Qσ(Xp)−Q(X)p

Q(X)p

)1/2

where σ is the canonical Witt vectors Frobenius. The expansion of the square root
can be computed using a Newton iteration (see [17]). We then have the

Proposition 7. For all positive integer n the element F (Y ) mod pn can be written
as Y times a rational fraction in X such that its numerator and denominator are
relatively primes, its denominator is Q(X)d with d 6 pn− p−1

2 and its poles order
at the infinity (2g + 1)[p/2].

Proof. The only non obvious fact from the expression of the Newton iteration is
the bound for d. Since we have

F (Y ) = Y p
(

1 +
Qσ(Xp)−Q(X)p

Q(X)p

)1/2

,
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we can write

F (Y ) = Y.Q(X)
p−1
2

∑
k>0

(
1/2
k

)
pkE(X)k

Q(X)pk
,

where E(X) = 1/p.(Qσ(Xp) − Q(X)p) and E having integral coefficients. In par-
ticular, since the binomial coefficients are p-adic integers we have

F (Y ) =
∑

ai,j
Xi

Q(X)j

with

vp(ai,j) > j/p+
p− 1

2p

and we are done.

Definition 11. We denote by Fn of the σ-linear endomorphism of A†K lifting
the Frobenius endomorphism on Ak up to absolute p-adic precision n by setting
Fn(X) = Xp and Fn(Y ) equal to the truncated development of the rational fraction
obtained with Proposition 7.

5.2. Twisted local equation
In the relative situation that we consider, the Frobenius lifting decomposes as a

Frobenius lift on B†K , which sends t to tp that we denote FB (the ’local’ Frobenius),
and a Frobenius on the B†K-module A†K (making it an F -isocrystal). By abuse of
notation, we also denote by FB the extension by linearity of FB to Mc,λ and A†K .
We first consider the computation of the action of FB .

A direct way to compute the action of FB on a element mc ∈Mc is to make the
evaluation t 7→ tp in all the local developments at λ ∈ Λ, apply σ on the coefficients
and develop the result to recover a series in (t− λ).

The following remark leads to a more efficient method. Let mc ∈Mc representing
an element of a basis of H1

MW,c(U, π∗A
†
K). We recall that, by Proposition 2, a local

component mλ of mc in λ ∈ Λ satisfies a non-homogeneous differential equation

∂

∂t
mλ −M∇,λmλ = u. (15)

From this equation, we deduce the

Proposition 8. For λ ∈ Λ, the image of mλ ∈Mc,λ by the local Frobenius FB(mλ)
satisfies a local differential equation

(tp − σ(λ))
∂

∂t
FB(mλ)− ptp−1FB((t− λ)M∇,λ)FB(mλ)

= ptp−1(tp − σ(λ))FB(u).
(16)

Proposition 8 yields a very efficient algorithm to compute the action of FB(mλ)
given its first terms. Note that here the assumption that λ is a Teichmüller lifting
is crucial.

5.3. Formulas for the theoretical precision
In this paragraph, we explain how to apply the isocrystal Frobenius. Here arises

a technical difficulty. Since this computation consists in replacing Y by F (Y ), where
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F (Y ) is Y times an element of B†K , this operation comes to the computation of
the action of an overconvergent function in B†K (with infinite negative powers) on
an element of Mc (with infinite positive powers). In order to perform this to a
certain precision, we take advantage of the sharp control we have on the size of
the coefficients of both terms. The following theorem gives expressions for sufficient
absolute p-adic precision and analytic precision.

Theorem 2. Let mc ∈ Mc be an element of the vector space H1
MW,c(V, πA

†
K).

Write mc = (mλ1 , . . . ,mλ2g+1 ,∞) with

mλi
=
∑
j=0,1

Y j
∞∑
`=0

bλi

j,`(t− λi)
`,

where bλi

j,` ∈ K and b∞j,0 = 0. Let α and β be integers such that

vp(bλj,`) > −(α logp `+ β)

for all j,` and λ ∈ Λ. Then if we set

n = max(2α logp

(
α

2 ln(p)

)
, 2(α+ β + P2))

and

P1 = pn− p− 1
2

,

the image by Fn of mc truncated at the degree P1 and modulo pP2 is equal to the
image of mc by F modulo pP2 .

Proof. If we write

F (Y ) =
∑
j=0,1

fj(X)Y j ,

the image by F of mc is given by the products

fj(t).σ(bλj,`)(FB(t− λ))i,

that is to say

fj(t).σ(bλj,`)(t
p − σ(λ))i

for all ` and j. Now for n positive, we have Fn(Y ) =
∑
j=0,1 f̃n,j(X)Y j with pn

dividing fj(t)− f̃n,j(t), and f̃n,j(t) has its degree bounded by pn− p−1
2 .

Here we have to use the following easy lemma

Lemma 2. Let λ ∈W (t) be a Teichmüller element. Let

S =
∞∑
`=0

b`(t− λ)`

with b` ∈ K be such that there exist integers α and β with

vp(b`) > −(α logp `+ β)
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for all ` ∈ N. If we write

F (S) =
∞∑
`=0

σ(b`)(tp − σ(λ))` =
∞∑
`=0

a`(t− λ)`

then we have for all ` ∈ N

vp(a`) > −(α logp `+ β).

In order to prove Theorem 2 using the preceding lemma, we have to find n and
P1 such that for all ` > P1 we have vp

(
(fj(t)− f̃n,`(t)).σ(bλj,`)

)
> P2.

We have to solve the inequality

α logp(pn−
p− 1

2
) + β − n 6 −P2. (17)

If we set β′ = α+ β + P2, it is sufficient to solve

n− α logp n− β′ > 0. (18)

Now if we have n/2 > β′ and

n/2− α logp n > 0 (19)

we are done. Equation (19) is true for n > − 2α
ln(p)W(−1,− 2

α ) where W(−1, .) is the
real branch defined on the interval [−1/e, 0] of the classical Lambert function. In
particular, given that

−W(−1,−1/t) < ln(t)

for all t of the interval, the proposition is true. We refer to [7] for a detailed survey
on the Lambert function.

5.4. Recovering the zeta function
From the action of the Frobenius morphism on a basis of H1

MW,c(V, π∗A
†
K), it

is easy to recover the zeta function of the curve Ck thanks to the Lefschetz trace
formula (see [12, Cor.6.4]). In our case this formula reads

Z(Ck, t) =
det(1− tφ1

c)
(1− t)(1− qt)

where φ1
c is the representation of the Frobenius morphism acting on H1

MW,c(C/K).
By the preceding results of this section, we can compute the matrix MF of the

action of the p-power Frobenius on a basis of the space H1
MW,c(V, π∗A

†
K).

We explain how to recover the Zeta function of our initial curve from it. We can
embed the space H1

MW,c(Ck/K) in H1
MW,c(Uk/K) and thanks to the localization

exact sequence in Monsky-Washnitzer cohomology with compact support (deriving
from the one in rigid cohomology, see [34])

0→ H0
MW,c((Ck \ Uk)/K)→ H1

MW,c(Uk/K)→ H1
MW,c(Ck/K)→ 0

give a description of a supplement. Namely

{(1⊗ 1, 0, . . . , 0), . . . , (0, . . . , 1⊗ 1, 0)}
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in ⊕λ∈Λ0(A†K ⊗B†K R̃λ,c) ⊕ (A†K ⊗B†K R∞,c) is a basis of such a supplement (we

identify here H1
MW,c(Uk/K) and H1

MW,c(Vk/K, π∗A
†
K)) that we call W . Let M̃F

denote the matrix of the action of the p-th Frobenius on a basis of a supplement
of W . Let n be the absolute degree of k the base field of Ck. By computing the
product

M̃Σ = M̃F M̃
σ
F . . . M̃

σn

F ,

we recover the matrix of the total Frobenius.

5.5. Description of the algorithm and complexity analysis
The computation of the Frobenius representation on H1

MW,c(V, π∗A
†
K) can be

done in three steps. Here again, we suppose that P1 = O(P2) so that by Theorem
1, the relative and absolute p-adic precisions are the same modulo a log(P2) term
that we neglect.

5.5.1. Step 1: Lift of the Frobenius morphism
Write

F (Y ) = Y Q(X)(p−1)/2

(
1 +

Qσ(Xp)−Q(X)p

Q(X)p

)1/2

,

and for each λ ∈ Λ, compute a local analytic development up to precision P1 of the
square root using a Newton iteration as in [17].

The dominant step of this operation is the Newton iteration with running time
Õ(log(q)P1P2). This Newton iteration has to be repeated O(g) times for the total
cost of Õ(g log(q)P1P2).

5.5.2. Step 2: Computation of the representation of the Frobenius morphism
We denote by m1

c , . . . ,m
4g+1
c ∈ Mc the elements of a basis of the vector space

H1
MW,c(V, π∗A

†
K) computed with analytic precision 1. For j = 1, . . . , 4g+ 1, we can

write mj
c = (mj

λ1
, . . . ,mj

λ2g+1,m
j
∞).

Next, for a fixed λ ∈ Λ, we do the following operations:

1. For j = 1, . . . , 4g + 1, compute the action of the local Frobenius FB(mj
λ)

up to the analytic precision P1 using the local differential equation given by
Proposition 8.

2. In the expression of FB(mj
λ), replace Y by ∇GM,λ(Y ) = Y

∑P1
`=−d0 a`t

` where
Y
∑P1
`=−d0 a`t

` is the local expression in λ of the lift of the relative Frobenius
morphism obtained in Step 1 and develop to obtain m′

j
λ.

For the first operation, we have to compute the constant term FB(uj) of Equation
(16) associated to mj

λ. Keeping the notations of Section 4.1 Step 3, we have

FB
( ∑
λ′∈Λ

φλ(Prλ′(φλ′(fi))).gλ
′

j,i(0)
)

=
∑
λ′∈Λ

φλ(FB(Prλ′(φλ′(fi)))).gλ
′

j,i(0)σ.

For λ′ ∈ Λ, we have to compute the action of FB on principal parts of the form
1/(t−λ′) and develop in λ. This can be done by computing a local development in
λ of tp−λ′ and then use a Newton iteration to inverse the result. These operations
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take Õ(log(q)P1P2) time and has to be repeated O(g) times with O(g log(q)P1P2)
memory consumption.

Using the asymptotically fast algorithm provided by Theorem 2 of [2] and Re-
mark 3 the total amount of time for solving O(g) equations is Õ(g log(q)P1P2).

The second step just consists in O(g) products of series with analytic precision
P1 which takes Õ(g log(q)P1P2) time.

For λ running in Λ, all the preceding operations allows us to recover m′jλ with
analytic precision P1 for j = 1, . . . , 4g + 1 and λ ∈ Λ in Õ(g2 log(q)P1P2) time and
O(g log(q)P1P2) memory consumption.

The next thing to do is for j = 1, . . . , 4g+1 and for λ ∈ Λ0, subtract the principal
part of m′jλ to m′j∞ to recover F∞(mj

∞). In order to compute the contribution of
the principal part of m′jλ in ∞, we have to obtain a local development in ∞ of an
element of Rλ. By considering a Laurent series in λ as an analytic series in λ times
a term of the form 1/(t−λ)mo , we have to compute a local development in∞ of an
analytic series Sλ(t) and on the other side of a term of form 1/(t− λ)mo and then
take the product. The local development in ∞ of Sλ(t) with analytic precision P1

can be done by computing the evaluation Sλ(1+λt) which can be decomposed into
the evaluation of Sλ(1+ t′) using the shift operator for polynomials described in [1]
and the substitution t′ = λt. This can be done in Õ(log(q)P1P2) time. To compute
a development 1/(t− λ)mo in ∞ we have to compute a development of 1/(1 + λt)
and raise the result to the power mo. As mo is in the order of P1 this can be done
in Õ(log(P1) log(q)P1P2).

All these operations have to be repeated O(g2) times for a total cost of

Õ(g2 log(q)P1P2).

The following lemma shows that in order to express F (mc) as a linear combi-
nation of the basis vectors of H1

MW,c(V, π∗A
†
K) it is enough to do it for the local

component at the infinity point.

Lemma 3. Let mc = (mλ1 , . . . ,mλ2g+1 ,m∞) be an element of H1
MW,c(V, π∗A

†
K)

such that for each λ ∈ Λ we have mλ = Y.fλ with fλ a power series in t−λ. Write
f∞ =

∑∞
`=0 b`t

′`. If for ` = 1, . . . , 2g + 1, b` = 0 then mc = 0.

Proof. Let ai be the constant term of fλi . Let t′ = t−1. By Proposition 2, the power
series f∞(t′) satisfies an equation

∂

∂t′
f∞ + t′H(t′)f∞ = u(t′),

where H is a power series and

u(t′) =
1
2

∑
`>0

∑
i=1,...,2g+1

aiλ
`
it
′`+1.

If f∞ =
∑∞
`=0 b`t

` with b` = 0 for ` = 1, . . . , 2g + 1, taking care of the fact that
with our convention b0 = 0, we have∑

i=1,...,2g+1

aiλ
`
i = 0
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for ` = 0, . . . , 2g. Now, since the λi are distinct the matrix

M =


1 λ1 . . . λ2g

1

1 λ2 . . . λ2g
2

. . . . . . . . . . . .

1 λ2g . . . λ2g
2g


∨

is a Vandermonde matrix and for i = 1, . . . , 2g+1, ai = 0. We conclude by applying
Corollary 1.

Using the preceding lemma, the decomposition of F (mc) in terms of the basis
vectors costs Õ(g3 log(q)P2) using the algorithm of Gauss.

In all, the running time of Step 2 is Õ(g2 log(q)P1P2) and the memory consump-
tion is O(g log(q)P1P2 + g2 log(q)P2).

5.5.3. Step 3: Norm computation
Compute

M̃Σ = M̃F M̃
σ
F . . . M̃

σn

F ,

using the divide and conquer approach presented in [17]. This requires

• O(log(n)) multiplications of 2g × 2g matrices each one of can be done in
Õ(g3 log(q)P2) time;

• Õ(g2) application of the Frobenius morphism at the expense of Õ(log(q)P2)
time ([6]).

The overall time and memory consumption are given respectively by Õ(g3 log(q)P2)
and O(g2 log(q)P2).

Proposition 9. Let Ck be an hyperelliptic curve of genus g over the finite field
k with cardinality q. We suppose that the ramification points of Ck are rational.
Let B be a basis of H1

MW,c(Ck/K) with analytic precision P1 and absolute p-adic
precision P2 as given by Proposition 6. Under the hypothesis that P1 = O(P2), there
exists an algorithm to compute the action of the Frobenius morphism on B with the
same precisions as above with time complexity Õ(g2 log(q)P1P2) + Õ(g3 log(q)P2)
and memory complexity O(g log(q)P1P2 + g2 log(q)P2).

6. Overall complexity analysis

In this paragraph, we gather the results of Section 4.2 and Section 5.5 in order
to give time and memory complexity bounds for the computation of the number of
rational points of an hyperelliptic curve defined over a finite field of characteristic
p and cardinality q = pn using our algorithm.

First, we have to assess the analytic precision P1 and absolute p-adic precision
P2 of the computations. By the Riemann hypothesis for curves, we know that it is
enough to compute the coefficients of the matrix M̃F with precision g/2.n+ (2g +
1) logp(2).

Next, by Theorem 2, we can take P1 = O(P2) and we get the

Theorem 3. Let Ck be an hyperelliptic curve of genus g over the finite field k. Let
n be the absolute degree of k. We suppose that the ramification points of Ck are
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rational. There exists an algorithm to compute the characteristic polynomial of the
Frobenius morphism acting on H1

MW,c(Ck/K) with Õ(g4n3) time complexity and
O(g3n3) memory complexity.

The algorithm described in the preceding sections have been implemented in
magma [5]. Our implementation is very experimental and is only aimed at showing
the correctness of our algorithm.

7. Conclusion

In this paper we have described an algorithm to count the number of rational
points of an hyperelliptic curve over a finite field of odd characteristic using Monsky-
Washnitzer cohomology with compact support. The worst case complexity of our
algorithm is quasi-cubic in the absolute degree of the base field. We remark that the
base computation can be easily adapted for more general curves. The reason why we
focus on the case of hyperelliptic curves in this paper is that for more general curves
the assessment of the analytic precision necessary for the computations is more
difficult. Actually, in order to treat more general curves it is necessary to obtain an
explicit logarithmic bound for the elements of a basis of the cohomology. The result
we used in this paper guarantees such a bound provided that the connection matrix
has only simple poles and that the exponents of the local differential equations are
prepared. Following [9, pp. 106] this last condition on the exponents means that
they are non integral or null rationals numbers which differences are zero if they
are integral. In our case, the exponents are 0 and −1/2.
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