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Gyrokinetic theories, even ‘global’ models, typically rely on a separation in scale (in
perpendicular wavelength) between the fluctuations and the system scale. In such models
direct simulation of system-scale dynamics like magnetohydrodynamic (MHD) motion is
formally not consistent. Drift-kinetic theory, on the other hand, may be directly applied
to model system-scale MHD-ordered behaviour. I review the long-wavelength limit of
standard gyrokinetics and drift kinetics to present the relationships between these theories
in an elementary fashion. This provides a pathway to global gyrokinetic modelling,
resulting in an approach that is structurally similar to kinetic MHD, and I present
dynamical equations for solving global field evolution in this framework. Departures
from certain earlier global gyrokinetic theories include the appearance of magnetosonic
(fast) modes, and the cross-coupling of the parallel and perpendicular currents with
perpendicular and parallel magnetic field components. A periodic two-dimensional
testcase is outlined as a benchmarking and implementation target, to help clarify practical
aspects of these theories, with minimal complexity in terms of boundary conditions, and
a proof-of-principle implementation of a field-solver is exhibited. To motivate this work,
I first illustrate certain limitations of existing global gyrokinetic frameworks and directly
identify how scale separation approximations lead to certain ‘missing’ system-scale field
terms in global gyrokinetics, largely as a result of simplifications associated with the
field representation in terms of A‖ and B‖. As a result, the currents in the gyrokinetic
Ampère’s law resulting from a gyrokinetic equilibrium distribution do not match the
currents implied by Ampère’s law in a force-balance MHD equilibrium. I present a simple
choice of equilibrium distribution function whose drift-kinetic currents are consistent with
MHD currents; a specific Grad–Shafranov equilibrium is used to illustrate the size of the
components of the parallel currents.

Key words: fusion plasma, plasma instabilities, plasma simulation

1. Introduction

A long-standing goal of tokamak simulation has been to create a full-device model
capable of treating large-scale motion such as global magnetohydrodynamic (MHD)
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2 B.F. McMillan

modes in conjunction with gyroscale turbulence. Even simulating individual global
MHD-related modes with full kinetic effects often requires correct treatment of plasma
motion at the gyroscale: fine-scale layers occur as a result of coupling to continua and
nearly singular behaviour near rational surfaces.

I refer to any gyrokinetic theory that orders the perpendicular fluctuation length scales
to be small compared with the system length as scale-separated gyrokinetics; this is
fundamental to local gyrokinetics, but also near-universal in applied global gyrokinetics,
which mostly follows treatments of Hahm (1988) or Frieman & Chen (1982). This
ordering is not compatible with the treatment of system-scale MHD-ordered dynamics.
These shortcomings came to light first in the context of the system-scale Poisson
equation (motivating multiscale approaches to correctly evolve the slow dynamics at the
system scale (Abel et al. 2013)): here, I consider issues that arise in an electromagnetic
context, which is less well explored (Martin-Collar et al. 2020). Scale separation is
key to the derivation of Hahm (1988), and allows certain simplifications to be made
because perpendicular spatial derivatives of the fluctuations can be assumed larger than
those involving the background field; corrections then arise at higher order (Parra &
Calvo 2011; Dudkovskaia 2023). One place that this separation-of-scales simplification
is used is to decouple the field equations into parallel and perpendicular components
involving A‖ and B‖ respectively, which is only possible in the short-wavelength limit
(moreover, the resulting field is not necessarily even divergence-free). A more subtle way
a simplification arises is when the the near-identity guiding-centre transform is neglected
when a perturbation is introduced (Hahm 1988). Despite this, it is relatively common for
global scale-separated gyrokinetic codes to resolve and discuss the system-scale dynamics
in their simulations. Our goal here is not to discuss whether this is useful; arguments that
global gyrokinetics might be effective even for formally excluded phenomena (Lanti et al.
2019) have been made, but this is strenuously disputed (Parra & Catto 2009).

Instead, I will discuss what would be needed to produce a minimal consistent
gyrokinetic model for global plasma dynamics (that allows MHD-like motion) and
explore how one might practically implement a consistent treatment. This appears to
require not an extension of typical gyrokinetic time-evolution schemes but something
much closer to an extended kinetic MHD scheme; this is conceptually similar to the
gyrokinetic electromagnetic treatment explored by Morrison (2013), but uses the Darwin
(low-frequency) limit of Maxwell’s equations. Explaining why this scheme is needed and
how it would work is one major aim of this paper. The other is to make some simple
practical progress to implement this formalism, to demonstrate that this kind of approach
has potential for application, so it can serve as more than just a framework for theoretical
discussion.

One important requirement for useful simulation of large-scale tokamak dynamics is
reproduction of MHD in the appropriate limits, in addition to gyroscale drift modes.
The simplest kinetic theory that is able to capture global MHD-ordered dynamics is
drift kinetics. Various fluid models may be directly derived from drift kinetics, including
various forms of full (Grad 1966; Kulsrud 1983; Takahashi, Brennan & Kim 2009) and
reduced (Miyato et al. 2009) MHD. Early papers on guiding-centre models (Sagdeyev
et al. 1958; Grad 1966) describe how the drift-kinetic models (i.e equations for the
guiding centres) may be transformed into fluid equations. Drift-kinetic models may also
be recast in the form of kinetic MHD models (Kulsrud 1983) (as well as guiding-centre
MHD models, gyrokinetic MHD models exist (Burby & Tronci 2017)), where the kinetic
equations provide closure to the fluid equations, through modified current and/or pressure
terms. In a maximalist treatment of kinetic MHD that treats every species kinetically, the
kinetic equations are used to provide closure to the fluid equations, so the kinetic physics is
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Relationship between drift kinetics, gyrokinetics and MHD 3

fully equivalent to direct kinetic modelling. The Lorentz force in kinetic MHD is also fully
equivalent to a direct drift-kinetic treatment, because the currents match. One place where
kinetic MHD models almost invariably use a simplified treatment is in Ohm’s law, which is
usually assumed to be the ideal MHD Ohm’s law, possible with bulk resistivity (Takahashi
et al. 2009); this rules out the treatment of various kinds of sound- and drift-related
dynamics where the kinetic origin of the electric field is crucial. Capturing the kinetic
physics that gives rise to a finite parallel electric field can be improved by more detailed
modelling of electrons (Lyster & Leboeuf 1992). Practical applications/implementations
of kinetic MHD models do not usually follow a maximalist approach, because their reason
for existence is to allow a simplified, and thus numerically more tractable, treatment of the
background plasma; such codes often consist of a MHD code coupled to a kinetic solver
for high-energy particles.

Certain aspects of the relationship between gyrokinetics and drift kinetics have been
explored earlier; Duthoit, Hahm & Wang (2014) was able to find long-wavelength field
and kinetic equations that matched drift-kinetic formulae at intermediate scales where
both the theories presented were valid. Gyrokinetics may be written in the form of a
small correction to drift-kinetic theory (Dimits 2010; McMillan & Sharma 2016), which
provides a pathway to implementations that are able to correctly treat both gyroscale and
system-scale motion, by modifying a drift-kinetic solution scheme. As a preliminary step
to implementing such a framework, I investigate what differences exist between typical
global gyrokinetic models and a general MHD-compatible drift-kinetic model. I proceed
with this by considering these theories in a variational framework, where the compact
representation of the theories simplifies the comparison, and one can unambiguously
identify certain currents and conservation relations (Burby & Tronci 2017). Some
re-derivations of drift-kinetic field equations are presented here, in order to illustrate
where standard gyrokinetic theory is incompatible with global MHD. This mostly occurs
because gyrokinetic derivations drop system-scale derivatives compared to perpendicular
fluctuation derivatives. One necessary requirement for modelling system-scale MHD-like
dynamics is for the model to be able to represent the system-scale equilibrium correctly,
and, in particular, equilibrium currents. This is the case even for codes that are only
designed to study fluctuations, because the model needs to faithfully represent nearby
equilibria that differ from the assumed background state. Equilibrium currents are crucial,
in particular, in the drive mechanism of kink and tearing modes.

Because at the system scale fluctuations parallel and perpendicular to the magnetic
field do not decouple (in the sense, for example, that currents parallel to the field can
produce magnetic field fluctuations with a parallel component), formulations that solve
field equations in terms of the full E and B vectors are useful, and in general one must
allow the fields to evolve as dynamical quantities. Recently, approaches which are not only
gauge-invariant, but where only the electromagnetic fields (and not potentials) appear in
the field equations and equations of motion have been proposed as a useful and practical
approach to gyrokinetics (Duthoit et al. 2014; Burby & Brizard 2019; Zonta et al. 2021).
The use of physical fields rather than gauge-dependent quantities is desirable, but it is a
somewhat radical difference from typical gyrokinetic approaches. Keeping time-evolving
fields in the symplectic form is another departure from certain forms of gyrokinetics where
the perturbed fields appear only as an effective potential. A time-evolving symplectic form
leads to the appearance of time derivatives of fields in the particle equations of motion,
which is presented as an obstacle to numerical implementation of kinetic theory in various
previous works, but is actually standard in basic (i.e. non-gyrokinetic) treatment of particle
motion in electromagnetic fields, and has a relatively simple interpretation in light of MHD
motion. One can thus recover field equations in the form of kinetically modified MHD.
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That is, an Ohm’s law and a perpendicular momentum equation, with relevant drift-kinetic
effects captured.

In the first part of the paper, I review and compare variational forms for minimal
drift-kinetic and gyrokinetic models of interest. I then discuss issues of equilibrium
distribution functions in these theories and describe a (new) relatively simple analytical
background distribution that is both consistent with MHD currents and a solution to
the Vlasov equations to the order required: parallel equilibrium currents are crucial to
modelling, for example, kink modes (Dudkovskaia 2023), so this is a basic condition for
modelling them correctly. This analysis allows us to show that there are components of
global currents missing from typical global formulations of gyrokinetics. I then review
practical implementational issues for a system-scale drift-kinetic formulation, providing
a (novel) set of field equations that resemble kinetic MHD, with an extended momentum
law and Ohm’s law. I then use a periodic two-dimensional (2-D) MHD equilibrium to
provide a proof-of-principle implementation of the guiding-centre Maxwell equations,
solving for the dynamics of the electric and magnetic fields. This testcase is intended as
a springboard for numerical investigations of the properties of more complex gyrokinetic
formulations. This scheme is consistent with an extended version of kinetic MHD, as
might be expected. This framework is not perturbative, i.e. there is no splitting into
background and fluctuations, and this both simplifies the presentation in certain ways,
and also makes it appropriate for modelling large-amplitude dynamics.

2. Variational theories for drift kinetics and gyrokinetics

In this section I review the relationship between drift-kinetic theory and gyrokinetic
theory; this allows us to explain what additional physics must be retained in a gyrokinetic
code in order for it to capture correctly system-scale MHD-ordered motion. Strong-flow
drift-kinetic Lagrangians are presented here, consistent with MHD: this promotes the
dynamics of plasma motion to low order in the theory compared with standard weak-flow
gyrokinetic theory, and thus bypasses some of the complexities that appear at higher order.
The weak-flow gyrokinetic formalism implemented in ORB5 (Lanti et al. 2019) is used as
a baseline; many of the global codes make similar geometrical approximations, so most of
the considerations generalise.

In drift-kinetic and gyrokinetic theory, the overall Lagrangian may be decomposed into
an expression for the field Lagrangian, which is the same for both theories (and just
magnetic energy density where quasi-neutrality is assumed), and a per-particle Lagrangian
Lp, with a system Lagrangian Ls = ∫

Z Lp + ∫
R Lf (the integrals are over particle phase

space and volume respectively). Largely, I will be working within a drift-kinetic ordering,
where, given system length scale R, the small parameter is ρ∗ ≡ ρ/R � 1, with ρ the
thermal gyroradius, flows are sonic, with the thermal speed vt ∼ E/B, so fields are
ordered qφ ∼ qAvt ∼ mv2

t /ρ
∗, except parallel fields are smaller, with RE‖ ∼ mv2, and

time scales τ ∼ R/vt so that τqB/m � 1. The drift-kinetic particle Lagrangian may be
written (Littlejohn 1983) up to first order in ρ∗ (keeping strong flow terms) as

Lp = (mv‖b + qA) · dR
dt

+ mμ
q

dθ
dt

−
(

m
2
v2

‖ + μB + qφ − m
2B2

E2
⊥ + 1

2
μv‖b · ∇ × b

)
.

(2.1)

Here, the particle phase space is labelled as (R, v‖, μ), with the (to lowest order)
correspondence to standard laboratory-frame coordinates in that μB is the perpendicular
particle kinetic energy, v‖ the parallel velocity, R the guiding-centre position and dθ/dt
the rate of change of gyroangle. Here B is the magnetic field vector, A (with ∇ × A = B)
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is the vector potential, E is the electric field, φ is the electrostatic field (with E = −∇φ −
∂A/∂t) and b = B/B, and these are evaluated at the guiding-centre position. Parameters
m and q are the particle mass and charge respectively, and perpendicular components are
taken using G⊥ = G − bb · G. Note the appearance of the coupling between the potentials
(A, φ) and the trajectory (dR, dt) in a four-vector (contravariant) form, which is sufficient
to ensure the equations of motion and field equations may be written in terms of the
physical fields E and B (rather than electromagnetic gauge-dependent A and φ).

This particle Lagrangian is equivalent, to this order, to the expression

Lp = (mv‖b + qA) · dR
dt

+ mμ
q

dθ
dt

−
(m

2
v2

‖ + μB + qφ − m
2B2

E2
⊥
)

(2.2)

obtained using a different choice of parallel velocity coordinate (Parra & Calvo 2011;
Burby, Squire & Qin 2013) (discussions on the Baños drift explain why this difference
arises (Northrop & Rome 1978)). These first-order expressions are sufficient to find the
Euler–Lagrange equations for Ṙ and v̇‖ at the same order (Burby & Tronci 2017). This
gives the currents in the plasma up to the order of the diamagnetic drifts, sufficient to
resolve MHD-ordered currents and plasma motion. Indeed two-fluid and MHD theory
may be derived directly from these equations, on taking moments and enforcing the highly
collisional limit.

For the purposes of, for example, linear stability theory for plasmas with weak flows
(or local gyrokinetics), the polarisation term may be simplified to a Boussinesq-type form
by considering it to be integrated with respect to a fixed background distribution function
and magnetic field, yielding a term (mn0/2B2

0)E
2
⊥0 after velocity-space integration, where

the perpendicular projector is relative to the assumed background field. This gives rise to
a linearised polarisation term, which appears as a field term, rather than in the particle
Hamiltonian; as a result, the particles are not subject to the ponderomotive drift.

To simplify (2.2) to a representative Lagrangian associated with a global gyrokinetic
code, the replacement A = A0 + bA‖ + A⊥ is made, with A‖,A⊥ taken one order smaller
(the parameter is εE ∼ A‖/A ∼ E/B0vt so this is also a small flow ordering) than A. For
modes with short perpendicular wavelength, A‖ gives rise to magnetic field fluctuations
that are mostly perpendicular to the background field, and the A⊥ term gives rise to a field
strength fluctuation ∇ × A⊥ ∼ bB‖. With these simplifications

Lp = (mv‖b + qA0 + bA‖) · dR
dt

+ mμ
q

dθ
dt

−
(m

2
v2

‖ + μ(B0 + B‖)+ qφ − m
2B2

(∇⊥φ)2 + O(εEρ
∗)

)
, (2.3)

where fluctuations in b and in B (except in the energy μB) result in second-order mixed
terms not explicitly evaluated (Parra & Calvo 2011). Here A⊥ is removed from the
symplectic term through a small coordinate shift, the approximation bB‖ ∼ ∇ × A⊥ is
used and the orderings on time and spatial variations allow one to use an electrostatic
polarisation term, thus neglecting the kinetic energy associated with fast waves. Equation
(2.3) may be compared with, for example, the Lagrangian (expressed in v‖ form
(Mishchenko et al. 2014)) used in ORB5 gyrokinetic code (Lanti et al. 2019). At this
point, the remaining differences between ORB5 gyrokinetic theory and this drift-kinetic
Lagrangian are through the gyroaverages on the perturbed fields A‖ and φ and the neglect
of B‖ (various other global codes include B‖ (Dannert & Jenko 2005)). Also, some of
these terms are integrated with the background distribution f0 and not the full f . In the

https://doi.org/10.1017/S0022377823000089 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000089


6 B.F. McMillan

long-wavelength ordering gyroaveraging leads to a modification to the perturbed particle
motion two orders in ρ∗ lower than that due to the perturbed motion itself, and to a
modification to the current at least one order lower than the perturbed currents (some
currents nearly cancel).

The field bB‖ is not divergence-free in general, which would require b · ∇(B‖/B0) = 0,
and the divergence of the field is only ‘small’ if the fluctuation has short perpendicular
wavelength. Whether this matters practically is unclear, although any derivation that
assumes magnetic fields are divergence-free will not hold. This Lagrangian also no longer
possesses explicit electromagnetic gauge invariance. Additionally, as a consequence of the
different treatment of background and perturbed fields, it no longer has the Hamiltonian
structure of Morrison (2013).

In the quasi-neutral limit, electric field energy is ignored and the drift-kinetic field
Lagrangian is given as

Lf = −(∇ × A)2

2μ0
, (2.4)

whereas the standard electromagnetic gyrokinetic formalism has

Lf = −(∇⊥A‖)2 + B2
‖

2μ0
, (2.5)

which is equivalent for fields A = A0 + bA‖ with short perpendicular wavelength as

[∇ × (
A0 + bA‖ + A⊥

)]2 ∼ (B0 + B‖b + b × ∇A‖)2 = (B0 + B‖)2 + (∇⊥A‖)2, (2.6)

where the variation of b has been ignored.
Although one could attempt to repair the field representation and retain additional

terms in the gyrokinetic Lagrangian to ensure it matches the drift-kinetic Lagrangian
in the long-wavelength limit, a more direct approach is to retain the full magnetic field
perturbation in the symplectic form, given that, for example, the parallel and perpendicular
field equations will in either case be coupled. In this direct approach, the field equations,
which are presented explicitly in § 5, contain an implicit dependence on ∂E/∂t. Slightly
more complicated Euler–Lagrange equations also arise, especially compared with a
Hamiltonian formulation where A‖ appears only in a modified potential. Many of the
quantities solved have exactly the same interpretation in drift-kinetic and gyrokinetic
theory, such as the electromagnetic fields A‖ and φ.

The particle equations of motion resulting from these Lagrangians (Cary & Brizard
2009) may be expressed as

dR
dt

= 1
BB∗

‖
E∗ × B + v‖

B∗
‖
B∗,

dμ
dt

= 0,
dθ
dt

= qB/m,
dv‖
dt

= q
mB‖

B∗ · E∗,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.7)

with B∗ = ∇ × A∗, A∗ the term multiplying dR in the one-form, and qE∗ = −∇H, with
H the Hamiltonian. Also, B∗

‖ = b̂ · B∗. At lowest order, these are equivalent to the original
drift-kinetic equations of motion (Kruskal 1962; Grad 1966), with the curvature, E × B
and grad-B drifts, but with small corrections that allow for exact conservation of energy,
momenta and phase space volume. To avoid the dependence of these equations of motion
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on the time derivative of A‖, certain codes (including ORB5) evolve p = mv‖ + qA‖
instead of v‖ and thus move the perturbed field fully into the Hamiltonian.

An important class of modified gyrokinetic Lagrangians move the plasma flow into
the symplectic form (Sosenko, Bertrand & Decyk 2001; Dimits 2010; Duthoit et al.
2014). Although this does not lead to higher formal accuracy if the same orderings are
retained, for long-wavelength perturbations the amplitude of the gyroangle-dependent
terms (before the small coordinate shift) is much smaller than assumed by the ordering:
this leads to a long-wavelength formulation which is better than might be expected and
thus closer to drift kinetics (in an intermediate-length-scale regime, as noted by Duthoit
et al. (2014)). By formally taking advantage of this improvement as part of the ordering,
one may derive extended schemes that simultaneously allow gyrokinetic-ordered and
drift-kinetic-ordered perturbations (Dimits 2010; McMillan & Sharma 2016). A major
apparent obstacle is the appearance of time derivatives of the electric field in the dynamical
equations, which requires a modified solution scheme (Sharma & McMillan 2020). In
the MHD-like approach explained later in this paper, this issue has a straightforward
resolution.

3. Consistency of gyrokinetic equilibria with MHD equilibria

A well-known consistency issue in applied gyrokinetics is that the assumed background
distributions (f0) of ions and electrons have gyroaveraged charge that may not exactly
sum to zero, consistent with a zero background electric field; given equal guiding-centre
charges, the pullback transformation and gyroaveraging give rise to a free-charge
separation, which is small, but the associated electric field may be significant. Global
gyrokinetic codes normally ignore any net background charge (e.g. see the discussion
after equation (17) in Jolliet et al. (2007)).

As a preliminary to obtaining and implementing dynamical equations, I discuss here the
electromagnetic extension of this, the correspondence between the currents implied by a
gyrokinetic background distribution function (currents which appear in the gyrokinetic
or drift-kinetic Ampère’s law) and those of MHD (i.e. the currents that appear in
Grad–Shafranov equilibria, and satisfy ∇ × B = μ0J ). Currents also appear in kinetic
theories through direct motion of the guiding/gyrocentres, leading to accumulation
of free charge; such currents are not necessarily equal to those that appear in the
gyrokinetic/drift-kinetic Ampères law. The question is whether gyrokinetic distribution
functions imply currents that agree with the MHD equilibria which are used to define the
background field. Gyrokinetic formulations like ORB5 and GENE tend to only resolve
perturbed currents (e.g. between equations (10) and (12) of Bottino et al. (2010) the
background term quietly disappears), but the perturbed currents depend on the equilibrium
currents, when the plasma moves. Practically, this is particularly important for kink mode
physics, where diamagnetic-drift-ordered parallel currents in the equilibrium lead to a
driving force once the plasma is displaced. The currents associated with particle motion
in drift kinetics/gyrokinetics may be obtained directly by taking real space moments
(including the pullback), but I use a variational approach; Pfirsch (1984) contains a
complete variational derivation of the currents in a drift-kinetic system, and the form I
obtain is similar. The derivation of Lee (2016) touched on several of the issues. I present
a relatively simple kinetic equilibrium distribution function which is a solution to the
unperturbed gyro-Vlasov–Maxwell equations, and whose first three moments match the
MHD equilibrium up to the order of the diamagnetic currents. Neoclassical equilibria will
also satisfy this consistency condition.
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Let us vary the system Lagrangian Ls (sum of (2.2) and (2.4)) with respect to A to find
the gyrokinetic Ampère’s law. I vary A by δA and require

0 = δA
∂

∂A

[∫
Z

Lp +
∫

R
Lf

]
= −

∫
dR

1
μ0
(∇ × δA) · (∇ × A)

+
∫

dZ f
[

q
(
δA + v‖

m
qB
(1 − bb) · ∇ × δA

)
· dR

dt
− μb · ∇ × δA − ∂δA

∂t
· (

mE⊥/B2)] ,
(3.1)

where here (and throughout the paper) there is an implied sum over species that is omitted
to simplify the expressions. Two terms on the right-hand side can be integrated by parts,
assuming the field normal to the boundary is zero, and for arbitrary variations of δA this
implies

1
μ0

∇ × B = ∇ ×
∫

dv

[
fμb − fq

mv‖
qB

dR⊥
dt

]
+

∫
dvfq

dR
dt

+
∫

dv
1
B∗

‖

∂

∂t

(
f

B∗
‖

B
mE⊥

B

)
(3.2)

and the terms on the right-hand side are identified as currents in the drift-kinetic Ampère’s
law. I define J mag as the perpendicular current arising from the first term (in square
brackets), J drift as the perpendicular current arising from the second term, J pol as the
current arising from the third term and J‖ as the parallel current associated with this
expression. This form (ignoring the fourth term on the right-hand side) is seen in early
work on guiding-centre theory such as equation (11) of Sagdeyev et al. (1958), but there are
some important subtleties here in the volume element, and in the correspondence between
the distribution function f in standard (X , v) coordinates and in Littlejohn’s modified
guiding-centre variables. At the order of the diamagnetic drifts, and with weak flows, these
currents reduce to the usual familiar parallel, curvature, gradient drift, magnetisation and
polarisation currents.

The variation of the field direction b in the symplectic term leads to the higher-order
current in the fourth term on the right-hand side; the vorticity is small compared with
the gyrofrequency, and is even in v‖, so that this term is the product of a drift-ordered
vorticity and the small odd moments of f , and thus ordered small compared with the other
currents. In a complete fully nonlinear formulation, keeping this term would be required
for exact conservation to hold, although a linear or delta-f code might simply replace b
with the unperturbed field b0 in the Lagrangian (and thus conserve modified energies and
momenta). Note the correspondence here to the additional magnetisation terms present in
equation (63) of Pfirsch (1984).

Now consider the question of equilibrium currents, where the polarisation terms may be
ignored. I consider first the so-called ‘global Maxwellian’ gyrokinetic particle distribution
given by

fM = n(Ψc)

[2πT(Ψc)]3/2
exp

[
μB + mv2

‖/2

T(Ψc)

]
, (3.3)

which is a function only of the conserved quantities ε = μB + mv2
‖/2 and the canonical

toroidal momentum Ψc = Ψ + mFv‖/qB (with Ψ the poloidal flux). This is a gyrokinetic
equilibrium in the sense that f is constant along unperturbed trajectories: it is therefore
a solution to the gyro-Vlasov equation. In the small ρ∗ limit this is a local isotropic
Maxwellian with density n and temperature T (and pressure p), but the use of a canonical
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momentum function leads to a correction, which is at next order just a shifted Maxwellian,
with a net velocity in the parallel direction (the associated current is labelled J C).
Higher-order ρ∗ effects will be ignored in the following analysis.

Moments
∫

dvvnf of the distribution are performed using dv = B∗
‖ dμ dv‖, and B∗

‖ =
B + B.Jμ0 mv‖/qB2, leading to an additional non-zero contribution to the first v‖ moment
of the distribution that is a component of J‖. This current may be evaluated as J ∗ = βbb ·
J/2, with β = p/(B2/2μ0), for this equilibrium, to lowest non-vanishing order in ρ∗.

Some vector algebra suffices to show that these currents add up so that perpendicular
currents are consistent with MHD equilibrium J d + J ∗ + J M = −∇p × B/B2. Note that
both J ∗ and J M have a parallel component, and these two components cancel; these
components are small at low β, but otherwise drift-ordered like other equilibrium currents.

The remaining parallel gyrokinetic currents should be consistent with the MHD
parallel current J‖. The Grad–Shafranov equation implies J · b = (∇ × B) · B/μ0B =
F′B + Fp′/B. In general

JC ≡
∫

dvv‖fM = q
〈
(n′/n + T ′/T[ε − 3/2])mFv2

‖/qB
〉 = Fp′/B, (3.4)

and this is a general property of equilibria that are local Maxwellian to lowest
order. Since JC 
= J‖, there must be an additional parallel current introduced in the
gyrokinetic equilibrium. The comparison with the MHD expression requires an additional
divergence-free parallel current, J‖ ∝ B, which may be introduced in the gyrokinetic
equilibrium (without changing perpendicular currents at lowest order in ρ∗) by specifying

f = n(Ψc)

[2πT(Ψc)]3/2
exp

[
μB + mv2

‖/2 − Q

T(Ψc)

]
, (3.5)

with
Q = mv0 sign(v‖)

√
ε − μB+(Ψc) (3.6)

when the term in the square root is positive and Q = 0 otherwise (i.e. for trapped particles)
(Angelino et al. 2006). Here, B+ is the maximum value of B on the flux surface Ψc. This
leads to a net flow in the passing particles. At the position of maximum B+ (inboard
mid-plane for a typical up–down symmetric case) the mean parallel drift is simple to
calculate, and equals v0, so agreement with MHD requires qnv0 = F′B+, when summed
over species. It is simplest to just add this shift to the electron distribution, but to retain
zero net mass flow, both ion and electron distributions may be shifted appropriately. The
additional current is divergence-free (charge does not accumulate since f is a gyrokinetic
equilibrium). Since it is divergence-free and entirely parallel (at lowest order), it matches
the term F′B in the MHD parallel current on the full flux surface (not just where B = B+).

Looking at the level of current in each plasma species, rather than overall equilibrium
current, one can identify parallel currents associated with each plasma species, as a result
of per-species zero-divergence motion: these Pfirsch–Schlüter currents originate from
pressure gradients, and are not dominated by electrons. Although for large-scale motion
it may suffice that the gyrokinetic equilibrium has the correct total, but not per-species,
current, Finite Larmor Radius (FLR) effects (for example where fast particles are present)
can lead to certain species being decoupled from the plasma motion: the dynamics may
depend on which species is carrying the current.

Other gyrokinetic equilibria exist that reduce to local isotropic Maxwellians in the
ρ∗ → 0 limit, but this modified global Maxwellian is simple, used in existing codes and
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demonstrates the principle. A more physically motivated choice for the distribution would
be to consider a neoclassical solution, which in the ρ∗ → 0 limit also reduces to a local
isotropic Maxwellian. The neoclassical solution is constrained to have the same zeroth,
first and second moments of these distributions up to lowest non-vanishing order.

Note that in practice global codes frequently use background distributions (usually a
local Maxwellian) that are not equilibrium solution to the Vlasov equation. Usually this
is a shifted Maxwellian, but ORB5 has also implemented a poloidally-constant shifted
Maxwellian distribution (Hatzky et al. 2019).

4. Kinetic current components in a test equilibrium

A gyrokinetic equilibrium with a finite parallel current, consistent with the MHD
currents, up to first order, was specified in (3.5). To demonstrate the magnitude of these
currents, and test the implementation and diagnosis of various parallel kinetic currents
in global gyrokinetic code, I examine a specific MHD equilibrium, and diagnose the
associated gyrokinetic equilibrium. The circular-boundary pedestal-like equilibrium of
Martin-Collar (2018) is used here. This has a moderate on-axis β value of 7.4 %, but the
narrow step in pressure at r/a = 0.5 leads to a strong β ′, so certain finite-β effects like the
Pfirsch–Schlüter currents are quite pronounced. The ORB5 code takes information about
the MHD equilibria and the per-species plasma profiles separately, and these were set to
be consistent, with the overall plasma pressure in the profiles consistent with the MHD
pressure profile.

The code was run using the canonical Maxwellian described above, with the drift term
Q (equation (3.6)) added to the electron species which adds a divergence-free net parallel
current. A relatively small value for ρ∗ = a/R = 1/1600 was chosen in order to approach
the MHD limit: note that the simple canonical Maxwellian has relatively large finite-ρ∗

modifications (Angelino et al. 2006).
The ORB5 code diagnoses the equilibrium parallel momentum for each species on a

set of bins in the (r, χ) plane by determining the integral
∫

dZv‖f : this is normalised by
dividing by the bin volume to find a mean value n〈v〉 in code units n0cs. The associated
parallel current is then constructed by multiplying by the species charge and summing.
This includes the J∗ current described above, as explicit evaluations of dZ involve B∗.
Density plots of the currents on the poloidal cross-section are constructed, as predicted
by MHD equilibrium (figure 1a) and as diagnosed from the gyrokinetic code (figure 1b);
visually these are essentially identical except for the noise resulting from Monte Carlo
sampling. Note that for this equilibrium the Pfirsch–Schlüter currents almost cancel those
prescribed via F. On line plots (figure 2), it is clear that the gyrokinetic code is actually
resolving the sum of J‖ and J∗. Since J∗ is smaller by a factor of β/2, these currents are
relatively small here and for conventional tokamaks; for high-β spherical tokamaks these
currents will be comparable, however, to MHD currents.

5. Time-evolution equations for dynamical drift kinetics

The guiding-centre Vlasov equation for these drift-kinetic equations is

∂f
∂t

= −dZ
dt

· ∂f
∂Z
, (5.1)

with the equations of motion (2.7).
If quasi-neutrality is not assumed, so that light waves are allowed, then both B and

E are naturally dynamical quantities, and since the currents (through the polarisation
drift) involve derivatives of E one has direct time-evolution equations for these fields
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(a) (b)

FIGURE 1. (a) Parallel current density (A m−2) in the circular-boundary MHD equilibrium. (b)
Parallel current density (A m−2) in the kinetic equilibrium distribution, calculated using markers.

FIGURE 2. Parallel current density versus radius R in the circular-boundary MHD equilibrium
on the outboard mid-plane. The black, red and blue curves represent the MHD parallel current
J‖, J∗ + J‖ and the output of the parallel current diagnostic in the gyrokinetic code (ORB5)
respectively.

(Morrison 2013) (assuming certain inverses may be found). However, sub-gyrofrequency
models usually consider the low-frequency (Darwin) limit assuming quasi-neutrality, so
the appearance of time derivatives of the electric field in the field equations, through
polarisation, is perhaps surprising. I show how one may nevertheless directly write down
an intuitively appealing set of plasma dynamical equations in this limit.

In the Darwin limit, Ampère’s law, from (3.2), is of the form

1
μ0

∇ × B = J pol + J drift + J mag + b̂J‖, (5.2)

where J drift, J mag and J‖, as defined earlier, may be determined from the distribution
function and the magnetic and electric fields. This may be cast as a MHD momentum
equation by taking the cross product with the magnetic field; J pol leads to the acceleration
term. Since the time derivative of E‖ does not enter directly here, it is not a dynamical
quantity that is directly time evolved (or needed as an initial condition). Ampère’s law may
be used to solve for J pol. The complete polarisation term J pol is shown in Appendix A, but
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when Boussinesq-type polarisation is used we have

J pol = mn0

B2
0

∂E⊥
∂t

. (5.3)

In this case we may solve for perpendicular acceleration:

(
∂E⊥
∂t

)
⊥

= B2
0

mn0

[
1
μ0

∇ × B − J drift + J mag

]
⊥
. (5.4)

Instead of evolving the perpendicular velocity or E⊥, a vorticity equation may be found
by taking the perpendicular divergence, as in Miyato et al. (2009), to obtain equations
which are in a form related to standard fluid models like Hasegawa–Mima (Hasegawa &
Mima 1978). In standard gyrokinetic orderings, the rotational part of this equation, found
by taking the curl, leads to a magnetic compression equation, where, in the quasi-static
limit, the perpendicular plasma pressure is balanced against magnetic pressure, to find
B‖. At system scale the perpendicular and parallel components do not completely
decouple, and the rotational part of the equation contains motion associated with magnetic
compression that should be retained to correctly resolve large-scale MHD-like modes.
However, in a practical implementation, one would usually not want to retain fast waves at
the gyroscale, so this splitting may still be useful as part of an implicit solve.

Since this equation is in the same form as the perpendicular component of the
MHD momentum law, the relationship to hybrid MHD formalisms is straightforward; in
both current-coupling and pressure-coupling versions of kinetic MHD (Burby & Tronci
2017), the kinetic species give rise to additional forces in the momentum law (through
J × B forces or pressure forces), and this drift-kinetic formulation is equivalent to a
current-coupling scheme for the kinetic currents of all the species, including the bulk ions
and electrons.

The scheme also needs to determine E‖, which is found from the time derivative of the
parallel component of Ampère’s law, as

b̂ · ∇ × ∂B
∂t

− ∂b
∂t

· μ0J = μ0
∂J‖
∂t

(5.5)

and using ∂B/∂t = −∇ × E,

b̂ · ∇ × ∇ × (bE‖ + E⊥)− μ0J
B

· (I − bb) · ∇ × (bE‖ + E⊥) = −
∑

s

μ0nqs

ms
(qE‖ + Fs‖),

(5.6)
with an explicit sum over species s and where the remaining parallel forces in the
momentum equation (e.g. convective momentum transport and mirror forces) have been
denoted as Fs‖. Collisional friction would be also be expected to appear in Fs‖ in a more
complete theory (Sugama, Matsuoka & Nunami 2022). The right-hand side is normally
dominated by the electron contribution due to the low electron mass. An important
component of the time dependence of the parallel current is the first moment of the
distribution function:∫

dvv‖∂f /∂t = −
∫

dvv‖Ż · ∂f
∂Z

= −
∫

dvv‖v̇‖
∂f
∂v‖

−
∫

dvv‖Ṙ · ∂f
∂R

(5.7)
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and the first term may be approximately integrated by parts, with v̇‖ = F‖/m + qE‖/m and
the volume element not depending at lowest order on v‖, giving

−
∫

dvv‖v̇‖ · ∂f
∂v‖

∼ nq
m

E‖ + 1
mB

b̂ ·
(

p⊥∇B − n∇
[ m

2B
E2

⊥
])
, (5.8)

where the second-last term would cancel with a term arising from parallel motion and the
last term is a ponderomotive effect (also found in Morrison 2013) which does not appear
when the Boussinesq-type polarisation is made in the Lagrangian. I do not explicitly
evaluate the remaining terms that are independent of E‖ individually: for practical
computational evaluation it might be less complicated to use a numerical derivative
[J‖(t + δt)− J‖(t)]/δt of the first moment of the distribution function (while splitting out
the effect of E‖), since Vlasov’s equation is in any case being solved, and this could be
used to ensure consistency.

Practical use of (5.6) requires solution for E‖. A simplification is obtained by observing
that on scales L longer than the electron skin depth d, the dependence on E‖ is largely
through the scalar term on the right-hand side, which is dominant by a factor of (L/d)2
over the left-hand side, and this provides a simple practical iterative method for solving
this equation for E‖ (because of the uniform dominance of the scalar term, the nullspace of
the linear operator associated with E‖ is trivial, so this should also, in the limit, be a unique
solution). Although this also captures the usual transition in electron response below the
skin depth, the drift-kinetic theory is of course only valid above the ion gyroscale, which
is normally much larger than the electron skin depth. In this MHD-ordered theory, E⊥
is larger than E‖ and the E⊥ term is required to ensure that Ampère’s law is satisfied.
The parallel electric field is thus related to the inductive perpendicular electric field
and the parallel forces (including collisional resistivity). That is, this is a kinetically
modified Ohm’s law, which reduces to E‖ = 0 in the MHD limit. The departure from
typical kinetic MHD approaches here is that E‖ is explicitly calculated via the particle
drift-kinetic equations; the kinetic origin of a finite parallel electric field is a central
aspect of drift-wave instability theory, so retaining this is essential for joint treatment of
drift-wave microinstability and MHD-related dynamics. Note that simply approximating
E‖ = 0 would not be adequate where the parallel currents are updated directly as a result
of solution of the gyrokinetic Vlasov equation, so an explicit calculation of the small E‖
or direct enforcement of current consistency is required.

With these field equations, for a specified distribution function, f , B and E⊥, one may
calculate E‖ using (5.6), use the momentum equation to find the time derivative of E⊥, use
Faraday’s law to find the time derivative of the magnetic field and use Vlasov’s equation
(5.1) to find the time derivative of the distribution function, which is sufficient to specify
the time evolution of all the dynamical quantities, f , B and E⊥. The equations are derived
via a variational approach, so have associated momentum and energy conservation laws, as
long as the simplifications are made consistently; for example, if a linearised polarisation
equation is used then the equations of motion used in calculating the Vlasov equation
should not contain a ponderomotive term.

The overall method is very closely related to a maximal version of kinetic MHD that
captures the full guiding-centre kinetics of each species, but also the full-kinetic parallel
Ohms’ law. A kinetic-MHD-type scheme would explicitly evolve fluid equations for each
species, unlike a direct kinetic scheme, but of course with a kinetic closure this should
be equivalent. As a result, it may practically be easier to extend kinetic MHD frameworks
to capture the additional physics required rather than a gyrokinetic code. This model has
been presented in a somewhat symbolic and general form, and it might practically be
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useful to make various approximations; where these are made in the system Lagrangian
before variation (e.g. not keeping the full-f polarisation term and fixing the magnetic
field variation in that term) the scheme will still be conservative. As usual, without any
further approximations, and with appropriate boundary conditions, the system conserves
the total system energy, as well as the particle canonical momentum (electromagnetic field
momentum is zero in the Darwin limit).

The appearance of E⊥ and B as dynamical quantities (equivalent to five scalar fields),
unlike in conventional gyrokinetics, where all of the fields may be found from the
instantaneous distribution function, is related to some extra degrees of freedom of the
system, as well as certain constraints on the distribution function and fields:

(i) The fast magnetoacoustic mode is included: this requires two additional degrees of
freedom.

(ii) The distribution functions must satisfy quasi-neutrality.
(iii) Field B must be divergence-free.
(iv) The parallel component of Ampère’s law (which is not a dynamical equation) must

always be satisfied.

The last three of these statements are constraints which hold automatically for the
time-evolved state if they are initially satisfied; it may be desirable to impose them
explicitly via a divergence-cleaning type of approach or an appropriate projection. In other
words, some of the quantities that appear in dynamical variables are in fact not additional
degrees of freedom of the system. This is familiar from, for example, standard theory of
particles interacting with electromagnetic fields, where a field B that solves Maxwell’s
equations remains divergence-free if it is initialised correctly.

The inclusion of fast wave dynamics is appropriate for this system-scale MHD-ordered
theory, unlike in local gyrokinetics. Ion-Larmor-radius-scale fast modes oscillate at or
above the gyrofrequency (for β � 1) which is O(1/εE) times faster than frequencies of
drift waves, so it is sufficient to order fast modes out of local gyrokinetic theory by
treating magnetic compression as being in a quasi-static equilibrium. But system-scale
fast modes have frequencies of order vA/a, which is comparable to drift frequencies if β is
of order unity (for numerical purposes some semi-implicit timestepping would probably
be desirable to also efficiently handle gyroradius-scale modes).

As in related electrostatic formalisms (Dimits 2010; Sharma & McMillan 2015), the
electric field appears as a dynamical variable in the gyrokinetic theory even though it
is not a dynamical variable in a low-frequency Darwin–Maxwell–Vlasov system, where
the displacement current has been neglected, if fast waves have also been ignored. In
this electromagnetic system, the appearance of the time derivative of the electric field
seems more natural. One way to formally motivate the solution method and formalism is
to consider the ε0 → 0 limit. In the full Maxwell–Vlasov system E is naturally a dynamical
variable, and as one takes ε0 → 0 the light waves increase in frequency; the dynamics of
interest do not, so one is interested in retaining only the low-frequency dynamics and even
though one solves for these additional degrees of freedom in our system, they may treated
in the quasi-static limit.

An advantage of a formulation in terms of E and B rather than vector and scalar
potentials is that it allows direct separation of the parallel component of the electric field,
which is formally small compared with the perpendicular component. In a potential-based
formulation ∂A‖/∂t and ∇φ are required to almost cancel to represent MHD-like motion
(Hatzky et al. 2019), which is difficult to ensure exactly in a discretised form (this is an
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additional and more strict requirement on cancellation on top of the usual ‘cancellation
problem’ (Reynders 1992) and exists even in symplectic formulations).

6. Solving the field equations in a periodic 2-D system

To explore the use of drift kinetics to study plasma dynamics, I implement a simple
drift-kinetic solver in a 2-D periodic geometry. The aim is mostly to illustrate as a
proof-of-principle that the above field equations may be directly solved, and to act as a
simple testbed for eventual complete testing and comparison of drift-kinetic/gyrokinetic
models.

To demonstrate this in the simplest possible setting, a 2-D periodic slab domain is
chosen, of size (Lx,Ly) in the (x, y) plane. An initially MHD-equilibrium configuration
is perturbed by adding a bulk plasma velocity. Because of the simplicity of the Cartesian
geometry, direct numerical evaluation is very straightforward, without the complexity of
curvilinear coordinates or boundaries. Moderately complicated MHD equilibria, however,
still exist in this simple setting, with curvature and field strength varying along field lines.
For equilibrium, the large-aspect-ratio limit of the Grad–Shafranov equation gives

B = ẑBz(ψ)+ ∇ψ × ẑ (6.1)

and

0 = dp
dψ

+ dB2
z

dψ
+ ∇2ψ. (6.2)

Linearising these equations is possible if p + B2 = c + dψ + eψ2, and the solutions are
plane waves ψ = ψ0 sin(k · R), with k quantised due the boundary conditions. Complex
configurations are possible by superimposing several plane wave solutions in periodic
configurations where multiple waves with the same |k| exist, e.g. Lx = Ly; I select
Lx = Ly/

√
3 which allows waves in three different directions.

I take mass, charge, density and temperature reference values mR, qr, nR and Tr
respectively. The velocity unit is vR = (TR/mR)

1/2. The field reference value is B2
R =

μ0nRmRv
2
R. The length reference is ρR = mRvR/qRBR.

For this case, ion mass and charge are mi = mR, qi = qR and electron mass and charge
me = mR/4000, qe = −qR. A uniform initial plasma density is chosen as n = nR. The box
size is (Lx,Ly) = (100, 100 × 31/2)ρR. I choose

ψ = ρRBR0.1
2∑

I=0

exp
{
ir · [sin(2πI/3), cos(2πI/3), 0]4π/Ly

}
(6.3)

and (Bz/BR)
2 = 10 + (4π/Ly)

2ψ2/2. With p/(nRTR) = 1.0 + (4π/Ly)
2ψ2/4, this satisfies

the slab Grad–Shafranov equation. Ions are chosen to be cold with Ti = 0, and the electron
temperature is set so that nTe = p. Flux ψ is plotted in figure 3(a).

The initial perpendicular electric field is chosen as

E0 = B × [0, sin(2πx/Lx), 0]vR, (6.4)

giving rise to an initial bulk plasma velocity largely in the y direction.
This configuration is used to evaluate the resulting parallel electric field in this

configuration, and the time derivatives of the magnetic field and perpendicular electric
field (the Vlasov equations were not solved). The outline is essentially equivalent
to solving a kinetically modified MHD equation. First, the equation for the time
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(a) (b)

FIGURE 3. (a) Magnetic flux ψ and (b) ∂v‖/∂t in the (x, y) plane for the 2-D periodic model
drift-kinetic problem.

derivative (5.4) is solved using the Boussinesq-type polarisation to find the perpendicular
acceleration of the plasma. Then the parallel current is evaluated using (5.6): we have
approximated the non-electric parallel force F‖ = 0, as the configuration is initially in
equilibrium, aside from the electric field. For this configuration, the rate of change of
electron parallel velocity is plotted in figure 3(b). The parallel electric field is then
evaluated using (5.6). We also have the rate of change of the magnetic field, from
the induction equation. Together, this would be sufficient information to evaluate the
drift-kinetic equations of motion.

7. Conclusions

The links between various plasma models can appear somewhat mysterious. Unlike
in a neutral fluid model, plasma kinetic momentum is normally re-expressed in terms
of perpendicular electric field at low frequency, and there are various ways to rewrite
perpendicular plasma force balance. For example, vorticity equations and vector force
balance relations look superficially very different, but have a simple relationship to each
other. We sometimes see the (somewhat surprising) appearance of the time derivative
of the electric field in certain gyrokinetic theories, even in the Darwin (quasi-neutral)
limit, where it is absent from Maxwell’s equations; we argue that a conceptually simple
way to approach this is to retain the full Mawxwell’s equations, derive the resulting
gyrokinetic equations of motion and field equations and then to formally consider the
limit where ε0 → 0. This also yields the usual perpendicular pressure balance relation (at
short wavelength) or allows retaining full magnetosonic motion at long wavelength.

The motivation here is to allow consistent direct gyrokinetic computation of
system-scale modes, particularly MHD-related modes, in conjunction with gyroscale
dynamics. As certain gyrokinetic theories directly reduce to drift-kinetic theory at long
wavelength (McMillan & Sharma 2016), we can begin to approach this by studying the
solution of drift-kinetic equations. Although drift-kinetic theory has long been known
to be compatible with standard fluid formulations like MHD in appropriate limits, it is
seldom used by itself in a Vlasov–Maxwell solution, and some care is needed to define
appropriate equilibrium distribution functions, and in evaluating the parallel currents
from drift kinetics. These questions were systematically approached by using a variational
formalism. The drift-kinetic model is most easily solved by direct time evolution in a
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manner very much analogous to hybrid/kinetic MHD systems, with certain modifications
that correspond to additional kinetic physics content.

It is important to be able to rapidly test what kinds of theory models are implementable
as computational tools. The simple periodic problem presented here should allow
various aspects of generalised gyrokinetic theory to be tested in non-trivial geometry,
including equilibrium and wave physics. We have also defined a simple gyrokinetic
equilibrium distribution function with currents that is consistent with the underlying MHD
equilibrium; this may be useful for gyrokinetic simulation of large-scale current-driven
modes.
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Appendix A. Perpendicular momentum equation

The perpendicular part of Ampère’s law (which may be regarded as a perpendicular
momentum equation) is

(
1 − b̂b̂

)
· ∂
∂t

(mn
B

E⊥
)

= (1 − b̂b̂) ·
[

1
μ0

∇ × B − J drift + J mag

]
B ≡ BJ B (A1)

and the left-hand side may be evaluated directly as

mn
B

(
∂E⊥
∂t

)
⊥

− E⊥∇ × E · B
mn
B3

+ m
B
∂n
∂t

E⊥ (A2)

and
∂E⊥
∂t

= ∂

∂t

[
(1 − b̂b̂) · E⊥

]
= −b̂

∂ b̂
dt

· E⊥ +
(
∂E⊥
∂t

)
⊥

(A3)

so that overall

∂E⊥
∂t

= −b̂
∂ b̂
∂t

· E⊥ + E⊥∇ × E · B
1
B2

− 1
n
∂n
∂t

E⊥ + B2

mn
J B, (A4)

and we have additional terms that ensure that E⊥ remains perpendicular to the changing
magnetic field direction and that account for the change in polarisation with time due
to field strength evolution. The density evolution term can, as with the parallel current
evolution term, be evaluated via the Vlasov equation, which does not depend on ∂E/∂t
directly, and the density moment is insensitive to the dependence on E‖.
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