ON SOME BANACH SPACE SEQUENCES

ROSHDI KHALIL

We introduce the Banach space of vector valued sequences $l^{p,q}(E)$, $1 \leq p, q \leq \infty$, where E is a Banach space. Then we study the relation between $l^{p,q}(E)$ and the Schur multipliers of $l^{p} \otimes E$, where E is taken to be some l^{r} .

0. Introduction

Let *E* be a Banach space. Cohen [3], used the spaces $l^p(E)$, $l^p\{E\}$ together with the space he introduced $l^{p}(E)$, to study *p*-summing operators, and their dual ideal (see [11]). Apiola [1], studied the duality relationships between the spaces $l^p(E)$, $l^p\{E\}$ and $l^{p}(E)$.

In this paper we introduce the space $l^{p,q}(E)$, and find its dual. Further, we investigate the relationship between such spaces and the Schur multipliers [2], on discrete spaces.

Throughout the paper, if E and F are Banach spaces, then $E \otimes F$ and $E \otimes F$ will denote the completion of the projective tensor product of E with F, and the injective tensor product, respectively [4]. Let $\phi \in E \otimes F$; then $\|\phi\|_{\pi}$ designates the projective norm and $\|\phi\|_{\varepsilon}$ that of the injective norm. The dual of E will be denoted by E^* for any Banach space E. The set of natural numbers is denoted by N, and the complex numbers by \mathbb{C} . Let l^p be the space of p-summable sequences, $1 \leq p \leq \infty$.

Received 7 October 1981.

231

1. The space $l^{p,q}(E)$ and its dual

Let *E* be a Banach space. Then $l^p(E)$ will denote the space of all functions $f: N \neq E$, such that $\sum_{n=1}^{\infty} |\langle f(n), x^* \rangle|^p < \infty$, $x^* \in E^*$. The

space $l^{\mathcal{P}}(E)$ becomes a Banach space when one introduces the norm

$$\|f\|_{\varepsilon(p)} = \sup_{x^*} \left\{ \left(\sum |\langle f(i), x^* \rangle|^p \right)^{1/p}, \|x^*\| \leq 1, x^* \in E^* \right\},$$

for all $f \in l^p(E)$, [3]. Grothendieck, [5], showed that $l^p(E)$ is isometrically isomorphic to $(l^{p'} \otimes F)^*$, where $F^* = E$, and 1/p + 1/p' = 1.

Cohen, [3], introduced the space $l^{p}(E)$ to be the space of all functions $f: N \to E$ such that $\sum_{i=1}^{\infty} |\langle f(i), g(i) \rangle| < \infty$, for all $g \in l^{p'}(E^*)$. The norm of f is given by

$$\|f\|_{\sigma(1,p)} = \sup_{g} \left\{ \sum_{i=1}^{\infty} |\langle f(i), g(i) \rangle|, g \in l^{p'}(E^*) \text{ and } \|g\|_{\varepsilon(p')} \leq 1 \right\}.$$

The space $l^p(E)$ was shown to induce the injective norm on $l^p \otimes E$, [3], and Cohen showed that $l^{p}(E)$ induces the projective norm on $l^p \otimes E$. Further, Apiola, [1], showed that $(l^p(E))^* \equiv l^{p'}(E^*)$ and $(l^p(E))^* \equiv l^{p'}(E^*)$.

Now we introduce the space $l^{p,q}(E)$ to be the space of all functions $f: N \neq E$ such that $\sum_{i=1}^{\infty} |\langle f(i), g(i) \rangle|^p < \infty$ for all $g \in l^{q'}(E^*)$. If $f \in l^{p,q}(E)$, then we define

$$\|f\|_{\sigma(p,q)} = \sup_{g} \left(\sum_{i=1}^{\sum} |\langle f(i), g(i) \rangle|^{p} \right)^{1/p},$$

where $g \in l^{q'}(E^*)$ and $\|g\|_{\varepsilon(q')} \leq 1$.

LEMMA 1.1. The function $\| \|_{\sigma(p,q)}$ is a norm on $l^{p,q}(E)$. Proof. It is enough to show that $\| f \|_{\sigma(p,q)} < \infty$ for all

 $f \in l^{p,q}(E)$. The rest of the properties of the norm are easy to verify.

Let $f \in l^{p,q}(E)$. Define the bilinear form

$$\hat{f} : l^{p'} \times l^{q'}(E^*) - \mathbb{C} ,$$

$$f(a, g) = \sum_{i=1}^{\infty} a(i) \langle f(i), g(i) \rangle$$

It is not hard to check that \hat{f} is separately continuous on $l^{p'} \times l^{q'}(E^*)$. Hence, [2, p. 172], \hat{f} is jointly continuous, and consequently $\|f\|_{\sigma(p,q)} < \infty$ for all $f \in l^{p,q}(E)$.

THEOREM 1.2. The space $l^{p,q}(E)$ with the $\sigma(p,q)$ norm is a Banach space.

Proof. Let $f_n \in l^{p,q}(E)$ such that $\sum_{n=1}^{\infty} \|f_n\|_{\sigma(p,q)} < \infty$. It is enough to show that $\left\|\sum_{n=1}^{\infty} f_n\right\| < \infty$, [12]. We first prove this for the case p = 1. Since E is a Banach space, then every absolutely summable sequence in E is summable. It follows that for each natural number i, the serries $\sum_{n=1}^{\infty} f_n(i)$ is convergent in E. Define $F: N \neq E$ by $F(i) = \sum_{n=1}^{\infty} f_n(i)$. Let $g \in l^{q'}(E^*)$ and $\|g\|_{E(q')} \leq 1$. We have to prove that $\sum_{n=1}^{\infty} |(F(i), g(i))| < \infty$. Now

$$\begin{split} \sum_{i=1}^{\infty} & |\langle F(i), g(i) \rangle| \\ &= \sum_{i=1}^{\infty} \left| \left\langle \sum_{n=1}^{\infty} f_n(i), g(i) \right\rangle \right| \\ &= \sum_{i=1}^{\infty} \left| \left| \sum_{n=1}^{\infty} \langle f_n(i), g(i) \rangle \right| \quad \left(\text{since } \sum_{n=1}^{\infty} \|f_n(i)\| < \infty \right) \right| \\ &\leq \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} |\langle f_n(i), g(i) \rangle| \quad \left(\text{since } \left| \sum_{n=1}^{\infty} \langle f_n(i), g(i) \rangle \right| < \infty \right). \end{split}$$

If ν is the counting measure on the set of natural numbers N , then

$$\sum_{i=1}^{\infty} \sum_{n=1}^{\infty} |\langle f_n(i), g(i) \rangle|$$

can be considered as

$$\int_{N} \sum_{n=1} |\langle f_n(i), g(i) \rangle| dv(i) .$$

As a consequence of the monotone convergence theorem we get

$$\int_{N} \sum_{n=1}^{\infty} |\langle f_{n}(i), g(i) \rangle| dv(i) = \sum_{n=1}^{\infty} \int_{N} |\langle f_{n}(i), g(i) \rangle| dv(i) .$$

It follows that

$$\begin{split} \sum_{i=1}^{\infty} & |\langle F(i), g(i) \rangle| \\ & \leq \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} |\langle f_n(i), g(i) \rangle| < \infty \quad \left(\text{since } \sum_{n=1}^{\infty} \|f_n\|_{\sigma(1,q)} < \infty \right). \end{split}$$

Hence $\sum_{i=1}^{\infty} |\langle F(i), g(i) \rangle| < \infty$ for all $g \in l^{q'}(E^*)$ with $||g||_{\varepsilon(q')} < \infty$.

Consequently $F \in l^{1,q}(E)$, and so $\sum_{n=1}^{\infty} f_n \in l^{1,q}(E)$.

For general p, the result follows from the fact that

$$\|f\|_{\sigma(p,q)} = \sup_{\theta,g} \left| \sum_{i=1}^{\infty} \theta(i) \langle f(i), g(i) \rangle \right|,$$

234

where $\theta \in l^{p'}$, $g \in l^{q'}(E^*)$ and $\|\theta\|_{p'} \leq l$, $\|g\|_{\epsilon(q')} \leq l$. Hence the proof of the theorem is complete.

Let $l^r \cdot l^s(E^*)$ be the set of all elements of the form $a \cdot f$ such that $a \in l^r$, $f \in l^s(E^*)$ and $(a \cdot f)(i) = a(i) \cdot f(i)$.

THEOREM 1.3. A linear functional F on $l^{p,q}(E)$ is bounded if and only if F is of the form $a \cdot f$, for some $a \in l^{p'}$ and $f \in l^{q'}(E^*)$.

REMARK. The space $l^{1}, q(E)$ is just $l^{q}(E)$ in Cohen [3]. Apiola, [1], proved that $(l^{1}, q(E))^{*}$ is isometrically isomorphic to $l^{q'}(E^{*})$ which is in turn isomorphic to $l^{\infty} \cdot l^{q'}(E^{*})$.

Proof of Theorem 1.3. Let $a \in l^{p'}$ and $f \in l^{q'}(E^*)$. Consider the linear functional $F : l^{p,q}(E) \to \mathbb{C}$ defined by

$$F(g) = \sum_{i=1}^{\infty} a(i) \langle f(i), g(i) \rangle .$$

Then

$$|F(g)| \leq ||a||_p, \cdot ||f||_{\varepsilon(q')} \cdot ||g||_{\sigma(p,q)} .$$

Hence F is bounded and $||F|| \leq ||a||_{p'} \cdot ||f||_{\epsilon(q')}$.

Conversely, let $F \in (l^{p,q}(E))^*$. Hence $|F(f)| \leq \lambda \cdot ||f||_{\sigma(p,q)}$ for some constant λ . Let e_i be the natural embedding of E in $l^{p,q}(E)$, so

$$e_{i}(x)(j) = \begin{cases} x , i = j , \\ 0 , i \neq j \end{cases}$$

Put $x_i^{\star} = F \circ e_i$. Clearly $x_i^{\star} \in E^{\star}$, and if $f \in l^{p,q}(E)$, then

$$F(f) = \sum_{i=1}^{\infty} \langle f(i), x_i^* \rangle$$

Assume F to be of norm one; then there is an $a \in l^{p'}$ such that

$$\|a\|_{p}, \leq 1 \quad \text{and} \quad |F(f)| \leq \sup_{g} \sum_{i=1}^{\infty} |a(i)\langle f(i), g(i)\rangle|, \quad \|g\|_{\varepsilon(q)} \leq 1. \text{ Thus}$$

$$\left|\sum_{i=1}^{\infty} \langle f(i), x_i^* \rangle\right| \leq \sup_{g} \sum_{i=1}^{\infty} |ai\langle f(i), g(i) \rangle|, ||g||_{\epsilon(q')} \leq 1$$

Now let D be the unit disc and πD be the countable product of D with itself. Since D is compact, then πD is compact. Let B_1 be the unit ball of $\mathcal{l}^{q'}(E^*)$. As a dual of $\mathcal{l}^{1,q}(E^*)$, [1], B_1 is compact with respect to the w^* -topology, and so is the product space $\pi D \times B_1$. Let $C(\pi D \times B_1)$ be the space of continuous functions on $\pi D \times B_1$. Consider the map

$$\psi : \mathcal{L}^{p,q}(E) \to C(\mathfrak{m} D \times B_1)$$

 $\Psi(f) = G$, where

236

$$G(\theta, u) = \sum_{i=1}^{\infty} a(i)\theta(i) f(i), u(i)$$

for all $f \in l^{p,q}(E)$ and $\theta \in \pi D$, and $u \in B_1$. It follows that

$$\|G\|_{\infty} = \sup_{\theta, u} |G(\theta, u)| = \sup_{\theta, u} \left| \sum_{i=1}^{\infty} a(i)\theta(i)\langle f(i), u(i) \rangle \right|$$
$$= \sup_{u} \sum_{i=1}^{\infty} |a(i)\langle f(i), u(i) \rangle| .$$

Hence $|F(f)| \leq ||\psi(f)||$. This implies that ker $\psi \subseteq \ker F$.

This implies that there exists an $\tilde{F} : C(\pi D \times B_1) \to \mathbb{C}$ such that $\tilde{F} \circ \psi = F$. The Riesz representation theorem implies that there exists a regular Borel measure μ on $\pi D \times B_1$ such that

$$F(f) = \mu(\psi(f)) = \iint_{\pi D \times B_{1}} \sum_{i=1}^{\infty} a(i)\theta(i) \langle f(i), u(i) \rangle d\mu(\theta, u)$$

Let f_n denote the function $f_n : N \rightarrow E$,

$$f_{n}(i) = \begin{cases} f(i) , & i = n , \\ 0 & , & i \neq n . \end{cases}$$

Then

$$F(f_1) = \alpha(1) \iint_{\pi D \times B_1} \theta(1) \langle f(1), u(1) \rangle d\nu(\theta, u) .$$

But $F(f_1) = \langle f(1), x_1^* \rangle$. It follows that

$$x_{1}^{*} = a(1) \cdot \iint_{\pi D \times B_{1}} \theta(1) \cdot u(1) d \vee (\theta, u) ,$$

where the integral here is the Pettis integral, [4]. Set

$$Z_{1}^{\star} = \iint_{\pi D \times B_{1}} \theta(1)u(1)dv(\theta, u) .$$

Hence $x_1^* = a(1) \cdot Z_1^*$. Similarly $x_i^* = a(i) \cdot Z_i^*$, i = 2, 3, ... It remains to show that the function $g : N \to E^*$, defined by $g(i) = Z_i^*$, is an element of $l^{q'}(E^*)$. To see that, consider

$$\begin{aligned} |\langle g(i), x \rangle| &\leq \iint_{\pi D \times B_{1}} |\theta(i) \langle u(i), x \rangle | d\mu(\theta, u) \quad (x \in E, ||X|| \leq 1) \\ &\leq \iint_{\pi D \times B_{1}} |\langle u(i), x \rangle | d\mu(\theta, u) \\ &\leq \left(\iint_{\pi D \times B_{1}} |\langle u(i), x \rangle |^{q'} d\mu(\theta, u) \right)^{1/q'}. \end{aligned}$$

Hence

$$\sum_{i=1}^{\infty} |\langle g(i), x \rangle|^{q'} \leq \sum_{i=1}^{\infty} \iint_{\pi D \times B_{1}} |\langle u(i), x \rangle|^{q'} d\mu(\theta, u) .$$

The monotone convergence theorem implies that

$$\sum_{i=1}^{\infty} |\langle g(i), x \rangle|^{q'} \leq \iint_{\substack{\pi D \times B_1 \\ i \in I}} \sum_{i=1}^{\infty} |\langle u(i), x \rangle|^{q'} d\mu(\theta, u)$$
$$\leq \sup_{u \in B_1} \sum_{i=1}^{\infty} |\langle u(i), x \rangle|^{q'} \cdot |\mu| ,$$

where $|\mu|$ is the total variation of μ . Thus $g \in l^{q'}(E^*)$. So $F = a \cdot g$, $a \in l^{p'}$, $g \in l^{q'}(E^*)$. This completes the proof of the theorem.

2. Schur multipliers

Let $p, q \ge 1$. A bounded function ϕ on $N \times N$ is called a Schur multiplier of $l^p \otimes l^q$ if $\phi \cdot \psi \in l^p \otimes l^q$ for all $\psi \in l^p \otimes l^q$, where $\phi \cdot \psi$ denotes pointwise multiplication.

If X and Y are Banach spaces, then a bounded linear map $A : X \rightarrow Y$ is called *p*-summing operator if

$$\sum_{i=1}^{n} \|Ax_{i}\|^{p} \leq \zeta \cdot \sup_{x^{*}} \sum_{i=1}^{n} |\langle x_{i}, x^{*}\rangle|^{p},$$

for all x_1, \ldots, x_n in X and some constant ζ independent of n. The supremum is taken over all elements x^* in the unit ball of X^* , [10]. Bennett [2] proved that a bounded function ϕ is a multiplier of $l^p \otimes l^q$ if and only if $\phi \cdot u \otimes v : l^{p^*} \to l^{\infty}$ is q^* summing operator for all $u \otimes v \in l^{\infty} \otimes l^p$. For more about multipliers we refer to [2], [6], [7] and [3].

LEMMA 2.1. Let $A : l^p \to l^{\infty}$ be a bounded operator. If A is q-summing, then $A \in l^{q,q'}(l^{p'})$.

Proof. Let $f: N \to l^{p'}$ be the function defined by $f(i) = A_i$, where $A_i(j) = A(i, j)$ (considering A as an infinite matrix). If $g \in l^q(l^p)$, then

$$\begin{split} \sum_{i=1}^{\infty} |\langle f(i), g(i) \rangle|^{q} &= \sum_{i=1}^{\infty} |\langle A_{i}, g(i) \rangle|^{q} \\ &= \sum_{i=1}^{\infty} \left| \sum_{j=1}^{\infty} A(i, j)g(i)(j) \right|^{q} \\ &\leq \sum_{i=1}^{\infty} \sup_{k} \left| \sum_{j=1}^{\infty} A(k, j)g(i)(j) \right|^{q} \\ &= \sum_{i=1}^{\infty} |\langle A(g(i)) ||^{q} \\ &\leq \zeta \sup_{h} \sum_{i=1}^{\infty} |\langle g(i), h \rangle|^{q} \quad (\text{by assumption}), \end{split}$$

where h is the unit ball of $l^{p'}$. Hence $f \in l^{q,q'} \langle l^{p'} \rangle$. Let $M(l^p \otimes l^q)$ denote the space of all multipliers of $l^p \otimes l^q$. Then:

THEOREM 2.2. Let ϕ be a bounded function on $N \times N$. Then $\phi \in M(l^p \otimes l^q)$ if and only if $\phi \cdot 1 \otimes u \in l^{q',q}(l^p)$, for all $u \in l^p$.

Proof. Let $\phi \in M(l^p \otimes l^q)$. Then by Bennett's result [2], $\phi \cdot l \otimes u : l^{p'} \neq l^{\infty}$ is q'-summing for all $u \in l^p$. Lemma 2.1 then implies that $\phi \cdot l \otimes u \in l^{q'}, q(l^p)$.

Conversely, let $\phi \cdot l \otimes u \in l^{q',q}(l^p)$ for all $u \in l^p$. It is enough to show that $\phi \in M(l^q \otimes l^p)$. So let $u \otimes v \in l^q \otimes l^p$, and $\psi \in l^{q'} \otimes l^{p'}$. Then

$$\begin{aligned} |\langle \phi \cdot u \otimes v, \psi \rangle| &= \left| \sum_{i,j=1}^{\infty} \phi(i, j) u(i) v(j) \psi(i, j) \right| \\ &= \left| \sum_{i=1}^{\infty} u(i) \langle \phi_i \cdot v, \psi_i \rangle \right| , \end{aligned}$$

where $\phi_i(j) = \phi(i, j)$ and $\psi_i(j) = \psi(i, j)$. Since $\psi \in l^{q'} \otimes l^{p'}$ it follows that $g : 2^+ \to l^{p'}$ defined by $g(i) = \psi_i$ is an element of $l^{q'}(l^{p'})$, [3]. Hence

$$\begin{aligned} |\langle \phi \cdot u \otimes v, \psi \rangle| &\leq \|u\|_{q} \left(\sum_{i=1}^{\infty} |\langle \phi_{i} \cdot v, \psi_{i} \rangle|^{q'} \right)^{1/q'} \\ &\leq \|u\|_{q} \cdot \|\phi \cdot 1 \otimes v\|_{\sigma(q',q)} \cdot \|\psi\|_{\varepsilon(q')} \end{aligned}$$

This completes the proof of the theorem.

LEMMA 2.3. If $A : l^{p'} \to l^{\infty}$ is q'-summing, then $A \in M(l^{p} \otimes l^{q})$. Proof. It is enough to show that $A \mid \otimes v : l^{p'} \to l^{\infty}$ is q'-summing operator for all $v \in l^{p}$, [2]. But

$$\sum_{i=1}^{\infty} \|(A \cdot 1 \otimes v)f_{i}\|_{\infty}^{q'} = \sum_{i=1}^{\infty} \|A(v \cdot f_{i})\|_{\infty}^{q'}$$

$$\leq \zeta \sup_{h} \sum_{i=1}^{\infty} |\langle v \cdot f_{i}, h\rangle|^{q}$$

$$\leq \zeta \sup_{h} \sum_{i=1}^{\infty} |\langle f_{i}, v \cdot h\rangle|^{q}$$

$$\leq \zeta \sup_{k} \sum_{i=1}^{\infty} |\langle f_{i}, k\rangle|^{q'}$$

,

where h and k are in the unit ball of l^p , and the lemma follows.

It follows from Lemmas 2.3 and 2.1 that the set of all q'-summing maps from $l^{p'}$ into l^{∞} is contained in $M(l^p \otimes l^q) \cap l^{q',q}(l^p)$, where \cap denotes the intersection of the two sets.

References

- [1] Heikki Apiola, "Duality between spaces of p-summable sequences, (p, q)-summing operators and characterizations of nuclearity", Math. Ann. 219 (1976), 53-64.
- [2] G. Bennett, "Schur multipliers", Duke Math. J. 44 (1977), 603-139.
- [3] Joel S. Cohen, "Absolutely P-summing, P-nuclear operators and their conjugates", Math. Ann. 201 (1973), 177-200.

- [4] J. Diestel and J.J. Uhl, Jr., Vector measures (Mathematical Surveys, 15. American Mathematical Society, Providence, Rhode Island, 1977).
- [5] A. Grothendieck, "Sur certaines classes de suites dans les espaces de Banach et le théorèm de Dvoretzky-Rogers", Bol. Soc. Mat. São Paulo 8 (1953), 81-110 (1956).
- [6] Roshdi Khalil, "Trace-class norm multipliers", Proc. Amer. Math. Soc. 79 (1980), 379-387.
- [7] Roshdi Khalil, "On the algebra of multipliers", Canad. J. Math. (to appear).
- [8] Roshdi Khalil, "Pointwise multipliers", J. Univ. Kuwait Sci. (to appear).
- [9] Gottfried Köthe, Topological vector spaces. I (translated by D.J.H.
 Garling. Die Grundlehren der mathematischen Wissenschaften,
 159. Springer-Verlag, Berlin, Heidelberg, New York, 1969).
- [10] J. Lindenstrauss and A. Pe/czynski, "Absolutely summing operators in L_p-spaces and their applications", Studia Math. 29 (1968), 275-326.
- [11] Albrecht Pietsch, Theorie der Operatorenideale (Zusammenfassung)
 (Wissenschaftliche Beiträge der Friedrich-Schiller-Universität Jena. Friedrich-Schiller-Universität, Jena, 1972).
- [12] H.L. Royden, Real analysis (Macmillan, New York; Collier-Macmillan, London; 1963).

Department of Mathematics, University of Kuwait, PO Box 5969, Kuwait.