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Diophantine approximation for conformal measures

of one-dimensional iterated function systems

Mariusz Urbański

Abstract

Recall that a Borel measure µ on R is said to be extremal if µ-almost every number in R

is not very well approximable. In this paper, we investigate extremality (implied by the
exponentially fast decay (efd) property) of conformal measures induced by regular infinite
conformal iterated function systems. We then give particular attention to the class of
such systems generated by the continued fractions algorithm with restricted entries. It is
proved that if the index set of entries has bounded gaps, then the corresponding conformal
measure satisfies the efd property and is extremal. Also a class of examples of index sets
with unbounded gaps is provided for which the corresponding conformal measure also
satisfies the efd property and is extremal.

1. Introduction

A point x ∈ R is said to be very well approximable if there exist δ > 0 and infinitely many integers
p, q ∈ Z, q � 1, such that

|qx − p| � q−(1+δ).

It is a classical result that the set of all very well approximable numbers has the Lebesgue measure
zero but the Hausdorff dimension equal to one. Thus the natural question arises about other mea-
sures. To be more precise, a Borel measure µ on R is said to be extremal if µ-almost every number
in R is not very well approximable. Barak Weiss in [Wei01] provided a nice sufficient condition for
a Borel probability measure on R to be extremal. We will use this result heavily. We would like
to add that Weiss’s result has its multidimensional counterparts (see [KM98], [KLW04], [PV] and
[Urb] for more examples).

In this paper, we investigate extremality (implied by the exponentially fast decay (efd) property)
of conformal measures induced by regular infinite conformal iterated function systems. We recall that
the iteration of infinitely many conformal maps naturally arises in several contexts. For example,
one is naturally led to consider infinite systems when one is dealing with parabolic systems, i.e. finite
systems of conformal maps which have some cusps (see [MU03a] and the references therein). Another
natural class of examples, investigated in detail in our article, arises from continued fractions with
restricted entries.

In the present paper our ultimate goal is to explore extremality of conformal measures naturally
associated to regular continued fraction iterated function systems with restricted entries. Our start-
ing point is the above-mentioned result of Barak Weiss (see Theorem 3.2; cf. [Wei01]) saying that
the efd property introduced in [Vee99] by Veech, is sufficient for extremality in the one-dimensional
case (the support of the reference measure is contained in R). In our paper, the extremality of
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conformal measures we are dealing with is always proven via the efd property. In a forthcoming
paper, Kleinbock and Weiss derive some additional diophantine consequences of the efd property.

Our paper is organized as follows. In § 2 (Preliminaries) we collect some basic properties of
conformal infinite iterated function systems. In § 3 (General sufficient conditions) we establish
the efd property of several classes of measures and, as the main result of the section, we prove
Theorem 3.7, a sufficient condition for the efd property to hold, which is heavily used in further
sections. In § 4 we consider the maps φn : [0, 1] → [0, 1], for n ∈ N, given by the formula

φn(x) =
1

x + n
,

and an arbitrary subset I of positive integers N. We investigate the corresponding iterated function
system SI = {φi}i∈I , which is called a continued fraction iterated function system. Its limit set JI

consists of all those x ∈ (0, 1) for which each partial denominator xi, i � 1, in the continued fraction
expansion

x =
1

x1 +
1

x2 +
1

x3 +
1
.. .

is in I. In Theorem 5.1 an effective sufficient condition for the conformal measure of the system SI

to satisfy the efd property (and, as a consequence, to be extremal) is provided. This condition is
expressed in terms of the arithmetic properties of the infinite set I of positive integers. This continues
our theme from [MU99], [Urb01a], [MU03b] that many geometric measure theoretic properties of
these systems are reflected in the arithmetic properties of the index set I. The last section, § 5,
is occupied by the proof of the following two facts: first, that each index set I with bounded gaps
gives rise to the conformal measure (which, up to a multiplicative constant, is equal to the packing
measure on JI) which satisfies the efd property and, in consequence, is extremal; secondly, that
there exist infinite regular systems with unbounded gaps whose conformal measures satisfy the efd
property and are extremal.

2. Preliminaries
First, let us describe the setting of conformal (infinite) iterated function systems introduced in
[MU96]. Let I be a countable index set or alphabet with at least two elements and let S = {φi :
X → X}i∈I be a collection of injective contractions from a compact metric space X into X for
which there exists 0 < s < 1 such that ρ(φi(x), φi(y)) � sρ(x, y), for every i ∈ I and for every
pair of points x, y ∈ X. Thus, the system S is uniformly contractive. Any such collection S of
contractions is called an iterated function system. We define the limit set J of this system as the
image of the coding space under a coding map as follows. Let In denote the space of words of
length n, I∞ the space of infinite sequences of symbols in I, I∗ =

⋃
n�1 In and, for ω ∈ In, n � 1,

let φω = φω1 ◦φω2 ◦· · · ◦φωn . If ω ∈ I∗∪I∞ and n � 1 does not exceed the length of ω, we denote by
ω|n the word ω1ω2 . . . ωn. Since, given ω ∈ I∞, the diameters of the compact sets φω|n(X), n � 1,
converge to zero and since they form a descending family, the set

∞⋂
n=0

φω|n(X)

is a singleton and therefore, denoting its only element by π(ω), it defines the coding map π : I∞ → X.
The main object of our interest will be the limit set

J = JS = π(I∞) =
⋃

ω∈I∞

∞⋂
n=1

φω|n(X).
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An iterated function system S = {φi : X → X}i∈I is said to satisfy the Open Set Condition (OSC)
if there exists a nonempty open set U ⊂ X (in the topology of X) such that φi(U) ⊂ U for every
i ∈ I and φi(U) ∩ φj(U) = ∅ for every pair i, j ∈ I, i �= j. (We do not exclude the possibility that
φi(U) ∩ φj(U) �= ∅.) A system satisfying the OSC is said to satisfy the Strong Open Set Condition
(SOSC) if JS ∩ U �= ∅ and it is said to satisfy the Super-Strong Open Set Condition (SSOSC) if
JS ⊂ U .

An iterated function system S satisfying the OSC is said to be conformal if X ⊂ R
d for some

d � 1 and the following conditions are satisfied.

(1a) U = IntRd(X).

(1b) There exists an open connected set V such that X ⊂ V ⊂ R
d and such that all maps φi,

i ∈ I, extend to C1 conformal diffeomorphisms of V into V . (Note that for d = 1 this just
means that all the maps φi, i ∈ I, are C1 monotone diffeomorphisms, for d = 2 the words C1

conformal mean holomorphic or antiholomorphic, and for d > 2 the maps φi, i ∈ I, are Möbius
transformations. The proof of the last statement can be found, for example, in [BP92], where
it is called Liouville’s theorem.)

(1c) There exist γ, l > 0 such that for every x ∈ X ⊂ R
d there exists an open cone Con(x, γ, l) ⊂

Int(X) with vertex x, central angle of Lebesgue measure γ, and altitude l.

Notice that if either d � 2 (see [MU03a]; cf. [Urb01b]) or if the system S is finite with φi ∈ C1+ε

for all i ∈ I, then the following two conditions are satisfied, the second being a strengthening of the
first.

(1d) Bounded Distortion Property (BDP). There exists K � 1 such that

|φ′
ω(y)| � K|φ′

ω(x)|
for every ω ∈ I∗ and every pair of points x, y ∈ V , where |φ′

ω(x)| means the norm of the
derivative.

(1e) There exists a function K : [0,∞) → R such that limr↘0 K(r) = 1 and

|φ′
ω(y)| � K(‖x − y‖)|φ′

ω(x)|
for every ω ∈ I∗ and every pair of points x, y ∈ V .

In the case when d = 1 and I is infinite, the conditions (1d) and (1e) form extra assumptions
that are attached to the definition of a conformal iterated function system.

In the following we will use the terminology and results taken from § 1 (Preliminaries) of
[MU03b]. Here we provide only the definition of a conformal measure, the main object dealt with
in this paper. If S is a conformal iterated function system, a Borel probability measure m is said to
be t-conformal provided m(JS) = 1 and, for every Borel set A ⊂ X and every i ∈ I,

m(φi(A)) =
∫

A
|φ′

i|t dm

and

m(φi(X) ∩ φj(X)) = 0,

for every pair i, j ∈ I, i �= j.

If a t-conformal measure exists, then t = HD(J), the Hausdorff dimension of the limit set J ,
denoted in the following by h. If a conformal measure exists, it is unique.
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3. General sufficient conditions

We start with the following simple but useful result.

Proposition 3.1. Let (X, ρ) be a metric space and let µ be a Borel probability measure on X.
Then the following two conditions are equivalent.

(a) ∃(α ∈ (0, 1)) ∃(β > 1) ∃(ξ > 0) ∀(x ∈ X) ∀(r � ξ)
µ(B(x, r)) � αµ(B(x, βr)).

(b) There exists a Borel set Y ⊂ X with µ(Y ) = 1 such that condition (a) is satisfied with X
replaced by Y .

Proof. The implication (a) ⇒ (b) is obvious. In order to prove the opposite implication fix x ∈ X
and r � ξ/2. If B(x, r)∩Y = ∅, then µ(B(x, r)) = 0, and we are done. Otherwise, fix y ∈ B(x, r)∩Y .
Then

µ(B(x, r)) � µ(B(y, 2r)) � αµ(B(y, β2r)) � αµ(B(x, 2βr + r)) = αµ(B(x, (2β + 1)r)),

and we are done.

Any Borel probability measure satisfying condition (a) or, equivalently, condition (b) of
Proposition 3.1, is said to satisfy the efd property. The significance of this property, although
interesting itself, results from the following fact, essentially proven in [Wei01] and crucial for our
approach.

Theorem 3.2 (Weiss). Every Borel probability measure on R satisfying the efd property is extremal.

A Borel probability measure µ is said to be geometric if there exist ξ > 0, C > 0, and h > 0
such that

C−1rh � µ(B(x, r)) � Crh

for all x ∈ supp(µ) and all r � ξ. Our next simple result is the following.

Proposition 3.3. Every geometric measure satisfies the efd property.

Proof. Fix β > 1 to be specified later and consider an arbitrary point x ∈ supp(µ) and r � ξ/β.
Then

µ(B(x, r)) � Crh = C2β−h(C−1(βr)h) � C2β−hµ(B(x, βr)),

and it suffices to take β > 1 so large that C2β−h < 1. We are therefore done since the condition (b)
of Proposition 3.1 is satisfied with Y = supp(µ).

As an immediate consequence of this proposition, Lemma 3.14 from [MU96] and Theorem 3.2,
we get the following theorem.

Theorem 3.4. If S = {φi : X → X}i∈I is a finite conformal iterated function system and h :=
HD(JS), then all the Hausdorff Hs|JS

and packing Ps|JS
measures and the h-conformal measure m

on JS satisfy the efd property. If, in addition, X ⊂ R, then all these measures are extremal.

As an immediate consequence of Proposition 3.3 and a well-known theorem from [PU], we get
the following theorem.

Theorem 3.5. If f : X → X is a mixing expanding repeller and h := HD(X), then the
h-dimensional Hausdorff measure on X and the h-dimensional packing measure on X satisfy the efd
property. If, in addition, X ⊂ R, then all these measures are extremal.

872

https://doi.org/10.1112/S0010437X05001338 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001338


Diophantine approximation for conformal measures

We shall now prove, in the context of iterated function systems, a sufficient condition for a
conformal measure to satisfy the efd property. This condition will be the starting point of all of
our more specific results establishing the efd property of conformal measures for some conformal
iterated function systems.

Theorem 3.6. Suppose that the system S = {φi}i∈I is regular, and denote by m the correspond-
ing h-conformal measure. Suppose also that there exists an integer q � 0 and κ ∈ (0,min{1,
dist(X,∂V )}) such that the following three conditions are satisfied.

(a) There exist three real constants γ � 1, β > 1, α ∈ (0, 1), and a finite set F ⊂ I such that, for
all i ∈ I \ F , all x ∈ φi(J), and all r ∈ [γ‖φ′

i‖, κ],

m(B(x, r)) � αµ(B(x, βr)).

(b) For all ω ∈ I∗ with |ω| � q, all x ∈ J , and all r ∈ (0, κ),

m(φω(B(x, r))) � α−1/3|φ′
ω(x)|hm(B(x, r)).

(c) For all ω ∈ Iq and all x ∈ J ,

φω(B(x, κ)) ⊂ X.

Then the h-conformal measure m satisfies the efd property.

Proof. Let
G = F ∪ {i ∈ I : γ‖φ′

i‖ > κ}.
Since limi∈I ‖φ′

i‖ = 0, the set G is finite. Now take an arbitrary ρ > 0, i ∈ I \ G, x ∈ φi(J), and
r ∈ (ρ‖φ′

i‖, κ). If r � γ‖φ′
i‖, then it follows from condition (a) that m(B(x, r)) � αµ(B(x, βr)).

If r < γ‖φ′
i‖, then ρ < γ, and it follows from condition (a) that

m(B(x, r)) � m(B(x, γ‖φ′
i‖)) � αm(B(x, βγ‖φ′

i‖)) � αm

(
B

(
x, β

γ

ρ
ρ‖φ′

i‖
))

� αm

(
B

(
x, β

γ

ρ
r

))
.

In any case
m(B(x, r)) � αm(B(x, β max{1, γ/ρ}r)). (3.1)

Put η = min{‖φ′
i‖ : i ∈ G}. Since the measure m is positive on non-empty open subsets of J , we

have P := inf{m(B(x, γβη)) : x ∈ J} > 0. Since the measure m has no atoms, there exists ζ ∈ (0, κ)
so small that

m(B(x, ζ)) � αP (3.2)
for all x ∈ J . In view of condition (1e) we may assume ζ ∈ (0, κ) to be so small that

α
1
6h � |φ′

ω(y)|
|φ′

ω(x)| � α− 1
6h (3.3)

for all ω ∈ I∗, all x ∈ J , and all y ∈ B(x, ζ). Similarly as above, Q := inf{m(B(x, ζ)) : x ∈ J} > 0
and there exists θ ∈ (0, ζ/K) so small that

m(B(x,Kθ)) � αQ (3.4)

for all x ∈ J . Now fix x ∈ J and r ∈ (0, θ). Write x = π(ω), where ω ∈ I∞, and let n � 0 be the
least integer such that ‖φ′

ω|n‖ � θ−1r. Then n � 1 and ‖φ′
ω|n−1

‖ > θ−1r. Consequently,

Kr‖φ′
ω|n−1

‖−1 � r‖φ′
ω|n‖−1‖φ′

ωn
‖ � θ‖φ′

ωn
‖ (3.5)

and
Kr‖φ′

ω|n−1
‖−1 < Kθ < ζ < κ < dist(X,∂V ). (3.6)
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This inequality along with formula (1.4) from [MU03b] imply that

B(x, r) ⊂ φω|n−1
(B(π(σn−1(ω)),Kr‖φ′

ω|n−1
‖−1)),

and, if n − 1 � q, it then follows from condition (b) that

m(B(x, r)) � α−1/3|φ′
ω|n−1

(π(σn−1(ω)))|hm(B(π(σn−1(ω)),Kr‖φ′
ω|n−1

‖−1)). (3.7)

If n − 1 > q, then write ω|n−1 = τη, where |η| = q. It then follows from (3.6), condition (c), (3.3),
and condition (b) that

m(B(x, r)) � m(φτ (φη(B(π(σn−1(ω)),Kr‖φ′
ω|n−1

‖−1))))

� α−1/6|φ′
τ (φη(π(σn−1(ω))))|hm(φη(B(π(σn−1(ω)),Kr‖φ′

ω|n−1
‖−1)))

� α−1/6|φ′
τ (φη(π(σn−1(ω))))|hα−1/3|φ′

η(π(σn−1(ω)))|hm(B(π(σn−1(ω)),Kr‖φ′
ω|n−1

‖−1)

= α−1/2|φ′
ω|n−1

(π(σn−1(ω)))|hm(B(π(σn−1(ω)),Kr‖φ′
ω|n−1

‖−1). (3.8)

It now follows from (3.7), (3.8), (3.6), and (3.4) that

m(B(x, r)) � α−1/2|φ′
ω|n−1

(π(σn−1(ω)))|hαm(B(π(σn−1(ω)), ζ))

= α1/2|φ′
ω|n−1

(π(σn−1(ω)))|h2φnm(B(π(σn−1(ω)), ζ)).

Now consider the case when γθ−1βKr‖φ′
ω|n−1

‖−1 � ζ. Then, in view of the Mean Value Inequality
and (3.3), we get that

m(B(x, γθ−1βKr)) � α1/6|φ′
ω|n−1

(π(σn−1(ω)))|hm(B(π(σn−1(ω)), ζ)).

Combining these last two inequalities, we obtain

m(B(x, r)) � α1/3m(B(x, γθ−1βKr)). (3.9)

So, suppose that

γθ−1βKr‖φ′
ω|n−1

‖−1 < ζ.

Then in view of (3.3),

m(B(x, γθ−1βKr)) � α1/6|φ′
ω|n−1

(π(σn−1(ω)))|hm(B(π(σn−1(ω)), γθ−1βKr‖φ′
ω|n−1

‖−1)). (3.10)

Now, assuming that ωn /∈ G and taking into account the fact that π(σn−1(ω)) ∈ φωn(J), it follows
from (3.1) applied with ρ = θ, along with (3.5) and (3.6), that

m(B(π(σn−1(ω)),Kr‖φ′
ω|n−1

‖−1)) � αm(B(π(σn−1(ω)), γθ−1βKr‖φ′
ω|n−1

‖−1)).

Combining this along with (3.7), (3.8), and (3.10), we get

m(B(x, r)) � α1/3m(B(x, γθ−1βKr)). (3.11)

Suppose finally that ωn ∈ G. It then follows from (3.5) that γθ−1βKr‖φ′
ω|n−1

‖−1 � γβη, and
consequently that

m(B(π(σn−1(ω)), γθ−1βKr‖φ′
ω|n−1

‖−1)) � P.

Therefore, in view of (3.6) and (3.2), we get

m(B(π(σn−1(ω)),Kr‖φ′
ω|n−1

‖−1)) � αm(B(π(σn−1(ω)), γθ−1βKr‖φ′
ω|n−1

‖−1)).

Now, exactly the same argument leads to (3.11). This formula and (3.9) complete the proof as
γθ−1βK > 1.

A rather straightforward argument leads to the following slightly stronger form of Theorem 3.6,
which is, however, much more convenient for further applications.
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Theorem 3.7. Suppose that the system S = {φi}i∈I is regular, and denote by m the correspond-
ing h-conformal measure. Suppose also that there exists an integer q � 0 and κ ∈ (0,min{1,
dist(X,∂V )}) such that the following three conditions are satisfied.

(a) There exist three real constants γ � 1, β > 1, α ∈ (0, 1), and a finite set F ⊂ I such that, for
all i ∈ I \ F , there exists yi ∈ φi(X) such that, for all r ∈ [γ‖φ′

i‖, κ],

m(B(yi, r)) � αµ(B(yi, βr)).

(b) For all ω ∈ I∗ with |ω| � q, all x ∈ J , and all r ∈ (0, κ),

m(φω(B(x, r))) � α−1/3|φ′
ω(x)|hm(B(x, r)).

(c) For all ω ∈ Iq and all x ∈ J ,

φω(B(x, κ)) ⊂ X.

Then the h-conformal measure m satisfies the (efd) property.

Proof. In view of Theorem 3.6 it suffices to check condition (a) of this theorem with appropriate
κ > 0 (smaller) and β > 1 (larger). All other constants will remain unchanged. Indeed, for every
i ∈ I, every r � γ‖φ′

i‖, and every x ∈ φi(X), we have

B(x, r) ⊂ B(yi, r + diam(φi(X))) ⊂ B(yi, r + D‖φ′
i‖) ⊂ B

(
yi, r +

D

γ
r

)
= B

(
yi,

(
1 +

D

γ

)
r

)
.

Putting β′ = β(1 + (D/γ)r) + (D/γ) > β > 1, we get

B(x, β′r) ⊃ B(yi, β
′r − diam(φi(X))) ⊃ B(yi, β

′r − D‖φ′
i‖) ⊃ B

(
yi, β

′r − D

γ
r

)

= B

(
yi,

(
β′ − D

γ

)
r

)
= B

(
yi, β

(
1 +

D

γ

)
r

)
.

Now assuming in addition that i ∈ I \ F and that r ∈ (0, (1 + (D/γ))κ), we therefore obtain from
condition (a) that

m(B(x, r)) � m

(
B

(
yi,

(
1 +

D

γ

)
r

))
� αm

(
B

(
yi, β

(
1 +

D

γ

)
r

))
� αm(B(x, β′r)).

We are done.

Thinking about applications of Theorem 3.7, let us prove the following.

Proposition 3.8. If S = {φi : X → X}i∈I is a regular conformal iterated function system satisfying
the SSOSC, then the conditions (b) and (c) of Theorem 3.7 are satisfied.

Proof. Condition (c) of Theorem 3.7 is satisfied by taking q = 0 and any positive κ < dist(J, ∂X).
Condition (b) of Theorem 3.7 is then obviously satisfied.

4. Real continued fractions: general results

In this section we examine the efd property of conformal measures of continued fractions iterated
function systems with restricted entries. For every n � 1 we consider the map φn : [0, 1] → [0, 1]
given by the formula

φn(x) =
1

x + n
.

If I ⊂ N contains at least two points, we call SI = {φn}n∈I a continued fraction iterated function
system. It is straightforward to see that the limit set of this system consists of all irrational numbers
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whose continued fraction expansion has all entries in I. Many geometrical properties of such limit
sets have been thoroughly investigated in [MU99, Urb01a, MU03b]. We start our considerations by
recalling the following result proven in [MU03b] as Lemma 3.2.

Proposition 4.1. If 1 /∈ I and S = {φi}i∈I is a regular continued fraction iterated function system,
then S satisfies the SSOSC, and consequently, due to Proposition 3.8, the conditions (b) and (c) of
Theorem 3.7 are satisfied.

In order to get rid of the rather restrictive, fairly artificial, and irritating assumption that 1 /∈ I,
we shall prove the following.

Lemma 4.2. Assume that S = {φi}i∈I is a regular continued fraction iterated function system and
let m be the corresponding h-conformal measure. If

lim sup
n→∞

{
m

([
1

n + 1
,
1
n

])/
m

([
0,

1
n + 1

])}
< ∞,

then there exist α ∈ (0, 1) and κ > 0 such that the conditions (b) and (c) of Theorem 3.7 are
satisfied with q = 2.

Proof. Fix κ ∈ (0, 1/3). We first verify condition (c) of Theorem 3.7. For every x ∈ [1/2, 1] and
every n � 1, we have

φn(B(x, κ)) =
(

1
n + x + κ

,
1

n + x − κ

)
⊂ (0, 1).

If x ∈ [0, 1/2], then

φn(B(x, κ)) =
(

1
n + x + κ

,
1

n + x − κ

)
⊂ (0,∞)

and therefore, for every k � 1,

φkn(B(x, κ)) ⊂ φk((0,∞)) = (0, 1/k) ⊂ (0, 1).

(here kn is the concatenation of the letters k and n, and not their product). Hence the condition
(c) of Theorem 3.7 is satisfied with q = 2.

In order to verify condition (b) of Theorem 3.7 put

B(z, r,R) = {x ∈ R : z − r � x � z + R}.
The proof is split into two cases and several subcases.

Case 1: assume x ∈ (1/2, 1] ∩ J and fix r ∈ (0, κ]. Without loss of generality we may assume that
x + r > 1. Fix R ∈ [r, 4r]. Then for every n ∈ I,

φn(B(x, r,R)) = φn((x − r, 1]) ∪ φn([1, x + R)). (4.1)

Now

m(φn((x − r, 1])) �
(

n + x

n + x − r

)2h (
1

n + x

)2h

m((x − r, 1])

=
(

1
1 − r/(n + x)

)2h

|φ′
n(x)|hm((x − r, 1]) � 2|φ′

n(x)|hm((x − r, 1]),

= 2|φ′
n(x)|hm(B(x, r,R)) (4.2)

where the last inequality sign was written assuming that κ > 0 (and consequently r < κ) is small
enough. Also

φn([1, x + R)) =
(

1
n + x + R

,
1

n + 1

]
= φn+1([0, x + R − 1)).
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Hence (note that if n + 1 /∈ I, then m(φn([1, x + R))) = m(φn+1([0, x + R − 1))) = 0),

m(φn([1, x + R))) �
(

1
n + 1

)2h

m([0, x + R − 1)) =
(

n + x

n + 1

)2h (
1

n + x

)2h

m([0, x + R − 1))

� (n + x)−2hm([0, x + R − 1)) = |φ′
n(x)|hm([0, x + R − 1)). (4.3)

Now, (x − r, 1] = φ1([0, (x − r)−1 − 1)), and consequently (x ∈ (1/2, 1] ∩ J implies that 1 ∈ I)

m((x − r, 1]) �
(

1
1 + 0

)2h

m([0, (x − r)−1 − 1)) = m([0, (x − r)−1 − 1)). (4.4)

Since it is straightforward to verify that x + R − 1 � (x − r)−1 − 1 (r < κ < 1/3), combining (4.3)
and (4.4), we get

m(φn([1, x + R))) � |φ′
n(x)|hm([0, (x − r)−1 − 1)) � |φ′

n(x)|hm((x − r, 1]) = |φ′
n(x)|hm(B(x, r,R)).

Combining this with (4.2) and (4.1) in turn, we obtain

m(φn(B(x, r,R))) � 3|φ′
n(x)|hm(B(x, r,R)), (4.5)

which finishes the proof in Case 1.

Before moving to the next case, observe first that, due to our assumptions,

Q := max

{
1, sup

j�1

{
m([0, j−1))

m([0, (j + 1)−1))

}}
< ∞.

Case 2: suppose that x ∈ [0, 1/2]. We may assume without loss of generality that x − r < 0. Then,
for every n ∈ I,

φn(B(x, r,R)) = φn((x − r, 0]) ∪ φn((0, x + R)). (4.6)
Now,

m(φn((0, x + R))) �
(

1
n

)2h

m((0, x + R)) =
(

n + x

n

)2h (
1

n + x

)2h

m((0, x + R))

=
(
1 +

x

n

)2h |φ′
n(x)|hm((0, x + R)) � 2h|φ′

n(x)|hm((0, x + R))

� 2|φ′
n(x)|hm(B(x, r,R)). (4.7)

Case 2(a): suppose first that n = 1. Then φ1((x − r, 0]) = [1, (1 + x − r)−1) ⊂ [1,∞). Thus,
m(φ1((x − r, 0])) = 0, and combining this with (4.6) and (4.7), we obtain

m(φ1(B(x, r,R))) � 2|φ′
1(x)|hm(B(x, r,R)). (4.8)

Case 2(b): assume that n � 2. Then

φn((x − r, 0]) =
[

1
n

,
1

n + x − r

)
= φn−1((x − r + 1, 1]),

and therefore (note that if n − 1 /∈ I, then m(φn((x − r, 0]) = m(φn−1((x − r + 1, 1])) = 0)

m(φn((x − r, 0])) �
(

1
n − 1 + (x − r + 1)

)2h

m((x − r + 1, 1])

=
(

n + x

n + x − r

)2h (
1

n + x

)2h

m((x − r + 1, 1])

=
(

1 +
r

n + x − r

)
|φ′

n(x)|hm((x − r + 1, 1])

� 2|φ′
n(x)|hm((x − r + 1, 1]). (4.9)
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Since (x− r +1, 1] = φ1([0, (x− r +1)−1 −1)), we get (as above if 1 /∈ I, then m((x− r +1, 1]) = 0)

m((x − r + 1, 1]) �
(

1
1 + 0

)2h

m([0, (x − r + 1)−1 − 1)) = m([0, (x − r + 1)−1 − 1)). (4.10)

Now, taking κ > 0 small enough (and consequently r and r −x small enough), we see that (x− r +
1)−1 − 1 = (1− (r−x))−1 − 1 � r−x+ 2(r−x)2 � r−x+ 2r2. Picking an integer k � 1 such that

1
k + 1

< x + r � 1
k
, (4.11)

we therefore get
1

x − r + 1
− 1 − 1

k
� 1

x − r + 1
− 1 − (x + r) � r − x + 2r2 − x − r = 2r2 − 2x � 2r2 � 2

k2
.

Consider now two subcases.

Case 2(b)(1): k � 3. It then follows from the last formula that (x − r + 1)−1 − 1 < (k − 2)−1.
Therefore, using (4.11), we get

m([0, (x − r + 1)−1 − 1))
m([0, x + r))

� m([0, (k − 2)−1))
m([0, (k + 1)−1))

=
m([0, (k − 2)−1))
m([0, (k − 1)−1))

m([0, (k − 1)−1))
m([0, k−1))

m([0, k−1))
m([0, (k + 1)−1))

� Q3. (4.12)

Case 2(b)(2): k � 2. Then similarly

m([0, (x − r + 1)−1 − 1))
m([0, x + r))

� m([0, 1))
m([0, 1/3))

� Q2. (4.13)

The rest of the proof is performed for all k � 1 without distinguishing between Case 2(b)(1) and
Case 2(b)(2). Combining (4.13) with (4.12), (4.10), and (4.9), we obtain

m(φn((x − r, 0])) � 2Q3|φ′
n(x)|hm([0, x + r)) � 2Q3|φ′

n(x)|hm([0, x + R))

= 2Q3|φ′
n(x)|hm(B(x, r,R)).

Looking at (4.7) and (4.6), we therefore get

m(φn(B(x, r,R))) � 2(1 + Q3)|φ′
n(x)|hm(B(x, r,R)). (4.14)

Combining this estimate with (4.8) and (4.5), we see (note that Q � 1) that (4.14) is true for all
n � 1, all κ ∈ (0, 1/3) small enough, all r ∈ (0, κ), all R ∈ [r, 4r], and all x ∈ J . In particular,

m(φn(B(x, r))) � 2(1 + Q3)|φ′
n(x)|hm(B(x, r)). (4.15)

Now keep x ∈ J and r ∈ (0, κ). Take any two numbers k, n ∈ I. Since φn(B(x, r)) = B(φn(x),
rn, Rn), where rn � r(n + 1)−2 and Rn � rn−2 (so Rn/rn � ((n + 1)/n)2 � 4), the formula (4.14)
applies, and we get

m(φkn(B(x, r))) = m(φk(B(φn(x), rn, Rn))) � 2(1 + Q3)|φ′
k(φn(x))|hm(B(φn(x), rn, Rn)).

Applying (4.14) once more, we obtain that

m(B(φn(x), rn, Rn)) = m(φn(B(x, r))) � 2(1 + Q3)|φ′
n(x)|hm(B(x, r)).

Combining the last two estimates together, we finally get

m(φkn(B(x, r))) � 4(1 + Q3)2|φ′
kn(x)m(B(x, r)).

This and (4.15) complete the proof.
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Let us now recall from [MU03b] that, given δ ∈ [0, 1] and g > 1, we call an infinite subset I of
N (δ, g)-evenly distributed provided that there exist constants A � 1 and p � 1 such that, for all
integers n � 1,

#(I ∩ [n, gn]) � Anδ, (4.16)

and if, in addition, n ∈ I ∩ [p,∞), then

min{#(I ∩ [n, gn],#(I ∩ [g−1n, n])} � A−1nδ � 2. (4.17)

If we do not want (do not need) to specify δ and g, we simply say that I is evenly distributed.
A simple, straightforward but useful property of (δ, g)-evenly distributed sets is contained in the
following.

Lemma 4.3. If I ⊂ N is a (δ, g)-evenly distributed set, then for all n ∈ N large enough, I∩[n, gn] �= ∅
and I ∩ [g−1n, n] �= ∅, and consequently

min{#(I ∩ [n, g2n],#(I ∩ [g−2n, n])} � A−1g−2δnδ.

We say that an infinite subset I of N is rapidly growing if for every ξ > 0 there exist u � p and
σ > 1 such that, for every n ∈ I ∩ [u,∞) and every k ∈ [1, n/7],

#(I ∩ ([n − σk, n − k] ∪ [n + k, n + σk])) � ξ#(I ∩ [n − k, n + k]). (4.18)

We have proved in [MU03b] the following result as Proposition 3.3.

Proposition 4.4. If I ⊂ N is a (δ, g)-evenly distributed set, then the system SI is cofinitely
(hereditarily) regular and θS = δ/2. Consequently, h > δ/2.

The main result of this section is the following.

Theorem 4.5. If I ⊂ N is a rapidly growing evenly distributed set, then the corresponding conformal
measure m satisfies the efd property, and is consequently extremal due to Theorem 3.2.

Proof. Our general strategy is to verify the assumptions of Theorem 3.7. The first step is to verify
the assumptions of Lemma 4.2. Indeed, observe that if n /∈ I, then

m([1/(n + 1), 1/n]) = 0, (4.19)

and if n ∈ I, then

m

([
1

n + 1
,
1
n

])
� n−2h. (4.20)

If in addition n � p, then by (4.17) there exists k ∈ I ∩ [n + 1, gn). We then have

m

((
0,

1
n + 1

])
� m

([
1

k + 1
,
1
k

])
� (k + 1)−2h � (2gn)−2h = (2g)−2hn−2h.

Combining this with (4.19) and (4.20), we see that for all n ∈ I ∩ [p,∞),

m

([
1

n + 1
,
1
n

])/
m

((
0,

1
n + 1

])
� (2g)2h.

Thus, the assumptions of Lemma 4.2 are satisfied, and applying it we see that, due to Theorem 3.7,
it suffices to verify the following condition.

For every α ∈ (0, 1) there exist β > 1 and a finite set F ⊂ I such that, for all n ∈ I \ F and all
r ∈ (1/n2, 1/3), we have

m(B(1/n, r)) � αm(B(1/n, βr)). (4.21)
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For each r > 0 put

I−(r) = I ∩
{

k � n :
1
k
− 1

n
< r

}
= I ∩

[
n

1 + rn
, n

]
.

For every r ∈ (0, 1/n) put

I+(r) = I ∩
{

k � n :
1
n
− 1

k
< r

}
= I ∩

[
n,

n

1 − rn

]

and for r � 1/n put

I+(r) = I ∩ [n,+∞).

Also set

I(r) = I+(r) ∪ I−(r).

Since the symmetric difference of J ∩ B(x, r) and
⋃

k∈I(r) φk(J) is contained in φinf I−(r)−1(J) ∪
φsup I+(r)(J), we easily deduce from Lemma 4.3 that

m(B(1/n, r)) �
∑

k∈I(r)

m(φk(J)) �
∑

k∈I(r)

k−2h �
∑

k∈I+(r)

k−2h +
∑

k∈I−(r)

k−2h. (4.22)

Now take an arbitrary ξ > 0 and fix u � p � 2 and σ � 3 so that the condition (4.18) is satisfied.
The assumptions of our theorem imply that I is (δ, g)-evenly distributed with some δ ∈ (0, 1] and
some g > 1. Fix n ∈ I ∩ [u,∞) and consider the following cases.

Case 1: r ∈ [1/4(σ + 1)n, 1/3]. Using Lemma 4.3, we get for all n ∈ I ∩ [u,∞) sufficiently large that

∑
k∈I−(r)

k−2h =
n∑

k=n/(1+rn)

k−2h �
logg2 (1+rn)∑

j=0

(ng−2j)−2h+δ = nδ−2h

logg2 (1+rn)∑
j=0

g2(2h−δ)j

� nδ−2h g2(2h−δ) logg2(1+rn) − 1
g2(2h−δ) − 1

� nδ−2hg2(2h−δ) logg2 (1+rn)

= nδ−2h(1 + rn)2h−δ ∈ [nδ−2h(rn)2h−δ, nδ−2h((4σ + 5)rn)2h−δ]

=

[
r2h−δ,

(
4σ + 5

4(σ + 1)

)2h−δ

r2h−δ

]
⊂ [r2h−δ, 4r2h−δ ]. (4.23)

Therefore, using (4.22), we get that

m(B(1/n, σ3r)) �
∑

k∈I−(σ3r)

k−2h � σ3(2h−δ)r2h−δ. (4.24)

Also
∞∑

k=n

k−2h �
∞∑

j=0

(ng2j)δ−2h = nδ−2h
∞∑

j=0

g(δ−2h)j � nδ−2h 1
1 − gδ−2h

�
(

1
n

)2h−δ

� (4(σ + 1))2h−δr2h−δ.

Combining this equation, (4.23) and (4.22), we obtain

m(B(1/n, r)) � 42h−δr2h−δ + (4(σ + 1))2h−δr2h−δ � (4(σ + 2))2h−δr2h−δ.

Combining this with (4.24), we get

m(B(1/n, σ3r)) � σ2h−δm(B(1/n, r)) (4.25)

for all σ � 3 large enough.
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Case 2: r ∈ [1/n2, 1/4(σ + 1)n]. Then

1 � n

1 + rn
· 1
n

=
1

1 + rn
� 1

1 + 1/4(σ + 1)
� 1

2
.

Therefore, ∑
j∈I−(r)

j−2h =
n∑

j=n/(1+rn)

j−2h � n−2h#
(

I ∩
[

n

1 + rn
, n

])
(4.26)

and

∑
j∈I−(2σr)\I−(r)

j−2h =
n/(1+rn)∑

j=n/(1+2σrn)

j−2h � n−2h#
(

I ∩
[

n

1 + 2σrn
,

n

1 + rn

])
. (4.27)

Since rn � 1/4(σ + 1), we get

1 � n

1 − rn
· 1
n

� 1
1 − 1/[4(σ + 1)]

� 2

and therefore ∑
j∈I+(r)

j−2h =
n/(1−rn)∑

j=n

� n−2h#
(

I ∩
[
n,

n

1 − rn

])
. (4.28)

Similarly

1 � n

1 − 2σrn
· 1
n

� 1
1 − 2σ/[4(σ + 1)]

=
1

1 − σ/[2(σ + 1)]
=

2(σ + 1)
σ + 2

� 2,

and therefore

∑
j∈I+(2σr)\I+(r)

j−2h =
n/(1−2σrn)∑
j=n/(1−rn)

j−2h � n−2h#
(

I ∩
[

n

1 − rn
,

n

1 − 2σrn

])
.

Combining this and (4.27), we get∑
j∈I(2σr)\I(r)

j−2h � n−2h#
(

I ∩
([

n

1 + 2σrn
,

n

1 + rn

]
∪

[
n

1 − rn
,

n

1 − 2σrn

]))
, (4.29)

and combining (4.26) with (4.28), we obtain∑
j∈I(r)

j−2h � n−2h#
(

I ∩
[

n

1 + rn
,

n

1 − rn

])
. (4.30)

Now put

k =
n

1 − rn
− n =

rn2

1 − rn
.

Since r � 1/n2, we get

k � n

1 − 1/n
− n =

n

n − 1
> 1. (4.31)

Since rn � 1/4(σ + 1), we obtain

k � n

1 − 1/[4(σ + 1)]
− n = n

1
4σ + 3

� n

7
. (4.32)

We now want to check that

n + σk � n

1 − 2σrn
. (4.33)
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This equivalently means that −2σrn2 + σk(1 − 2σrn) � 0 or

rn2

1 − rn
(1 − 2σrn) � 2rn2 ⇔ 1 − 2σrn

1 − rn
� 2,

and since this last inequality is obviously true, so is (4.33). Hence,

I ∩ [n, n + σk] ⊂ I ∩
[
n,

n

1 − 2σrn

]
. (4.34)

We now want to check that

n − σk � n

1 + 2σrn
. (4.35)

This equivalently means that 2σrn2 − σk(1 + 2σrn) � 0 or (recall that k = rn2/(1 − rn))

rn2

1 − rn
(1 + 2σrn) � 2rn2 ⇔ 1 + 2σrn

1 − rn
� 2 ⇔ 1 + 2σrn � 2 − 2rn ⇔ 2(σ + 1)rn � 1

and this last inequality is true because of our definition of Case 2. Hence (4.35) is satisfied, and we
get

I ∩ [n − σk, n] ⊂ I ∩
[

n

1 + 2σrn
, n

]
.

Along with (4.34) this gives that

I ∩ [n − σk, n + σk] ⊂ I ∩
[

n

1 + 2σrn
,

n

1 − 2σrn

]
. (4.36)

We also need to check that

n − k � n

1 + rn
. (4.37)

But this equivalently means that rn2 − k(1 + rn) � 0 or

k � rn2

1 + rn
⇔ rn2

1 − rn
� rn2

1 + rn
⇔ 1 + rn � 1 − rn.

This last inequality is obviously true and (4.37) is verified. Hence

I ∩ [n − k, n + k] ⊃ I ∩
[

n

1 + rn
,

n

1 − rn

]
.

As an immediate consequence of this and (4.36), we obtain

I ∩
([

n

1 + 2σrn
,

n

1 + rn

]
∪

[
n

1 − rn
,

n

1 − 2σrn

])
⊃ I ∩ ([n − σk, n − k] ∪ [n + k, n + σk]). (4.38)

Looking now at (4.29), (4.38), (4.18) (which applies due to (4.31) and (4.32)), (4.37), the definition
of k, and (4.30), we get∑

j∈I(2σr)

j−2h =
∑

j∈I(r)

j−2h +
∑

j∈I(2σr)\I(r)

j−2h �
∑

j∈I(2σr)\I(r)

j−2h

� n−2h#
(

I ∩
([

n

1 + 2σrn
,

n

1 + rn

]
∪

[
n

1 − rn

n

1 − 2σrn

]))
� n−2h#(I ∩ ([n − σk, n − k] ∪ [n + k, n + σk])) � ξn−2h#(I ∩ ([n − k, n + k]))

� ξn−2h#
(

I ∩
[

n

1 + rn
,

n

1 − rn

])
� ξ

∑
j∈I(r)

j−2h

� ξm(B(1/n, r)).
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Thus, for σ > 1 large enough, we have

m(B(1/n, σ3r)) � m(B(1/n, 2σr)) � ξm(B(1/n, r)).

Along with (4.25) this implies that, for all ξ (and consequently σ) large enough, all n ∈ I large
enough, and for every r ∈ [‖φ′

n‖, 1/3], we have

m(B(1/n, σ3r)) � min{ξ, σ2h−δ}m(B(1/n, r)).

Letting ξ ↗ +∞ (and consequently σ ↗ +∞), we see that (4.21) is verified. We are done.

5. Real continued fractions: examples

Represent any set I ⊂ N as a non-decreasing sequence {an}∞n=1. Recall that I is said to have bounded
gaps if supn�1{an+1 − an} < ∞. Our first result in this section is the following.

Theorem 5.1. If I ⊂ N has bounded gaps, then the continued fraction iterated function system
SI is regular and the corresponding conformal measure (which due to Corollary 5.9 from [MU99]
is, up to a multiplicative constant, equal to the h-dimensional packing measure on JS) satisfies the
efd property, and is consequently extremal due to Theorem 3.2.

Proof. It is obvious that I is (1, g)-evenly distributed for all g > 1 large enough. Since

lim
σ→∞

(
inf
n�1

inf
k�1

{
#(I ∩ [n + k, n + σk])

2k

})
= ∞,

we see that the set I is rapidly growing. Thus, invoking Theorem 4.5 completes the proof.

Corollary 5.2. If I ⊂ N is an arithmetic progression, then the corresponding conformal measure
satisfies the efd property and is extremal.

As was noticed in Theorem 5.1, the h-conformal measure of any system with bounded gaps is,
up to a multiplicative constant, equal to the h-dimensional packing measure on JS . It follows from
Corollary 4.5 in [MU99] that if in addition I is a proper infinite subset of N, then the h-dimensional
Hausdorff measure on JS vanishes.

Lemma 5.3. Suppose that {xn}∞n=1, an unbounded increasing sequence of positive integers, and
{dn}∞n=1, a non-decreasing sequence of positive integers, satisfy the following conditions:

(a) xn + dn < 6
7(xn+1 − dn+1);

(b) for every j � 1

lim inf
n→∞

dn

xn+j − xn + dn+j
> 0.

Then the set

I =
⋃
n�1

[xn − dn, xn + dn]

is rapidly growing.

Proof. Fix an integer ξ � 1. In view of (b),

θ = θξ := inf
n�1

{
dn

xn+ξ − xn + dn+ξ

}
> 0. (5.1)

Put

σ = (2ξ + 1)(1 + θ−1).

883

https://doi.org/10.1112/S0010437X05001338 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001338


M. Urbański

Take n � 2, l ∈ [xn − dn, xn + dn], and k ∈ [1, l/7]. Consider separately two cases: Case 1, k �
(2ξ + 1)−1dn; and Case 2, k > (2ξ + 1)−1dn.

Let us deal first with the Case 1. Suppose that l − σk � xn − dn. Then [l − σk, l − k] ∩ I =
[l − σk, l − k], and therefore

#(I ∩ [l − σk, l − k]) = (σ − 1)k � ξ2k � ξ#(I ∩ [l − k, l + k]).

So suppose that l−σk < xn −dn and l � xn. Then I ∩ [l−σk, l−k] ⊃ [xn −dn, l−k], and therefore

#(I ∩ [l − σk, l − k]) � l − k − xn + dn � dn − k � (2ξ + 1)k − k = ξ2k � ξ#(I ∩ [l − k, l + k]).

If l � xn and l + σk � xn + dn, then I ∩ [l + k, l + σk] = [l + k, l + σk] and therefore #(I ∩
[l + k, l + σk]) = (σ − 1)k � 2ξk � ξ#(I ∩ [l − k, l + k]). If l � xn and l + σk > xn + dn, then
I ∩ [l + k, l + σk] ⊃ [l + k, xn + dn]. Hence, #(I ∩ [l + k, l + σk]) � xn + dn − l − k � dn − k �
(2ξ + 1)k − k = 2ξk � ξ#(I ∩ [l − k, l + k]).

So, consider Case 2. In view of (a), we have for every n � 1 that

l + k � 8
7 l � 8

7(xn + dn) < 7
6(xn + dn) < xn+1 − dn+1 (5.2)

and

l − k � 6
7 l � 6

7(xn − dn) > xn−1 + dn−1. (5.3)

Hence I ∩ [l − k, l + k] ⊂ [xn − dn, xn + dn], and consequently

#(I ∩ [l − k, l + k]) � 2dn. (5.4)

Suppose now that l + σk � xn+ξ + dn+ξ. It then follows from (5.2) that

I ∩ [l + k, l + σk] ⊃ I ∩ [xn+1 − dn+1, xn+ξ + dn+ξ] ⊃
n+ξ⋃

j=n+1

[xj − dj , xj + dj].

Hence

#(I ∩ [l + k, l + σk]) � 2
ξ∑

j=1

dn+j � 2ξdn.

Combining this along with (5.4), we see that

#(I ∩ [l + k, l + σk]) � ξ#(I ∩ [l − k, l + k])

for all n � 1. So, suppose in turn that

l + σk < xn+ξ + dn+ξ. (5.5)

Then σk < xn+ξ + dn+ξ − l � xn+ξ + dn+ξ − xn + dn, and since we are in Case 2, σ(2ξ + 1)−1dn �
xn+ξ−xn+dn+ξ+dn. Invoking the definition of σ, we therefore get (1+θ−1)dn < xn+ξ−xn+dn+ξ+dn.
Equivalently, dn < θ(xn+ξ − xn + dn+ξ), which contradicts (5.1) and finishes the proof.

Applying this lemma we can easily construct the sets I with unbounded gaps whose correspond-
ing conformal measure satisfies the efd property. Indeed, we have the following.

Theorem 5.4. There exists an infinite evenly distributed rapidly growing subset I of N with un-
bounded gaps. Consequently, the corresponding conformal measure on JI satisfies the efd property
and is consequently extremal due to Theorem 3.2.

Proof. Let A � 4 be an integral multiple of 4. For every n � 4 put

xn = An and dn = 1
4An.
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Set
I =

⋃
n�1

[xn − dn, xn + dn].

Obviously I is evenly distributed. In order to verify that I is rapidly growing, we shall check the
assumptions of Lemma 5.3. Since xn + dn = 5

4An and since
6
7 (xn+1 − dn+1) = 6

7 · 3
4An+1 = 9

14AAn � 36
14An � 2An,

we see that condition (a) of Lemma 5.3 is satisfied. Since, for all n � 1 and all j � 1,

xn+j − xn + dn+j = An+j − An + 1
4An+j = An(5

4Aj − 1),

we get
dn

xn+j − xn + dn+j
=

1
4An

An(5
4Aj − 1)

=
1

5Aj − 4
> 0.

Thus condition (b) of Lemma 5.3 also holds, and all the assumptions of Lemma 5.3 have been
verified. Hence, I is rapidly growing. It is therefore left to check that I has unbounded gaps. To see
this notice that

xn+1 − dn+1 − (xn + dn) = An+1 − 1
4An+1 − An − 1

4An = An(3
4A − 5

4)

converges to +∞ when n → +∞. Now applying Theorem 4.5 finishes the proof.
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MU99 D. Mauldin and M. Urbański, Conformal iterated function systems with applications to the geometry

of continued fractions, Trans. Amer. Math. Soc. 351 (1999), 4995–5025.
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Urb M. Urbański, Diophantine approximations and self-conformal measures, J. Number Theory, to

appear.

885

https://doi.org/10.1112/S0010437X05001338 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001338


Diophantine approximation for conformal measures

Vee99 W. Veech, Measures supported on the set of uniquely ergodic directions of an holomorphic 1-form,
Ergodic Theory Dynam. Systems 19 (1999), 1099–1109.

Wei01 B. Weiss, Almost no points on a Cantor set are very well approximable, R. Soc. Lond. Proc. Ser. A
Math. Phys. Eng. Sci. 457 (2001), 949–952.
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