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THE PRODUCT OF PRE-RADON MEASURES

SUSUMU OKADA

Let y and V be non-a-finite pre-Radon measures on topological

spaces X and Y respectively. Then there exists a unique

pre-Radon measure X on the product space X x Y which

satisfies \(A x B) = pU)v(B) for all Borel sets A in X

and B in Y such that \i(A) < °° and v(B) < «> .

1. Introduction

Let X be a topological space, 0(X) the family of open subsets of

X , f(X) the family of closed subsets, and B(X) the Borel field, that

is, the 0-algebra generated by 0(X) . A Borel measure y is said to be

a pre-Radon measure if it satisfies the following conditions:

(i) for each x € X , there is an open neighbourhood U of

x such that y( £/)<»;

(ii) for each B € B(X) with \i(B) < « ,

\i(B) = sup{y(F) : B => F € F(J)} ;

(iii) for each B <L B(X) ,

\}(B) = inf{y(y) : B c U € 0(X)} ;

(iv) for each increasing net {U } c O(AT) ,

ufu u j = sup pfy ) ,

a a a a

A Borel measure satisfying (i) is called locally-bounded. If a Borel
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measure satisfies (ii) (respectively (iii)J, then we call it inner

(respectively outer) regular. In particular, an inner and outer regular

Borel measure is said to be regular.

A locally bounded measure y is called a Radon measure if

\i(B) = sup{y(£) : K <= B and K is compact} for every B € B(X) . Note that

every Radon measure is semi-finite. Recall that a measure V on a

measurable space (Y, 8) is called semi-finite if

v U ) = sup{v(B) : A 3 B € 8, v(B) < «>} , A € 8 .

A measure space (X, 8, y) is called locally determined if 11 is

semi-finite and any subset E of X satisfying that E n F € B for all

F € 8 with u(F) < °° belongs to 8 .

Suppose that X is a topological space. A measure space (X, A, y)

is said to be a quasi-Radon measure space if it satisfies the following:

(i) (X, A, y) is complete and locally determined;

(ii) A 3 B(X) ;

(iii) if E € A and \i(E) < °° , then there is a G € 0(Af)

such that y(G) < M and y(£ n G) > 0 ;

(iv) \i(E) = sup{y(F) : E 3 ? € F(*)} for all £ € A ;

(v) for every increasing net {ll } cr

y(u £/J = sup y(i/J .

As for its details, see Fremlin [3, §72]. The relationship between pre-

Radon measures and quasi-Radon measures is given by Amemiya, Okada and

Okazaki [7, pp. 131-132].

From now on, all topological spaces are supposed to be Hausdorff.

In this paper, we study the product of two non-a-finite pre-Radon

measures.

In the O-finite case, the following theorem is proved by Amemiya,

Okada and Okazaki [7, §9].

THEOREM 1.1. Let y and v be o-finite pre-Radon measures on

topological spaces X and Y respectively. Then there exists a unique
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pre-Radon measure X on X * Y such that XiA x B) = y(i4)v(B) for every

A € B(#) and every B € B(y) . Moreover, for a non-negative, extended

real-valued Borel measurable function f on X x Y ,

(i) x i—>• fix, y)dviy) is Bix)-measurable,
>Y

(ii) y i—»• fix, y)d]iix) is BiY)-measurable,
'X

(Hi) f dy(x) f /<x, y)dv(y) = f dviy) f fix, y)dy(x)
>X >Y >Y >X

= f fix, y)dXix, y) .
iX-x-Y

In the case of Radon measures, Bourbaki [2, §2, no. 61 has shown the

following theorem.

THEOREM 1.2. Let y and v be Radon measures on topological

spaces X and Y respectively. Then there is a unique Radon measure X

on X x Y such that XiA x s) = y(/l)v(B) for every A € 8 U ) and

B € BiY) . Furthermore, for a non-negative, lower semi-continuous function

f on X x Y ,

(i) x *-+ \ fix, y)dviy) and y *—»• fix, y)d]iix) are lower
Jy 1 x

semi-continuous on X and Y respectively, 'and

(ii) f dy(x) f fix, y)dviy) = f dv{y) f fix, y)dv(x)
>X >Y >Y >X

fix, y)dXix, y) .= 1.>X*Y

Fremlin 14, Proposition U.2] has shown the following theorem.

THEOREM 1.3. Let (X, A, y) and {Y, B, v) be two quasi-Radon

measure spaces. Then there is a unique quasi-Radon measure X on X x Y

such that X(A x B) = \i{A)v(B) for each A € A and B € 8 .

In §2, we shall show that the statement in Theorem 1.1 does not hold
for non-O-finite pre-Radon measures, in general; but we have a unique pre-
Radon measure X on X x Y which satisfies the condition
X(A x B) = \i(A)\>{B) for a l l A € B{X) and B € B(Y) such that y(/l) < <»
and v(B) < °° .
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2. The product of pre-Radon measures

Let X be a set. A family U of subsets of X is said to be a

paving if it satisfies the following conditions:

(i) 0 € U ;

(ii) U U = X ;

(iii) if U , U2 € U , then y n yg , y u y € U .

We denote by E[U] the ring generated by. ti .

The proof of the following lemma is straightforward.

LEMMA 2.1. Let X be a set and U a paving of subsets of X .

Therij for a subset E of X , E € R[U] if and only if there are

V., W. € U {i = 1, 2, . . . , n) such that

(i) Vi^Wi ii = 1, 2, . . . , n) ,

(ii) (W^VJ n [Wj-Vj) = 0 if i t 3 ,

n

(iii) E = U (W.-V.) .
i = l *• i'

Let (̂T, B, \i) be a measure space. For A € B , we can define a

measure u. on J n 8 as follows:

VA(A n B) = \\(A n B) , B € B ,

where 4 n B = {A n S : B € B} . We call u the restriction of y to

Let (X, A, y) and (Y, B, y) be two totally finite measure spaces.

Then we denote by y ® v the product measure of y and v . This y ® v

is defined on the product O-algebra A ® 8 and satisfies the condition

(y ® v)(/l x B) = \i(A)v(B) for each A € A and each B € B .

The following lemma is a fundamental tool.

LEMMA 2.2 (Amemiya, Okada and Okazaki [J, Theorem 3.1]). Let X

be a topological space and U a paving generated by an open base of X .

Let a non-negative3 real-valued, finitely additive set function m on
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R[U] satisfy the following conditions:

(i) for every net {u } c U increasing to a U € U ,

llm m[u ) = m{U) ;
a

(ii) for each U € U ,

m{U) = sup{m(F) : U => F € R[li] n F(*)> .

Then m can be extended to- a unique pre-Radon measure on X .

THEOREM 2.3. Let y and v be pre-Radon measures on topological
spaces X and Y respectively. Then there is a unique pre-Radon measure
X on X x Y satisfying the condition \{A x B) = ]i(A)v(B) for all
A € BU) and B € B(Y) such that ]i{A) < °° and v(B) < « .

Proof. Let U be the paving generated by the open base
V = {U x V : U € 0 U ) , V € 0U) , p(£/) < <*>, v(7) < «>} . i t follows from
Lemma 2.1 that , for every E € R[U] , there is a U x 7 € V such that
E c U x. V . Hence we can define a set function m on R[U] by

m(E) = (uy® vy)(ff) .

We claim that m{E) is independent of the choice of U x V . In fact,

suppose that E c U' x 7' c U x y for another £/' x y' € 1/ , then it

follows from the definition of product measures that

0-Jy ® v^u'-x-V' = V V ® V V ' Which ^ P 1 1 * 3 that

Given an increasing net {Wa} c U such that U W = W d U , there
a

exists a set U x V € 1/ such that W c U * V . It follows from Theorem

1.1 that m(V) = (yy®vK)(f/) = sup (uy ® v^) (j/J = sup m(l/) .

ci a

n
Given (/ = U (ll. x f.) ( U with U. x K. € 1/ , and e > 0 , there

._ v ^ iJ i i '
u—i.

are F. € F(̂ T) with F. a V. , G. € F(̂ T) with C. c 7. such that

^ ) + l ) and v(K.-Gi) < e /n fy^J+ l ) for a l l

= 1, 2, . . . , n since both y and v are regular. Let
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n
F = U (F. x G.) € T{X x y) ; thenF. G.)

S m U ( y . x v. - F. x G.)

n

Z ( ( "\ ( W

i=l *• x % ^

= 2e .

Then it follows from Lemma 2.2 that there is a unique pre-Radon measure X

on X x y such that X = m on R[U] . For each A € B(Z) with

y(i4) < « , and each S 6 8(y) with v(B) < » , there exists a y x y € 1/

such that y x F =3 4 x 5 . Then A,,vT. is a pre-Radon measure on U * V

by Amemiya, Okada and Okazaki [J, Theorem 5.2]. If we denote by u ® \>v

the pre-Radon extension of p̂ . ® v on y x 7 s then X coincides with

® VV o n RCUyxv-l » w h e r e U
Uxy

 i s t h e paving generated by

Ux x ^ : u± € 0(y), ^ € 0(V)} . By Lemma 2.2, Xy x K = yy ® v^ on

x i' , so that

X U x B) =

The uniqueness of X is obvious. This completes the proof.

REMARK 2.4. In the above theorem, if both u and v are semi-

finite, then X U x B) = yU)v(B) even when A € BU) with p U ) = <*> and

B € 8(y) with v(B) = '<» . In fact, given a natural number N , there are

an 4 0 € B(X) with AQ c A and a BQ € 8(Y) with BQ c B such that

\i[AQ) > N and y(BQ) > N . Then

X U x 5 ) > X[AQ x BQ) = p(40)v(B0) > N
2 ,

which implies X(/l x S) = uU)v(B) = °° .
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The following example shows that we cannot have \(A x B) = \i(A)v(B)

for some A € B(X) with \i(A) = 0 and B € 8(T) with u(B) = «, .

EXAMPLE 2.5. Let X = [0, l] with the usual topology and

Y = [0, l] with the discrete topology. Suppose that C c Y is not

Lebesgue measurable. We define a measure V on Y by

v(B) = the cardinality of B n C

for B c Y . Then V is a Radon measure as well as a semi-finite pre-

Radon measure. Let u be the Lebesgue measure on X . By Theorem 2.3,

there is a unique pre-Radon measure X on X x y satisfying the condition

X(A x B) = uU)v(B) for all A € B(X) and B € B(Y) such that u(4) < «°

and v(B) < °° . Fix an x € X . Then y({x })v(Y) = 0.<=° = 0 . On the

other hand, take any open subset W of X x y which includes the set

{xQ} x y . Let

Yn = {y € I : v[w(y)) > l/n] , n = 1, 2, ... ,

where A/(i/) = {x € X : (x, y) € (/} . Since Y is equal to the union of

\Y :n=l, 2, ...}, there exists a natural number n for which Y n C

is an infinite set. Hence X(W) = <» since W includes the union of the

family {w(y) x {y} ; y t Y n C) . Since A is outer regular, we have

*({*0} x j) = oo ; i n other words, \({xQ} x y) * V[{xQ})v(Y) .

Furthermore, this example shows that the statement in Theorem 1.1

does not always hold for the non-a-finite case. In fact, let f be the

characteristic function of the Borel subset E = {(x, x) : x € [0, l]} of

X x y . Then the function x •—*• f(x, y)dv(y) is not u-measurable.
>Y

REMARK 2.6. In the above example, there is a Radon measure p on

X x Y Such that p(A x B) = uU)v(B) for each A € B(X) and B € B(Y)

by Theorem 1.2. Further, note that [x x yf B(X x y)y p*) is a q u asi-

Radon measure space, where p* is the outer measure derived from p ,

B(X x y) is the completion of B{X x y) with respect to p . For every

compact set K , there exists a finite subset {y-. , J/?, ..., y } of Y

n n
such that K = U Kfaj) x {j^} . so Xtf) = J P ^ ^ j v d y }) . Thus,

i=l i=l
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given a Borel subset S of X x y t we have

p(S) = sup{p(#) : X cz B and tf is compact}

= sup{X(X) : K c B and X is compact} < A(B) .

We claim that p is different from A . Indeed, p(#) = 0 while

\(E) > 0 for the diagonal set E .
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