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THE TRANSLATIONAL HULL OF AN INVERSE 
SEMIGROUP 

N. R. REILLY 

1. Introduction. Let 5 be a semigroup. A function \(p) on 5 is a left (right) 
translation of 5 if, for all x, y £ 5, \(xy) = \(x)y ((xy)p = x(yp)). A left 
translation X and a right translation p are said to be linked if x(\y) = (xp)y, 
for all x,y £ S, and then the ordered pair (X, p) is called a bit?an station. Clearly 
the set A(5) (P(S)) of all left (right) translations is a semigroup with respect 
to composition of functions. The set of bitranslations forms a subsemigroup of 
the direct product A (5) X P(S) which is called the translational hull, 12(5), of 
5. A valuable survey of results relating to 12(5) and its importance in relation 
to semigroup extensions will be found in Petrich's review [6], to which the 
reader is referred for basic results on translational hulls. 

For each a Ç 5, the inner left (right) translation of 5 induced by a is the 
function Xa(pa) defined by Xa(x) = ax ((x)pa = xa), for all x £ 5. Then 
?Ta = (Xa> Pa) G 12(5) and 11(5) = {wa'a G 5} is a subsemigroup of 12(5). The 
mapping II: a —•*• ira is one-to-one if 5 is weakly reductive (that is, ax = frx and 
xa = xb, for all x G 5 implies that a = b). 

LEMMA 1.1 (Gluskin [3]). 7 / 5 is weakly reductive then 12(5) is the idealizer of 
n(5) inA(S) XP(S). 

Let IIA be the projection homomorphism of 12(5) into A(5) and T(S) = 
{Xa:a G 5}. Then clearly I I A I I ( 5 ) = T(5). A semigroup 5 is reductive if ax = 
bx, for all x, or xa — xb, for all x, implies that a = b. 

LEMMA 1.2 (Petrich [6]). If 5 is reductive then IIA is an isomorphism of 12(5) 
into A (5) and U\U is an isomorphism of S onto T(S). 

An inverse semigroup 5 is a semigroup 5 such that for each a G 5 there is a 
unique element x G 5 with axa = a and We shall denote the idempo-
tents of 5 by Es, or just E, if there is no likelihood of confusion. For basic 
properties of inverse semigroups the reader is referred to [2]. An inverse semi
group is reductive and hence, for an inverse semigroup 5, IIA is an isomorphism 
of 12(5) into A (5). Our objective in this paper is to investigate A (5), to discuss 
the relationship between T(5), IIA(12(5)) and A(5) and thereby describe 12(5) 
for certain fairly general classes of inverse semigroups. A crucial observation 
is the following. 

LEMMA 1.3 (Ponizovski [8]). / / 5 is an inverse semigroup then so is 12(5). 
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The main theorem in Section 2 establishes t ha t I I A ( 1 2 ( 5 ) ) is the idealizer of 
T(S) in A (5) , the unique maximal inverse subsemigroup of A (5) containing 
T(5) and the unique maximal inverse subsemigroup of A (5) with A(E) as its 
set of idempotents , where E is the semilattice of idempotents of 5 . 

A key tool in these discussions is a homomorphism 6 of A (5) into a semigroup 
of mappings of the set of idempotents E of 5 defined by 6: X —> 6\ where 6\ (e) = 
\ ( e ) \ ( £ ) - 1 , for all e G E. T h e mappings <fo, where X is such tha t , for some right 
t ranslat ion p, (X, p) is in the uni t group 2 ( 5 ) of 12(5), were introduced by Ault 
[1] and used to characterize 2 (5) for certain inverse semigroups 5 . In Section 3 
we show t h a t the congruence 6 o 0_ 1 induced onIIA(12(5)) by 6 (and therefore 
the corresponding congruence on 12(5)) is the maximum idempotent separating 
congruence on nA(12(5)) (12(5), respectively). 

Then it is shown tha t the Howie-Munn representation [5] of an inverse 
semigroup 5 as a semigroup of isomorphisms of principal ideals of the set of 
idempotents £ of 5 onto principal ideals of E extends to a representation of 
I I A ( 1 2 ( 5 ) ) as a semigroup of isomorphisms of P-ideals of E onto P-ideals of E 
(where an ideal F of £ is a P-ideal if the intersection of F with any principal 
ideal is a principal ideal). Likewise the Vagner-Preston representation of an 
inverse semigroup 5 by one-to-one partial transformations of 5 is extended to 
a representation of I I A ( 1 2 ( 5 ) ) by one-to-one partial transformations of 5 . 

In the final three sections the techniques introduced in earlier sections are 
used to characterize I I A ( 1 2 ( 5 ) ) for 5 = Tx (the semigroup of isomorphisms of 
principal ideals of a semilattice X onto principal ideals of X) and for B rand t 
semigroups. 

2. T h e r e l a t i o n s h i p b e t w e e n r ( 5 ) , nA(12(5)) a n d A(5). If A is a sub-
semigroup of a semigroup T then the left idealizer L of A is {t G T:ta £ A, for 
all a G A}. Then L is the largest subsemigroup of 5 containing A as a left ideal. 
The idealizer and right idealizer of A are defined similarly. 

I t is straightforward to see tha t , for any semigroup 5 such t ha t 5 2 = 5 , A(5) 
is the left idealizer of T (5) in the full transformation semigroup 3~s on 5 . T h e 
principal result of this section will show tha t I I A ( 1 2 ( 5 ) ) , for 5 an inverse semi
group, is the idealizer of T(S) in A (5). Since S2 = S for any inverse semigroup, 
T(5) is a left ideal in A (5) and consequently nA12(5) can be described as the 
right idealizer of T(5) in A (5) . In doing so we shall obtain several other 
characterizations of I I A ( 1 2 ( 5 ) ) as a subsemigroup of A (5) . 

An ideal 7 in a semilattice X will be called a P-ideal (principal intersection 
ideal) if the intersection of I with any principal ideal of X is a principal ideal. 

L E M M A 2.1 (Petrich [6]). Let X be a semilattice and nbe a left translation of X. 
Then K is an idempotent homomorphism of X such that K(X) is a P-ideal and 
K(X) ^ Xyfor all x 6 X. 

For the remainder of this note, 5 will denote an inverse semigroup and E 
will denote its semilattice of idempotents . If K G A(£ ) then the mapping n' 
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such t h a t K'(a) = K(aarl)a is an element of A (5) such t h a t K!\E = K and 
K —» K is an isomorphism. Hence we identify K and nf and thereby consider 
A(E) as a subsemigroup of A(5) . For any X Ç A(5) , a £ 5 , X(a) = \(aarla) = 
\{aa~l)a and therefore, for any elements X, X' of A(5) , X = X' if and only if 
X|E = X' |£. 

L E M M A 2.2. InA(S), let 

Ex = {K2 = K:K(E) QE}. 

Then 

E1 = {*:*(£) Ç E } 

= A(E) 

= {K:K|E G A(E)} 

= {K2 = K:K\6 = \eK,for all e Ç E} 

= Idealizer of T (E) in A (5) 

= largest commutative subsemigroup of A (5) consisting of 

idempotents and containing T(E). 

Proof. Let the sets on the r ight side of the various equalities be denoted by 
E 2 , E 3 , . . . , E 7 , respectively. Clearly E i CI E 2 £ E 3 C E 4 . Let K G E 4 and 
£ G E . Then 

K2(<?) = K(K(<?)) = ^W^ 2 ) ) = K(K(e)e) 

= K(eic(e)) = K(e)K(e) = n(e). 

Hence K2 = K. Moreover, for any e, f £ E , 

K\e(f) = *(ef) = K{fe) = K(f)e = < * ( / ) = X . K ( / ) . 

T h u s K G E 5 and E 4 £ E 5 . 
If K Ç E 5 and e,f £ E, then 

* X . ( / ) = *(*/ ) = K(e)f= \«M). 

Hence Xe/c = K\6 = XK(e) and K £ E 6 . T h u s E 5 Q E 6 . 
Now let K £ EG and e Ç E . Then , for s o m e / G E , /cXe = \f. Then 

*(e) = n(ee) = /cXe(^) = Xr(e) = fe £ E . 

and 

K 2 M = « ( ^ W ) = *( /*) = K(ef) = *(*) / = (fe)f=fe = «(e). 

T h u s /c G E i , E 6 £ E i and E i = E 2 = . . . = E 6 . 
Clearly any commuta t ive subsemigroup of A (5) consisting of idempotents 

and containing T (E) is contained in E 5 . On the other hand E 5 is clearly a semi-
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group of idempotents containing T(E) and for K, X G E5 = A(£), and for any 
e G £ , 

K\(e) = K(\(e)e) = ic(e\(e)) = ic(e)\(e) = X(e)*(» = \ic(e). 

Thus the elements of E5 commute and E5 = £7. 

If T is a semigroup and X is a subsemigroup of commuting idempotents then 
by [9, Corollary 1.6], there is a unique maximal inverse subsemigroup Xe of T 
with X as its set of idempotents. This may be described as follows. For a,b G T 
we say that (a, b) is a regular pair if a6a = a and &afr = &. Then X e = 
[a G T:for some 6, (a, 6) is a regular pair, ab, ba G X, aXb C X and 6Xa C X}. 

Since, by Lemma 2.2, JEI is a subsemigroup of A (5) of commuting idem
potents there is a unique maximal inverse subsemigroup of A (5) with Ei as its 
set of idempotents. Let Ti = Eic, and let 

T2 = {X G A(5):for some X' G A(5), (X, X') is 

a regular pair with XX', X'X G Ei}. 

LEMMA 2.3. Ti = T2 and Ti is the unique maximal inverse subsemigroup of 
A (S) which contains Y{S). 

Proof. From the definition of Yx = E\c it is clear that I \ Ç r2. Let X G T2 

and X' be such that XX', X'X G E\. From the definition of E\c it is clear that in 
order to prove that X G rx it suffices to show that X'KX G -Ei, for all K £ Ei 
(the requirement being symmetric in X and X'). Clearly X'/cX G A (5). 

Then, for any e G £ , 

X'KX^) = X'/cXO2) = X'K(X(e)e) = X'/cXX(e)0) = \f\Me)K(e) 

= X'(X(éOK<») = \'\(e)K(e). 

Since /c and X'X are both elements of E1} \'\(e) and ic(e) are both idempotents 
and hence \'ic\(e) is also an idempotent. Hence X'KX G £4 = £1. Hence Ti = T2. 

Suppose now that T is any inverse subsemigroup of A (S) containing T(S). 
Let t G T. Since T is an inverse semigroup t has an inverse f in T and so 
(/, £') is a regular pair. Furthermore ttr and ft are idempotents of T and so 
commute with all the idempotents of T and hence, in particular, commute 
with Xe, for all e G E. Therefore tt', ft G E5 = Ei and so / G T2 = IV Thus 
rx 3 r and Ti is the unique maximal inverse subsemigroup of A (5) contain
ing r ( 5 ) . 

For any X G A (5) let 0X : £ —> E be the mapping defined by d\ (e) = X(e)X(e)_1. 
The mapping 0:X —> 0x will be vital to our subsequent work. The mappings 6\ 
were introduced by J. Ault [1] while investigating the unit group of Q(S). 

The observations in the following two lemmas will be used frequently. 

LEMMA 2.4. Let X G A (5). 
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(1) For any e G E, X(X(éO_1X(éO) = Me). 
(2) For a»y ^ £ , ^ ( X O ^ X O ) ) = 0x(e). 
(3) {e G E:e = X(/ ) - 1 X(/ ) , for some f G E} = {e 6 E:e = XO^XO)} . 

Proof. (1) We have 

XCXW^XW) = X(X(6)"1X(«)e) 

= xox^^xO)) 
= X(^)X(^)"1X(e) = \(e). 

(2) By (1), 

MMe^Me)) = X(XW-1XW)(X(XW-iXW))-i 

= x^xw-1 = 0x(e). 
(3) Let e = X ( / ) " 1 X ( / ) , for / € E. Then, by (1), 

Me) = X ( X ( / ) - 1 X ( / ) ) = X ( / ) . 

Hence e = X ( / ) - 1 X ( / ) = X ^ ) - ^ ) and (3) then follows. 

Notation. We shall write 

Ax = {e:e = X ^ ) - ^ ^ ) } = {e:e = X ( / ) " 1 X ( / ) , for some/ G E}. 

LEMMA 2.5. Le/ X G Ti, X' 6e ^ e inverse of X w Ti and e G E. r/zen 
( l )X( , ) - i = X ' (XWX(eH; 
(2)X'X(e) = X(e)"1X(e); 
(3) EeP i Ax = EX'X(e) = E X ^ ) - ^ ^ ) ; 
(4) Far any e G Ax, e = X'X(e) = X(e)_1X(e). 

Proof. (1) We have 

xoovcxooxw-̂ xCe) = x^x^x^x^)-^^)) = x(e)x'x(<o 
= X(eX7X(e)) = XX'XO) = X(» 

and 

x^xwxw-^xwx^xwxw-1) = x' (x(e)x(e)-1x(e))x'xWx(e)-1 

= (X'XM^XO)-1 = \'Me)Me)~l 

= v(xwx(«n. 
(2) From (1), we have 

Me)-*Me) = \f (Me)Me)~1)Me) = X'X(e). 

(3) Clearly, by (2), we have EX'X(e) C Ee C\ Ax. L e t / G Ee Pi Ax. Then, 
by Lemma 2.4, 

f=fe = Mf)-*Mf)e = X'X(/)e = X'X(/e) = X'X(e)/ ^ X'X(e). 

T h u s / G EX'XO) and we have EX'X(e) = Ee C\ Ax. 
(4) Part (4) follows from (2) and Lemma 2.4 (3). 
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For any mapping a: A —» B, (A, B sets) we shall write A (a) = A, V(a) = 
{a(a):a G A}. 

For any semilattice X we shall be interested in several semigroups related to 
X. First we shall denote by Fx the semigroup of order preserving mappings a 
for which A (a) = X and V (a) is an ideal of X. 

LEMMA 2.6. The mapping 0:X—>0x is a homomorphism of A(5) into FE. 
Moreover, 

(1) Ax is a P-ideal and V(0x) = 0x(Ax); 
(2) 9\ is an isomorphism when restricted to any principal ideal of Ax. 

Proof. Let X G A (5), e, f G E and e g / . Then 

h(e) = \{e)Ue)-i = Hfe)X(fe)^ = \(f)e\(f)^ g X(f)X(f)~^ = 0X(/). 

Hence, 0x is order preserving. Now suppose t h a t / ^ 0\(e). Then 

f =fOx(e) =f\(e)\(e)-i = X ^ X ^ ) " 1 ^ ^ ) - 1 = 0x(XW"1/X(e)). 

Thus / 6 V(0x) and V(0x) is an ideal in X. Hence 0x G F*. Now, for 
X, X' G A (5) and e £ E, we have 

0x'0x(e) = 0x'(X(éOX(éO"1) = \'(\(e)\(e)-i)(\'(Me)\(e)-i))-i 

= \f(\(e)X(e)-l)(\/\(e)\(e)-1)-' = Xf (X(e)X(e)-1)X(e)(X,X(e))-^ 

= V(XWXW-1XW)(X'XW)-1 = \'\(e)(\'\(e))-1 = 0X'x(e). 

Thus 0x'0x = 0\'x and 0 is a homomorphism of A (5) into FE. 
(1) Now let / G E and e = X{f)~lX{f). Then e g / and e G Ax. Con

versely, let g G Ef C\ Ax. Then g S f and, by Lemma 2.4, 

* = xte)-1^) = Hfg^Mfg) = Hf)'1Hf)g -eg se. 
Thus g (z Ee and Ef C\ à\ = Ee. In other words Ax is a P-ideal. In addition, 
by Lemma 2.4, 0x(e) = 0x( / ) . Thus 0X(AX) = V(0x) and (1) is verified. 

(2) Consider any principal ideal of Ax, say Ef, where/ = X(/ )~1X(/ ) and 
consider any g, h G £/ . Let 0x(g) g 0x(A). Then X(g)Xig)-1 S X(h)X(h)-K 
NowX(g)Xfe)-1 = X(fg)Hfg)-1 = Mf)gX(f)-1 and similarly X(ft)X(ft)-i = 
Hf)h\(f)~1. Hence 

« = / ^ = X(/)-1X(/)g 
= Hf)'1Hf)gHf)'1Hf) £ x(/)-ix(/)*x(/)-i\(/) 
= HD-MDh =fh = h. 

Since we know that 0x is order preserving this proves (2). 

LEMMA 2.7. Le£ X G A (5). rAew the following statements are equivalent. 
(1) 0x is a homomorphism; 
(2) //ze restriction of 6\ to Ax is a homomorphism; 
(3) //ze restriction of 0x /0 Ax is aw isomorphism. 
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Proof. Clearly (1) implies (2). Assume that (2) holds and that for some 
e, f G Ax, e 5̂  / , we have 0x0) = 0x(/ ). Then, since 6\ is a homomorphism on 
Ax, 0x0) = 6\(f ) = 0x0/ ) where either ef < e or ef < f. But, by Lemma 2.6, 
0x is an isomorphism on principal ideals of Ax. Hence we have a contradiction 
and 0x is an isomorphism on Ax. 

Now assume that (3) holds and let e, f G E. Then 

0x(e)ex(f) = 0x(xO)"1xO))0x(x(/)-1x(/)) = ^(xW-^Wxc/^xc/)) 
= dx(\(e)-i\(e)ef\(f)-i\(f)) = dx(\(ef)-^(ef)Hef)-^(ef)) 

= &x(\(ef)-i\(ef)) = 0x0/). 

Hence (1) holds. 
We can now characterize the elements of Ti, in terms of the mappings 0x, 

as follows: 

PROPOSITION 2.8. Let X G A(5). Then X G Tiif and only if 
(1) V(0x) is a P-idealj and 
(2) 0x is a homomorphism. (Clearly condition (2) may be replaced by the 

equivalent conditions of Lemma 2.7.) 

Proof. (1) Let X G IY Let X-1 be the inverse of X in Ti and e be any element 
of E. L e t / = XX"10). Since XX"1 G Elf f G E and 

f =ff~l = OxK-i(e) = ex6x-i(e) G V(0x). 

Since XX~x0) = XX^Ok we have / ^ c and so / G £e H V(0X). Let 
g ^ Ee C\ V(0x), say g = 0\(/&), for some h £ E. Then, since XX-1 G £ i , 

fg = XX-H^g = XX-1 (eg) = XX"1 (g) = 0xx-i(g) = 0xK-i(0x(h)) = 0xx-ixW 

= ft (A) = g. 

Thus g ^ / and so g G £/ . Hence Ef = Ee C\ A(0X) and (1) is satisfied. 
(2) Let X G Ti, X-1 be the inverse of X in I \ and e, f G Ax be such that 

0x0) ^ 0x(/ ). Then, by Lemma 2.5 (4), 

g = X-i\(e) = X"1X0)X-1X0) = 0x-ixO). 

Similarly,/ = 0\-i\(f ) and so 

« = 0x-ixW = 0x-i0xW = 0x-i0x(/) = 0x-ix(/) = / . 

Hence, 0x is an isomorphism when restricted to Ax and so, by Lemma 2.7, 0x 
is a homomorphism. 

Conversely, let X G A (5) satisfy conditions (1) and (2). We define a mapping 
\':S-*S. For any a G 5 we have Eaa-1 Pi V(0x) = Ef where / = 0x(g), for 
some/ , g G E, by (1). Let X'(a) = X(g)_1a. Suppose that we also h a v e / = 
0x0). Then 0x(XO)_1XO)) = / = 0x(X(g)-1X(g)) and, since 0x is an isomorphism 
when restricted to Ax, \(e)~1\(e) = X(g)-1X(g). Hence 

\(e) = X0)X0)"1X0) = X0)X(g)"1X(g) = Heg)\(eg)-i\(eg) = \(eg). 
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Similarly, X(g) = \(eg) and so \(e) = X(g). Therefore X' is a well-defined 
mapping. 

Now let a, b G 5 with/, g as above and let h, A be such that 

Eabb^a-1 H V(0X) = £A where h = 6x(k). 

Then clearly h ^ f. Hence 

h = hf = 0x(£)0x(£) = 0x(£g) 

since 0X is a homomorphism. Therefore 

h\(g) = h(kg)\(g) = Hkg)Hkg)-'X(g) 

= Mkg)k\(g)-i\(g) = Hkg)k\(g)-i\(g)k 

= X(^)Xfe)- 1 Xfe) = X(*g)gX(*)-*X(*)g 

= Hkg)g\(k)-i\(k) = Xfe)Xfe)-1X(^) = AX(fe) = \(k). 
Hence 

\'(a)fr = X(g)-1^ = \(g)-lhab = \(k)~lab = X'(ai). 

Thus, X' € A (5). 
For any 6 G £ , E\(e)\{e)~l C\ V(0X) = E X ^ X ^ ) " 1 and so X'(X(e)) = 

X ^ ) " ^ ^ ) . Hence 

XX'X(e) = \{\{e)~l\(e)) = \(e\(e)-l\(e)) = \(e)\{e)~l\(e) = \(e). 

On the other hand, let Ee Pi V(0X) = Ef where f = 6x(g), f, g £ E. Then 

X'XX'(e) = \'\(\(g)-'e) = X^X^Xfe)-^) = V(«)X(g)X(g)-i 
= X(g)-^X(g)X(g)-i = X(g)"^ = \'(e). 

Thus (X, X') is a regular pair. To show that X £ Ti it remains to show 
that XX' and X'X are elements of EL TO do this it suffices to show that 
XV(£) C E and X'X(E) ç £ . Let e £ E, Ee C\ V(0X) = Ef and / = 0x(g). 
Then 

xx'(e) = HHgr'e) = xfexfe)-1*) = x(g)x(g)-^. 

which is an element of E and 

X'X(e) = XW^XO) 

which is also an element of E. Thus X £ IY 

From Lemma 2.3, we already have two descriptions of the relationship 
between Ti and T(S). In the following proposition we give a third. 

PROPOSITION 2.9. rx is the idealizer of T(S) in A(5). 

Proof. Let / denote the idealizer of T(S). First we show that Ti C I. Since 
T(S) is a left ideal in A (5), T(S) is certainly a left ideal of IY Hence, we wish 
to show, for any a £ S, K £ Ti, that Xa/c £ T(S). I t is sufficient to do so for 

https://doi.org/10.4153/CJM-1974-098-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1974-098-7


1058 N. R. REILLY 

a = e Ç E. Let Ee C] V(6K) = Eg where g = QK{h), g, h £ E. Then for any 
/ 6 £ , * ( / ) e Ee H V(0K), so that ^ K ( / ) = geic(f ) and we have 

KK(f) = « ( / ) = ***(/) = g*( / ) = 0K(h)K(f)K(f)-h(f) 
= 0K(h)6K(f )K(J) = 6K(hf ) K ( / ), since 0K is a homomorphism 

= *(hf)K(hf)-h(f) = K(hf)hK(f)-h(f)h 
= *(hf)K(hf)-lK(hf) = 4 / ) = * ( * / ) / = X«(«/. 

Thus X6K = XKU) 6 r (5 ) and I \ C / . 
Suppose now that K £ I . Let e £ E. Then Xe/c = Xa, for some a Ç 5. Hence 

£ e H V(0c) = « V ( 0 = V ( M « ) = V(flx.c) = V(0Xa) = Eaa~\ 

where, for the last equality, it is clear that V (0xo) £ Eaar1. On the other hand, 
for any e Ç £ , ma"1 = ft^a"1*) G V(0xa). Hence V(0K) is a P-ideal. We 
complete the proof by showing that 6K is an isomorphism of AK onto V(0*). 

Let e, / be any elements of AK. Suppose that 6K(e) ^0K(f). Then 
K(e)K(e)~1 g * ( / ) * ( / ) - 1 = k, say. Let & be such that \kn = Xa. 
Now K.(e)K(e)~l = ^/c(^)(^/c(e))-1 = \kK.(e)(\kn(e))-1 = Xa(e)Xa(e)_1. Likewise 
* ( / W ) _ 1 = *«(/ )Xfl(/ )-x. Hence X a ( e )^^ ) - 1 g X a(/ )Xfl(/ J"1 and so 

a-laearla = a ^ X a ^ X ^ ) - ^ ^ a_ 1X a(/ )X a(/ )_1a 
= a~1afa~1a. 

Thus ea-'ae £ for^af or (X„ (*))-%(*) £ ( X a ( / ) ) - % ( / ) . But 

(Xa(«) )-%(«) = ( V W ) - 1 ^ ^ ) = « ( ^ - ^ ( e ) = « ( e ) - 1 ^ ) = e. 

Similarly (X a( /)) - 1X a( / ) = / and so g ^ / . Therefore 0* is an isomorphism of 
AK onto V(0K). Hence 0K is a homomorphism and K £ IY Thus Ti = / . 

The following result relates Tu the idealizer of T(S) in A (5), to Û(S). The 
statement that we give here is the dual of [6, Proposition 5, Section 2]. 

PROPOSITION 2.10. nA(Q(S)) is the idealizer of T(S) in A(5). 

Summing up the main results in this section we have. 

THEOREM 2.11. For an inverse semigroup S, IIA(Œ(»S)) can variously be 
described as: 

(1) the idealizer of T(S) in A(5); 
(2) the unique maximal inverse subsemigroup of A(S) containing T(S); 
(3) the unique maximal inverse subsemigroup of A (5) with the idealizer of T(E) 

in A (5) as its set of idempotents; 
(4) the unique maximal inverse subsemigroup of A (5) with A(E) as its set of 

idempotents; 
(5) the set of all X £ A (S) such that 

(a) V (0\) is a P-ideal, and 
(b) 0\ is a homomorphism. 
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Proof. The first characterization follows from Proposition 2.10. The charac
terizations (2), (3) and (4) then follow from Lemmas 2.2, 2.3, while the fifth 
characterization follows from Lemmas 2.8 and 2.9. 

The usefulness of Theorem 2.11 lies in the fact that it gives various char
acterizations of 12(5) in terms of left translations only, eliminating the necessity, 
while working with 12(5), of continually manipulating pairs of mappings (recall 
that elements of 12(5) are defined as linked pairs of translations). This feature 
will be used in later sections to characterize the translational hull of certain 
standard inverse semigroups and is used by the author elsewhere when con
sidering the problem of extending homomorphisms between inverse semigroups 
to homomorphisms between their translational hulls. 

Since the mappings 6\ have played such a key role in the above discussions 
the temptation to investigate the homomorphism B a little further is irresistible. 
This we do at the beginning of the next section. 

In general, for an inverse semigroup 5, A(5) need not even be a regular 
semigroup as the following example illustrates. For any semilattice Xy let Tx 

denote the set of mappings a such that A (a) and V(a) are both principal 
ideals of X and a is an isomorphism of A (a) onto V(a) . 

Example, Let R\ and R2 be two disjoint copies of the real numbers R. Let 
X = Ri \J R2 yj {z\ where z (? Rx \J R2. Denote by xi (x2) the element of 
^ i (R2) corresponding to the real number x. For a, b G X, let a ^ b if and only 
if either a, b G Ri(i = 1, 2) and a ^ b in Rt or a = z. Let 5 = Tx, and for 
x G X let ex denote the identity mapping on Xx. Let ô be an order isomorphism 
of R onto the negative real numbers and let 7 G Fx be defined by: 

y(y) = (z,ify G Ri U {*}, 
{(ox)!, if y = x2 G R2. 

Now define the mapping X of Tx by 

X(a) = 7 O a. 

Then X(a) G Tx and X is a left translation of Tx. Moreover, X has no inverse 
in A(TX) and consequently, A(TX) is not regular. 

Now let £ G Fx be such that 

i(y) = (y, i( y = X! e Ri or y = zt 

\(6x)i, if y = x2 G Rt, 

and let / be the mapping of Tx such that 1(a) = £ o a for all a G TX. Then 
/ G A ( r x ) and I2 = /. However, 0Z is not an isomorphism of A t onto V(0j) and 
so / € IY This illustrates that, in general, Ti does not contain all regular 
pairs in A (5). 

3. The homomorphism 6. Let T be an inverse semigroup. Then a con
gruence r on T is said to be idempotent separating if a2 = a, b2 = b and 
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(a, Ô ) Ç T implies that a = b. Any inverse semigroup T has a unique maximum 
idempotent separating congruence that has been characterized by Howie [4] 
as follows: 

LEMMA 3.1. Let T be an inverse semigroup and /x be the maximum idempotent 
separating congruence on T. Then 

H = {(a, b):aea~l = beb~l for all e2 = e Ç T). 

We can now characterize the congruence 

dod~l = {X,/):0(X) = 0(1)} 

induced on r x by 0. (For the purposes of this and the following two sections 
we consider 0 as a homomorphism of Ti into FE.) 

THEOREM 3.2. r&e congruence 0 o 0_1 induced by 0 on Tx is the maximum 
idempotent separating congruence y. on IY 

Proof. Let X £ £ i . Then, for any e Ç £ , X(e) Ç £ , and so 

0xM = XWX(e)-1 = X(e). 

Hence, if 0\ = 0*for X, / Ç Ei then necessarily X = /. Therefore 6 o 6~l is 
idempotent separating and so 0 o 0_1 C ju. 

Now suppose that (X, /) G M and let e £ E. Let X' and /' be inverses for X 
and /, respectively, in IY Then 

6x(e) = He)\(e)-i = X(e)X
,(X(e)X(^)-1) 

= xxe(e)x/x(e)x(^)~1 = xx.Ox'xo^xO)-1 

= (xxex
,x(e))x(^)-1 = xxex

,(x(^)x(^)-1), 

by Lemma 2.5. Hence, by Lemma 3.1, since (X, /) Ç /x and Xe Ç Ei, we have, 

0x(e) = l\J'(Me)\(e)-i) = /(^(X(^)X(e)-1)) = /(*)/'(X(e)X(e)-1). 

Therefore 

0xW ^ /W/W"1 = el(e). 

Similarly, 6i{e) ^ 0\(e). Hence 6\(e) = 0j(e), for all e G £ and so 0X = 6t. 
Therefore ix C 0 o 0 - 1 and the proof is complete. 

For an inverse semigroup T\et \iT denote the maximum idempotent separat
ing congruence on T. Since the mapping a —» Xa is an isomorphism of 5 onto 
T(5) we clearly have 

Mr(S) = {(Xa, X6):(a, 6) G Ms}-

LEMMA 3.3. The congruence 0 o 0 - 1 is giuew fry 

0O0-1 = {(X, Z):(X(e), /(e)) G us, for aile G £ } . 

Proof. Let 0\ = 0* and e (i E. Then 

0(Ax(e)) = 0(XXe) = 0(X)0(Xe) = 0(/)0(Xe) = 0(/Xe) = 0(X,(a)). 
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Hence 

) ç i9 o 0-1 n r(5) x r(5) ç /ir(S). 
Therefore (A(e), /(g)) Ç /*£. 

Conversely, let (X(e), /(e)) G Ms, for all e. Then by Lemma 3.1, 

6x(e) = XGOXfc)-1 = XWeX(e)-1 = /(c)rf(c)-1 = l{e)l{e)~l = 6l{e). 

Thus 0X = 0,. 

COROLLARY 3.4. Mr! H r (5) X r (5) = /*r<s). 

The term fundamental has been introduced by Munn for those inverse 
semigroups for which the maximum idempotent separating congruence is the 
identity congruence. 

COROLLARY 3.5. 5 is fundamental if and only if Ti (and therefore 12(5)) is 
fundamental, f 

COROLLARY 3.6. S is fundamental if and only if 6 is an isomorphism. 

Although not directly relevant to the rest of our discussions we mention in 
passing the following observation. 

LEMMA 3.7. Let a (r, v) denote the minimum group congruence on 12 (5) (II (5), 5 ) . 
Then a C\ 11(5) X II (5) = r and every a-class of 12(5) has non-empty inter
section with n (5 ) . Thus U(S)/a ^ n ( 5 ) / r ^S/v. 

4. The extension of the Howie-Munn and Vagner-Preston represen
tations of 5 to Ti. For any semilattice X let Wx denote the set of order 
preserving mappings of ideals of X onto ideals of X. Let Vx denote the set of 
order preserving mappings of P-ideals onto ideals of X which are isomorphisms 
when restricted to principal ideals. Let Ux denote the set of those mappings 
which are isomorphisms of P-ideals of X onto P-ideals of X. Then it is easily 
seen that Vx and Wx are semigroups, that Ux is an inverse semigroup and that 
Tx C Ux £ Vx £ Wx- One easily verifies the following result. 

LEMMA 4.1. (1) Vx is the left idealizer of Tx in Wx. 
(2) Ux is the idealizer of Tx in Wx. 

The right idealizer of Tx in Wx can similarly be described as the set of 
isomorphisms of ideals of X onto P-ideals of X. 

The following representation of an inverse semigroup is due to Howie and 
Munn (see [5]). Here we have the mappings on the left rather than the right. 

LEMMA 4.2. Let S be an inverse semigroup with semilattice of idempotents E. 
Let 6' be the mapping of S into TE defined by 6' (a) = B'a where 

Added in proof. This result has been proved independently by B.N. Schein in Completions, 
translational hulls and ideal extensions of inverse semigroups, Czechoslovak Math. J . 23 (1973), 
575-610. 
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(1) A (<V) = Ea~la, and 
(2) 0a'(e) = aea~\for all e G A(da

f). 
Then 6f is a homomorphism of S into TE such that 0' o (0')"1 ^ ^ maximum 
idempotent separating congruence on S. 

Our first objective is to show that this representation of 5 extends naturally 
to a homomorphism of Ti into UE-

We shall find the following observation useful. 

LEMMA 4.3. Let X, Z G A(S). Then 

Axz = {e G A,:0,(éO G Ax}. 

Proof. Let e G A\z. Then 

e = (x/(6))-ix/(«) = (X/(e))-1(X/(e))/(e)-1/(e) ^ l(e)~H{e). 

Hence ^ A;. Now 

dl(e) = /(e)J(e)"1 = l(e)el(e)-1 = l(e)(\l(e))-1\l(e)l(e)-1 

= (\(l(e)l(e)-i))-i\(l(e)l(e)-i). 

Thus 0l(e) G Ax. 
Conversely, let e G Az and 0,(s) G Ax. Let / = 0,(e) = l(e)l(e)~1. Then 

A/0) = XC/O)/^)-1)/^) = \(f)l(e) and 

« = /(«)-!/(«) = l(e)-H(e)l(e)-H(e) = l(e)-'fl(e) = l(e)~l\(f )-'\(f )l(e) 

= (X/O))-^/^). 

Therefore 6 G Ax z and the proof of the lemma is complete. 

We have already seen that, for any X G Tu the restriction \{/\ of 0x to Ax is 
an isomorphism of Ax onto V(#x). Thus we have a mapping d\ —» \[/\ of 0(Ti) 
into UE* 

THEOREM 4.4. 77i£ mapping \j/:\-^ \//\is a homomorphism of Ti info UE such 
that the composition of the mappings a —> Xa and \p is the Howie-Munn representa
tion Br of Lemma 4.2. Moreover, the congruence \(/ o \f/~l induced by \f/ on Ti is the 
maximum idempotent separating congruence on IV 

Proof. Let X, I G I \ . Then A(j/Xl) = AXl. On the other hand, A(Mi) = 
{e:e G A(^,) and $l(e) G A Ox)} = {e:e G Az and 0*0) G Ax}. Therefore, by 
Lemma 4.3, we have A(^XI) = A(^x^z)- If e G A(^xz) then 

Hence \̂  is a homomorphism. 
Now suppose that, for X, l G A(5), ^\ = ^z- Then Ax = Az. Let e £ E. Then, 

by Lemma 2.5 (3), 

£X0) _ 1X0) = Eer\ Ax = EeC\ At = El{e)~ll{e). 
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Hence X(e)-1X(e) = l(e)~H(e) = / , say. Now \(e) = X(e)X(e)-1X(e) = 
\(e\(e)-lX(e)) = \(ef) = X ( / ) . Similarly, 1(e) = 1(f). Hence 

Ox(e) = 6,(f) = Mf) = * , ( / ) = * , ( / ) = 6t(e). 

Thus d\ = di and i/' o ^ - 1 C 0 o 0-1. Since each ^x is the restriction of the cor
responding 6\ to A\, it is clear that 6 o 0_1 C ^ o ^_1 . Hence ^ o ^ _ 1 = 0 o 0_1, 
the maximum idempotent separating congruence, by Theorem 3.2. 

Let X̂o be denoted by ^a. Then 

A(*fl) = {e:e = X a ( / ) " % ( / ) , for some/G £} 
= {e:e = fa~la, for some/ G £} = Ea~la = A(da'). 

Finally, for e G a -1a, 

^o(«) = K(e)K(e)~l = ae(ae)-1 = aear1 = da'(e). 

Thus ^a = 6a
f and the composition of the mappings a —> Xa and ^ is 0'. 

Let i / x denote the symmetric inverse semigroup on a set X (cf. [2]). Then 
the Vagner-Preston representation of an inverse semigroup S by one-to-one 
partial transformations of 5 is described in the following lemma. 

LEMMA 4.5. [2, Theorem 1.20]. Let S be an inverse semigroup and for each 
a £ S define the element aa' of J s by 

(1) A(a„') = a - ^ ( = a-iaS); 
(2) aa '(x) = ax for any x G A (aa')-

Then the mapping a!\a~* aa' is an isomorphism of S into J s-

We now extend a' to IV For any element X G IV we define a mapping a\ by 
(1) A (ax) = AXS = {es:e G Ax, s G 5} = {x G S:**"1 G Ax} ; 
(2) ax(x) = X(x), for any x G A (ax). 

Let Xy y £ A (ax), e = xx -1, / = yy~x and ax(x) = a\(y). Then 0, / G Ax and, 
by Lemma 3.1 (4), (with X7 the inverse of X in rx) 

x = ex = \'\(e)x = X'X(x) = X'ax(x) = \fa\(y) = . . . = y. 

Thus ax G J s-

THEOREM 4.6. The mapping a : X —> ax is cm embedding of Ti wfo */ s s^c/z ^ a / 
Z/ze composition of the mappings a —-> Xa and a is //ze Vagner-Preston representa
tion of 5. 

Proof. Let X, / G IV Then x G A(axa^) if and only if xx - 1 G A* and 
/(x)/(x)_ 1 = a z(x)a z(x) - 1 G Ax. But /(x)/(x) - 1 = /(xx~1)x(/(xx~1)x)~1 = 
/(xx~1)(xx~1)/(xx~1) = /(xx~"1)/(xx~1)~1 = 0z(xx-1). Thus 

A(a\cti) = {x:xx_1 G Az and 0z(xx-1) G Ax} 

and 

A(axi) = {xrxx-1 G Axz}. 
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By Lemma 4.3, A (ax z) = A(a\ai). For x G A(aXz) we haveaxaz(x) = ax(/(x)) = 
X(/(x)) = a\i(x). Thus axaz = a\i and a is a homomorphism. 

Now suppose that a\ = at and let x Ç 5. Then Ax = A*. So let / Ç E be 
such that £ / = Exx~l H Ax = Exx"1 H A*. Then X(xx~x) = X(/ ) and 
Z(xx_1) = / ( / ) . Therefore, 

X(x) = X(xx-1)x = X( / )x = a\(f)x = at(f)x 

— Kf)x = /(xx_1)x = l(x), 

and X = /. Hence a is an isomorphism. 
Let the image of a Ç 5 under the mappings a —» Xa and X —> ax be denoted by 

aa (rather than aXo) and let AXa = Aa. Then Aa = {Xa(éO-1Xa(e) :e Ç £} = 
Ea~la and so A(aa) = Aa5 = a~laS and, for x G arlaS, aa(x) = Xa(x) = ax. 
Thus aa = aa ' (where ad is as in Lemma 4.5). 

5. A(TX). Throughout this section let X denote a semilattice and 5 denote 
a full inverse subsemigroup of TXl that is, an inverse subsemigroup of Tx 

which contains all the idempotents of Tx. It has been shown by Munn [5] that 
such an inverse semigroup is fundamental, an observation that we shall 
require below. 

Let E denote the semilattice of idempotents of S. For any x £ X, let e(x) 
denote the identity mapping on Xx. For any e Ç E, the domain of e is a 
principal ideal of X. Denote this by Xô(e), say. Since 5 is a full inverse sub-
semigroup of Tx the mappings elx —-> e(x) and ô:e-+ô(e) are then inverse 
isomorphisms of X onto E and E onto X, respectively. For each X £ A (5), we 
define a mapping ^x with domain A(\f/\) = 6(AX) = jx:e(x) £ Ax} = {x:e(x) = 
X(e)_1X(e), for some e <G £} = }x!e(x) = X(e(x))-1X(e(x))}. For any x £ A(^x), 
let ^x(x) = 60xe(x). Since e and ô are isomorphisms and from the properties of 
0X it follows that A(^x) is a P-ideal, that V (\f/\) is an ideal and that ^x is an 
order-preserving mapping of A(^x) onto V(^x) which is an isomorphism when 
restricted to principal ideals. 

THEOREM 5.1. The mapping \[/:\ —•> ^x is an isomorphism ofA(S) into Vx such 
that 

(1) ^(Xa) = a, for all a £ S; 

(2) *(ro ç ux; 
(3) ^(A(5)) is the left idealizer of S in Wx; 
(4) ^(Ti) is the idealizer of S in Wx. 

If S = Tx, then 
(5) * (A(S)) = Vx; 
(6) «Ki\) = tf*. 

Proof. I t is clear from the definition of ^x that ^x £ Vx, for each X £ A(5). 
We first show that A(^X;) = A(^x^i)-
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We have 

A ( W i ) = {x:x G A(iAz) and *,(*) G A (ft)} 

= \xu(x) G Az and ôdie(x) G A (ft)} 

= {xle(x) G Azand^ze(x) G Ax}. 
Hence 

e(A(ftft)) = \e(x):e(x) G A, and M * ) G A,} 

while 

e(A(ft,)) = {6(x):e(x) G AXz}. 

By Lemma 4.3, e (A(ftft)) = *(A(ftz)) and hence A(ftft) = A (ft,). 
For any x G A (ft*) = A(ftft), 

ftft(x) = ôdxeÔdle(x) = ôdxdle(x) = Ô6xie(x) = ftz(x). 

Thus \[/ is a homomorphism. 
Suppose that, for À, / É A(5), ^ = ^ . Then Ax = Az. Let e G £ . Then 

/ = X(^)_1X(^) is such that Ee C\ Ax = E / and g = l(e)~ll(e) is such that 
EeC\ Ai = Eg. Since Ax = Az, we must have X(e)~1\(e) = l(e)~H(e), for all 
e G E. Furthermore, since ft(<5(/)) = ft(ô(/ )), we have that 0X(/ ) = 0 , ( / ) . 
Hence 

XWXW"1 = feW = ft(/) = * i ( / ) = el(e) = /(*)/(*)-*. 

Thus (X(e), /(e)) G ^ , for any e G £ (where J^7 denotes Green's r e l a t i o n e ; 
cf. [2]). Now consider a = l(e)~1\(e). We have aa - 1 = a_1a = l(e)~H(e) = 
\(e)~1\(e). L e t / be any idempotent tkaa~l. Then 

a-ya = \(e)~H(e)fl(e)-i\(e) = \(e)~H(ef )l(ef ^(e) 

= He)-i\(efMef)-i\(e). 

Consequently 

fa-Jo, = Hefy'HefMef^Hef) 

= X(e/)-1X(tf) =/XW-1X(«) = / . 

Hence / ^ a~lfa. Similarly, / rg afar1. Thus 

/ = aa~1faa~1 ^ a/a - 1 ^ / , 

a n d / = afar1, for a l l / ^ aa_1. Hence (a, aa - 1) G /z, the maximum idempotent 
separating congruence on S. Since 5 is fundamental, a = aa~l = a~xa and so 
X(e) = 1(e), for all e G £ , and X = /. Therefore ^ is an isomorphism. 

(1) Let a G 5. Then A (a) = A(a~1a) = Xd(a~1a). On the other hand 

A (ft.) = {xle(x) G AXo} = {xle(x) = Xa(e(x))-1\a(e(x))} 

= {x:e(x) = e(x)a~1a} = {x'.e(x) ^ a -1a} = A (a). 
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For any x G A (a), therefore, 

faaW = ^x0e(x) = 5ae(x)a~1 = ôe(a(x)) = a(x). 

Thus \[/xa = a. 
(2) Since e and ô are isomorphisms (2) follows directly from Proposition 2.8 

and Lemma 2.7. 
(3) Since r (5 ) is a left ideal of A(S) it follows that 5 = $(T(S)) is a left 

ideal of \p(A(S)). Conversely, suppose that a G VFx is such that aS Q S. Since 
a S Ç S , a induces a left translation^ say, on S; that is, X(5) = as, for all 5 G S. 

Consider^, ïtx G A(a),thenx G A(ae(x)) = A(e(x)) and (ae(x))~1(«e(x)) = 
€(s) . Thus (X(e(x)))-1X(e(x)) = (ae(x))-1(ae(x)) = e(x). Thus e(x) G Ax 

and x G A(^x). Conversely, if x G A(^x) then e(x) G Ax and e(x) = 
(Xe(x))-1(Xe(x)) = ( ^ ( x J ^ ^ e W ) . Hence A(€(x)) = A(ae(x)) C A (a). 
Hence * G A (a) and A (a) = A(^x). Finally, for x G A (a) = A(^x), 

iM*) = ô(9xe(x) = ô(Xe(x))(Xe(x))"1 = ô(ae(*)) (ae(x))"1 

= ôe(a(x)) = a(x). 

Thus a = ^x G *(A(S)). 
(4) By (3), if a G Wx is in the idealizer of 5, then a G ^(A(S)). But, by 

Proposition 2.9, the idealizer of T(S) in A (S) is Ti and \[/ is an isomorphism. 
Hence, the idealizer of S in Wx is ^(Ti) . 

Parts (5) and (6) now follow from parts (1), (3) and (4) and Lemma 4.1. 

For any semilattice X, let A(X) denote the automorphism group of X. 

COROLLARY 5.2. In the notation of Theorem 5.1, if S = Tx then the unit group 
ofMTi)isA(X). 

Proof. Since X is a P-ideal of X, the unit group of Ux is A (X). The corollary 
then follows from Theorem 5.1 (6). 

6. Brandt semigroups. In this section, let 5 = ^#°(G, I, I) be a Brandt 
semigroup, where G is a group and I is some set (see [2]). In [7] Petrich has 
characterized the translational hull of any completely 0-simple semigroup and 
by specializing his results to Brandt semigroups one could obtain the results 
that we obtain below by applying the techniques developed above. 

If S =~#° (G, 7, I) then E = Es = {(1, i, i):i G 1} U {0}. Hence any 
P-ideal of E is of the form {(1, i, i):i G J} VJ {0} for some arbitrary subset 
J of I. For each i, let et = (1, i, i) and let X G IY Since Ax and V(0X) are 
both P-ideals of E, we have Ax = {et:i G Ji) U {0} and V(0X) = {et:i G J2} U 
{0}, for some subsets Ju J2 of I. 

Then the restriction ^x of 0X to Ax is an isomorphism of Ax onto V (0\) and 
so determines a bijection, which we also denote by ^\, of J\ —> J2 (that is, 
fo(l, i, i) = (1, foW, iM*))). For any i ? / 1 , £ ^ H Ax = {0} and hence 
0x(e<) = 0x(O) = 0. Thus X ^ X ^ ) " 1 = 0 and consequently \(et) = 0. Let 
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x = (a, i, j) £ S. Then x = etx and \(x) = X(e*)x. If i $ Ji, then X(x) = 
\(et)x = Ox = 0. So suppose that i 6 Ji and that 0x(^) = ek, say. Then 
M^)M g *) - 1 = ek and, since e* G A\, Me*) - 1 ^*) = £<• Therefore \(et) = 
(git k, i), for some gt Ç G, and X(x) = (g*a, &, j) = (gia,\px(i), i ) . 

Following Petrich [7] we define the left wreath product L = L(«// , G) of 
the symmetric inverse semigroup on J with G as follows. Let 

L = { ( * , / ) : * € . / „ * * 0 , / : A ( * ) - » G } r > { 0 } 

with multiplication defined by 

(*,/ ) (* ' , / ' ) = WJ") if W ^ 0 and 0 otherwise, 

< W , / ) = (* . / )0 = 0, 

where / " (t) = ( W (i) ) ( / ' (*) ), if i £ A ( W ) . 
From the above discussion, we have a mapping <t> t Ti —> L given by X —» 0/%/x) 

where, for i G A(^x), /x(i) is defined by X(e<) = (/x(i), fo(i), i ) . Since, by 
Theorem 4.4, the mapping X —> \f/\ is a homomorphism it is straightforward to 
verify tha t# is a homomorphism. On the other hand, once the mappings \[/\ and 
fx are known X is completely determined. Hence 0 is a monomorphism. Finally, 
for any (^, / ) G L let X be defined by 

M**! ^I j ) = (/W«» ^ W i i ) i for any (a, i, j ) G 5. 

Then X is a left translation and (i/'x, /x) = (^, / ). Thus 0 is an isomorphism. 
Hence we have the following result. 

THEOREM 6.1. Let S = *stff °(G, I, I) be a Brandt semigroup. Then the mapping 
<j>:\ —* (î x, /x) wAere ^x andf\ are defined by 

Ha,i,j) = (/x(>>, i£x0'), j ) 

is a^ isomorphism of T± onto the left wreath product L(t/It G) of the symmetric 
inverse semigroup on I and G. 

In particular, the unit group of <f>(Ti) is the wreath product L(S(I), G) of 
the group of all permutations S (I) of / with G, where the wreath product is 
now the usual wreath product of groups (with functions acting on the left). 

The description of the unit group of 0(Ti) given in Theorem 6.1 is a special 
case of a theorem of Ault's [1]. 
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