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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS TO NEUTRAL
FUNCTIONAL DIFFERENTIAL EQUATIONS

SHAOZHU CHEN AND QINGGUANG HUANG

Sufficient or necessary conditions are established so that the neutral functional differential
equation [z(<) - G(t, it)]" + F(t,xt) = 0 has a solution which is asymptotic to a given
solution of the related difference equation z(<) = G(t, xi) + a + It, where o and 6 are
constants.

1. INTRODUCTION

We shall mainly be concerned with the second order neutral functional differential
equation (NFDE)

(1.1) [x(t)-G(t,xt))" + F(t,xt) = 0, < > 0 , ' = - £ ,
at

where G and F are continuous functionals defined as follows.

For simplicity of notation, by CJ we denote the space C(J, R) and by || • || the
sup-norm of the space, where J is any interval in R. Let r(t) ^ 0 be a continuous
function on [ 0, oo ) such that t — r{t) —> oo as t —» oo; then R{t) = inf«>t{a — r(s)} is
finite for each t ^ 0 and nondecreasing. For any x G C[ R(to),L ),0^t<,<L^oo,

define xt € Ct = C[- r ( t ) ,0 ] , to ^ t < L, by xt(a) = x(t + s), s £ [-r(t),O]. For any
A, B £ [to,L ) , A < B ,set T = max r(<). We can always view xt for each t € [4,5]

as the restriction of the function xj"(s) = x(t + a), a € [—T, 0] to the interval [—r(i),0],
so the operator x . : [A,B] —> C[—T, 0] is continuous. We then suppose that G and F
are continuous in t, for fixed <, G(f,-) and F{t,-) are continuous functionals on Ct
and for any 4 , B € [0,oo ) , A < 5 , G, F : [4 ,5 ] x C [ - T , 0 ] -» R are continuous
(T = max r(t)) and for any t € [4 ,5 ] , u , i )E C[—r, 0],

G(t,u) = G(t,v), F(t,u) = F{t,v),

provided u(s) = v(a) for — r(<) ^ a ̂  0.
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A prototype of (1.1) is, say, the following NFDE with an unbounded delay r(t) =
max{l ,< 1 / 2 }

[x(t) - \ x ( t - t1 '2)]" + f(t)x(t - 1) = 0, t> 0.

A function x(t) is called a solution of (1.1) if x(t) is continuous on [ R(t0), L ) for some
to ^ 0, to < L ^ oo and satisfies (1.1) on [to,L). If L — oo in the above definition,
then the solution x{i) is called proper. For the fundamental theory of NFDE's the
interested reader is referred to [2, Chapter 12].

In the particular case that G = 0 the equation (1.1) degenerates into a delay
equation

(1.2) x"(t)+F(t,xt) = 0.

If we assume further that r(t) = 0, then (1.2) is reduced to an ordinary differential
equation

(1.3) x"(t) + f(t,x) = 0

where f(t,x) is continuous. Many authors have extensively studied the asymptotic
behaviour of solutions to (1.3) (see [1] and the references cited therein). In [1], Chen
obtains conditions for (1.3) to have solutions which are asymptotic to linear functions
a+bt with 6 ^ 0 . The purpose of this paper is to generalise the results in [1] to NFDE
(1.1). Our results will of course be valid for the delay differential equation (1.2).

In general, the asymptotic behaviour of solutions to NFDE (1.1) rests firmly on
that of solutions to the difference equation

(1-4) D(t,xt) = h(t),

where h(t) is continuous and D(t, xt) = x(t) — G(t, xt) is the difference operator on the
left-hand side of (1.1). We also note that in case F = 0 each solution of (1.1) satisfies
(1.4) with h(t) = a + bt; that is, the equation

(1.5) x(t) = G{t,xt) + a + bt,

where a and b are constants. The initial value problem for (1.4) at t = t0 ^ 0 is to find
a continuous function x(t) on [ R(to),L ) for some L, to < L < oo, such that x(t0 + s)

coincides with a given continuous function u(s) on [i?(<o),<o] with D(to,uto) — h(to)

and (1.4) is satisfied on [to,L). If L = oo, the solution defined above is also called a
proper solution.

In Section 2 we shall give an existence result for proper solutions of (1.4). Some
properties of solutions of (1.5) will also be discussed. In Section 3, we shall establish
a sufficient condition assuring that (1.1) has a solution asymptotic to a given proper
solution of (1.5) and show later (in Theorem 2) that this condition is also necessary
under certain circumstances. Two corollaries involving simpler functionals G will be
given as examples to illustrate our main results.
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2. DIFFERENCE EQUATIONS

Consider the difference equation

(2.1) x(t) = G(t,xt) + h(t),

where h € C[0 ,oo ) and G is a continuous functional defined as in Section 1. The
following result asserts that every solution of an initial value problem for (2.1) is proper.

LEMMA 1. If there exists a K € [ 0,1 ) such that for every t ^ 0 and u, v e Ct

(2.2) \G{t,u) - G{t,v)\ ^ K\u- v\,

then for any <0 ̂  0 and any u S C[R(to),to] with u(t0) = G(to,uto) + /i(<o) there
exists a unique proper solution x(t) satisfying (2.1) for t > <o and x(t) = u(t) for
R{to)^t^to.

PROOF: It obviously suffices to show that for any A > t0 there exists a unique

solution x(t) of (2.1) for to ̂  t ^ A with the given initial values.

Let p > (1 - / n a u t i l i + max {\h(t)\ + |G(<,0)|>] be a constant and let

Bp = {xe C[R{to),A): x{t) = u{t) for R{t0) < t < tQ, \\x\\ < p}.

Evidently, Bp is a bounded, closed, convex subset of the Banach space C[R(t0), A}.
Define an operator T: Bp-> C[R{to),A) by

( G{t,xt)
(TxMt) = <

\u{t)

Since for any x £ Bp,

\\Tx\\ < \\u\\ + m « {\h(t)\ + K\\xt\\ + \G(t,0)\}

^ (1 - K)p + KP = p,

T maps Bp into itself. Also, it is easy to see from (2.2) that T is a contraction on Bp.

Hence, T has a unique fixed point x in Bp which is the desired solution of (2.1) on

[7?(<o), A\. This completes the proof of Lemma 1. U

We remark that in some specific cases Lemma 1 remains true without the assump-
tion (2.2). For example, if G(t,xt) = g{t,x(t - r(t))) with g continuous and r(t) > 0,
then the solution of any initial value problem of (2.1) can be obtained step by step and
hence it is unique and proper. The following result gives some asymptotic properties of
solutions to the difference equation

(2.3) x(t)=g(t,x(t-r(t))) + bt + q(t),

where r(t) > 0, q G C[ 0,oo ) and 6 is a constant. We call the function g{t,x)
uniformly bounded in t if g(t, B) is uniformly bounded for t ^ 0 whenever B is a
bounded subset of R.
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LEMMA 2. Suppose that q(t) — o(t) as t —• oo, g(t,x) is uniformly bounded in t
and there exist constants T > 0, N > 0 and K £ [ 0,1 ) such that

(2.4) \g(t,x)\ < K\x\ for t > T, \x\ > N.

Then every solution x(t) of (2.3) satisfies

(2.5) limsup if^H ^ |6|/(1 - K).
t—»oo I

Moreover, if b ^ 0, then the soiution a:(<) aiso satisfies

(2.6) liminf 4 ^ > 1/(1 + K).

If b — 0 and g(<) is bounded for t ^ 0, then x(<) is bounded.

PROOF: Let x(<) be any solution of (2.3). As we mentioned before, x(t) is a proper
solution. Because of the uniform boundedness of g(t,x) in t, there exists M > 0 such
that

(2.7) lff(*,*)| ^ M for |x| ^ N, t > 0.

Then, from (2.3), (2.4) and (2.7) we have, for sufficiently large t,

< K\x{t - r{t))\/t + M/t + \b\ + o(l) ^ K\x{t - r{t))\/{t - r(t)) + \b\ + o(l).

Letting t —> oo and noting that t — r(t) —> oo, we obtain

limsup \x(t)\/t < K limsup \x{t)\/t + \b\.
t—•oo t—^oo

Thus (2.5) follows immediately.

Similarly, we have, for all large t

\X(t)\/t > \b\ - K\x(t - r(t))\/(t - r(0) + o(l).

Again letting f - too we get

(2.8) liminf \x(t)\/t^ |6|/(1 + if).
t—*OO

If 6 ^ 0, then (2.8) implies that \x(t)\ —> oo, that is, either x(t) —» +oo or x{t) -> - o o
as t —» oo. Then there exists a sequence tn, tn —* oo as n —> oo, such that |x(tf)| ^
|a;(<n)| for 0 < < < < „ , with n = 1,2, . . . . Since

\g(tn,x{tn - r{tn)))\ ^ K\x(tn - r{tn))\ + M ^ K\x{tn)\ + M,

https://doi.org/10.1017/S0004972700017366 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017366


[5] Neutral functional differential equations 349

we see that x(tn) and x(<n) - g(tn,x(tn - r(tn))) have the same sign for all large n.

But, in view of (2.3), the latter reaches the sign of 6 eventually. Therefore bx(t) —* +oo

and (2.6) follows from (2.8).

If b = 0 and \q(t)\ < Mi for t ^ 0, then it follows from (2.3), (2.4) and (2.7) that

(2.9) \x{t)\ ^ M + K\x{t - r(t))\ + Mi.

Assume, to the contrary, that x(t) is unbounded, then there exists a sequence tn —» oo
such that \x(t)\ < |z(tn)|, 0 < t < tn , n = 1,2,..., and \x(tn)\ -> oo as n -> oo. But
(2.9) leads us to

|x(«B)| ^ M + K\x{tn - r(*B))| + M1^M + M1+ K\x(tn)\

and hence

a contradiction. Thus x{t) is bounded, and the proof of Lemma 2 is complete. u

3. MAIN RESULTS

Let (f>(t) G C [ R(t0), oo ) and 8 > 0 be given for some to > 0. For convenience in
the following discussions, we introduce the set

H^ih) = {xeC[ R{t0),oo ) : \x{t) - 4>{t)\ ^6, t> Rit,,)}.

The following theorem is our first result.

THEOREM 1. Suppose that <j>(t) is a proper solution of (1.5) for t > t0 > 0 and
for some given a and b. Suppose that there exist K € [ 0,1 ) and 6 > 0 such that for
any t > t0, x, y 6 H${t)

(3.1) \G(t,xt)-G(t,yt)\^K\xt-yt\.

Assume further that there exists a nonnegative function h € C [ to, oo ) (h may depend
on <j> and 6) such that

(3.2) \F{t,xt)\ ^ h{t), t>t0,

for every x £ H^(t0) and

< oo.
,oo

(3.3) / th{t)dt
Jtn
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Then there exists a solution x{t) of (1.1) satisfying

(3.4) x(t) = <j>(t) + o(l) as t -* oo

PROOF: Let tt > t0 be so large that / t ~ th{i)dt ^ (1 - K)S. For any x € H^ty),

set y = x — 4>; then y G H^ti). Obviously, Hfj(tx) is a bounded, closed, convex subset

of the Banach space Coo [ R{ti)>oo ) of all bounded continuous functions on [ R(ti),oo )

equipped with the sup-norm. Define an operator T: H^ti) —* C^ [ 12(<i),oo ) by the

following relations

(Tiy)(i) = ^ v '"" ' " ' '">t]' t > h '

(-»^{S;«;,:)F("'+w"
With the aid of (3.1), one can easily show that Tt: #o(<i) ~* Hjf6(t{) is a con-

traction. From (3.2), (3.3) and the choice of <i we have

>
sh(s)da < (1 - K)S

for t > h and hence T2: -ffo(<O ~* ^ o 1 " ^ ^ ^ ) - In v»ew of (3.2), (3.3) and the
continuity of F, Ti is a continuous operator. It follows that T: H$(ti) —> H$(ti) is
continuous.

On the other hand, the assumptions on F assert that all functions in TzH^ti)

are uniformly bounded, equicontinuous and equiconvergent to zero as t —> oo. For any
e > 0, let A ><! be so large that \y(t)\ < e/2 for every y £ T 2 ^(<i ) and * > ,4. Since
the restriction S of T2HQ{1\) to [JR(<I),J4] is precompact, there is a finite (e/2)-net
{u1,...,um} of S. Let t>i(<) =ui(t) for /?(<i) ^ < < A and v,(<) = Ui(A) for t ^ A,

i = l,...,m. Then it is easy to show that {i>i,... ,wm} is an e-net of Ti-^oC'i) ' n

Coo [ .R(<i),oo ). Therefore, T2^TQ(<1) is precompact and hence T2 is compact.

Thus, 71 has a fixed point y in Hq(ti) by the Krasnoselskii thoerem [3, Theorem
4.4.1]. Letting x{t) = y(t) + <f>(t) for t ^ R^) and noting that </>(t) satisfies (1.5), we
then obtain

( G(t,xt) + a + bt-ft°°(S~t)F{3,x,)d3,
x(t) = <

a solution of (1.1).
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Finally, since

\x(t)-4{t)\ = \G(t,xt)-G{t,4>i)- I (s-t)F(s,x,)ds\
Jt

,00

^ K \ \ x t - <j>t\\ + / s h ( s ) d s , t ^ t i ,
Jt

we can show, as in the proof of Lemma 2, that

limsup|a;(t) - <j>(t)\ = 0,
t—00

which implies (3.4). This completes the proof of Theorem 1. 0

Next, we shall apply Theorem 1 to investigate the asymptotic linearity of solutions
for the following NFDE

(3.5) [*(*) - p(t)x(t - a - /?<)]" + F(t, xt) = 0,

where a ^ 0, 0 < / ? < l , p e C [ 0 , o o ) and there is a constant P, \P\ < 1, such that
p(t) = P + o(l/t) as t ->oo.

COROLLARY. Let <f>(t) = a + bt, a, b e R- If there exist a S > 0 and a nonnegative
function h € C [ to,<x> ) for some t0 > 0 such that (3.2j and (3.3) hold for sdl x €

)> then the equation has a solution x(t) satisfying

(3.6) x(t) = a + bt + o(l) as t -» 00.

PROOF: First of all, <£(<) satisfies

(3.7) <j>{t) - P<f>{t - a - (3t) = A + Bt,

where A — a - Fa + P6a and B = b - Pb + Pbj3. Next, let y(t) be a proper solution
of the difference equation

(3.8) y{t) - p(t)y{t - a - pt) = A + Bt

((3.8) has a proper solution by Lemma 1). We claim

(3.9) y(t) = <j>{t) + o{t) as t -» 00.

In fact, from (3.7), (3.8) and the assumption on p(t) we have

y(t) - </>(t) = P{t)[y(t -a-f5t)-<t>{t-a- pt)] + (p(t) - P)4>{t - a -

= p{i)[y{t -a-(3t)-<l>(t-a- (3t)\ + o(l).
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Then, for some K £ [ 0,1 ) , and all large t, we get

\y(t) - <f>{t)\ ^ K\y(t -a-0t)-4>{t-a- f3t)\ + o(l).

The same argument used in the proof of Lemma 2 allows us to affirm

limsup|y(<)- <j>(t)\ = O,
t->oo

which gives (3.9).
Finally, Theorem 1 provides a solution x(t) = y(t) + o(l) of (3.5), which satisfies

(3.6) by (3.9). This proves the coronary. D

Now we turn to the following NFDE

(3.10) [*(*) - g(t, x(t - r(<)))]" + F(t, xt) = 0,

where g is continuous, F is defined as before and r G C [ 0,oo ) with 0 < r{t) $C r(t).
The related difference equation is

(3.11) x{t)=g{t,x{t-r{t))) + a + bt.

THEOREM 2. Let g(t,x) be uniformly bounded in t. Suppose that there exist
constants T ̂  0, 'N > 0 and a 6 [ 0,1 ) such that

(3.12) \g(t,x)-g(t,y)\^a\x-y\fort>T, \x\, \y\>N,

and

(3.13)

(3.14) ±[F(t,±u)-F(t,±v)]2 0

for t ^ T and for any u, v £ Ct with u(s) ̂  v(s) ̂  N, -r(t) < s < 0. Then the
equation (3.10) has a solution x(t) = <f>{t) + o(t) as t —> oo for some proper solution
4>{t) of (3.11) with b ̂  0 if and only if there exists a k ̂  0 such that

(3.15) | / tF{t,yt)dt\ < oo, y(t) = kt.
Jo

PROOF: Necessity. Let (f>(t) be a proper solution of (3.11) with 6 ^ 0 and x(i) —

<j)(t) + o(l) a solution of (3.10). Let us assume b > 0. The case of 6 < 0 can be dealt
with in a similar way. In view of (3.12) and the uniform boundedness of g(t,x) in t,

we have

\g(t,x)\ ^ \g(t,x) - g(t,N)\ + \g(t,N)\

\g{t,N)\ for t>T, \x\>N,
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which yields (2.4) for some K G ( a , l ) . It follows from (2.6) in Lemma 2 that cf>(t)

tends to +oo as t —> oo; so does x(t) . Choose t0 > 0 so large that

(3.16) x{t) > N for i Ss R{t0).

Let
w(t) = x{t) - *(t,*(t - r(t))) - tft) + g{t,4>(t -

then w(f) - » 0 a s t - » o o . Since, by (3.13) and (3.16),

(3.17) w"{t) =

for t > t0, we have w'(<) ^ 0, w(t) ^ 0 and w'(t) —> 0. Integrating the equation in

(3.17) twice yields

r°°

(3.18) w(t) = - / {s - t)F(s,<c,)ds, t > t0,

which implies

(3.19) / tF{t,xt)dt < co.

Jt0

If we rewrite (3.18) as
, oo

x(<) = p(<,x(< - r{t))) + bt + a- I {s- t)F(s,x.)ds,

then from (2.6) we know that there is a k G (0,6/(1 + K)) such that x(t) > kt for all
large t , say, for t ^ <i > <o • We then appeal to (3.14) to conclude that

i»OO

tF{t,xt)dt < oo, y(t) = kt,
Jti

which completes the necessity part of the proof.

Sufficiency. Again, we assume k > 0 and omit the similar proof for k < 0. Let
<l>{t) be any proper solution of (3.11) with 6 = A;(l — K)/2. By Lemma 2 we see that
4>{t) —* +oo. Then we can choose a constant t0 > T so large that for any x £ J5T (̂<0)
we have

TV ̂  x{t) ^kt, t^ R(t0).

Set h(t) = F(t,(k-)t). Then (3.2) holds because of (3.14). Also, (3.15) gives (3.3).
Thus, Theorem 1 provides a solution x(t) = <j>{t) + o(l) of (3.10). This completes the
proof of Theorem 2. u
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As an example, consider the equation

n

(3-20) [x(t) - \x(t - T)\" sgax(t - r)]" + £ qi(t)x{t - n(t)) = 0,

where r > 0, a £ (0,1/2] are constants, ?,-, r̂  £ C [ 0,oo ) are nonnegative functions
with t — rj(<) —• oo as t —> oo, i — l , . . . , n . The difference equation associated with
(3.20) is

(3.21) x(t) = g{x{t - r)) + A + Bt,

where g(x) = \x\asgnx. Applying Theorems 1 and 2 to the equation (3.20) we can
deduce a stronger result.

COROLLARY. For any function of the form

(3.22) iP{t) = a + bt + \b\'7t'Tsgnb, 6 ^ 0 , t> 0,

the equation (3.20) has a solution x(t) = r/;(t) + o(l) as t —> oo if and only if

(3.23) / * / . ( < - ri(t)hi(t)<H < °°-
i = l

PROOF: We first observe that the function g(x) is independent of t and the func-
tional F(t,xt) = "22qi(t)x{t -ri(t)) is linear and hence (3.12-14) hold for, say, T - 0,
N = 1, a = 1/2. We also note that (3.23) holds if and only if (3.15) holds for some,
and hence all, k ^ 0. Therefore, all that is needed is that for every function ij)(t) of
the form (3.22) there exists a solution (j>(t) of (3.21) such that 0(<) = tp(t) + o(l) as
t —> oo. For if (3.23) holds, hence (3.15) holds for all k ^ 0, then we can find a solution
x(t) = <j>(t)+o(l) = i/>(t)+o(l) of (3.20), using the argument in the sufficiency part of the
proof of Theorem 2. Conversely, if (3.21) has a solution x(t) = i>(t) + o(l) = <j>(t) + o{l),
then Theorem 2 assures us of (3.15) for some k yt 0, hence (3.23) holds.

To be definite, we assume that b > 0. The discussion for b < 0 proceeds similarly
and is therefore omitted. Let y(t) be a proper solution of (3.21) with B = b and A
chosen properly. Lemma 2 implies that y(t) —> -f oo as t —> oo and is bounded above
by a linear function. It follows from (3.21) that

(3.24) y(t) = A + Bt + o{t) as t -> oo.

Substituting (3.24) into (3.21) we have

y(t) = A + Bt + {Bt + o(t))a = A + Bt + B°t° + o(t°).
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Iterating (3.21) once more, we arrive at

3/(<) = A + Bt + [A + B{t - r) + Ba{t - rf + o{t°))a

(3.25) = A + Bt + {Bt)"[l + {Bty-1 + o

= A + Bt + (Bty + <r(Bt)2'T-1 + o

We now take A = a if a < 1/2 and A = a - a if tr = 1/2 so that y(t) = a + bt +

+ o(l) = <f>(t) + o( l) . This completes the proof of the corollary. D

Remark . Apart from some manipulations, one can prove the corollary for 1/2 < a < 1

with a certain type of function ip(t) in place of (3.22); for example

m ^ 1 an integer,

for 0 < <T < m/(m + 1). We omit the details.

REFERENCES

[1] S. Chen, 'Asymptotic linearity of solutions of nonlinear differential equations', Bull. Austral.
Math. Soc. 35 (1987), 257-265.

[2] J. Hale, Theory of functional differential equations (Springer-Verlag, Berlin, Heidelberg, New
York, 1977).

[3] D.R. Smart, Fixed point theorems (Cambridge Univ. Press, 1980).

Department of Mathematics,
Shandong University,
Jinan, Shandong, 250100
Peoples Republic of China

https://doi.org/10.1017/S0004972700017366 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700017366

