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Abstract
The purpose of this paper is to derive anisotropic mean curvature flow as the limit of the anisotropic Allen–Cahn
equation. We rely on distributional solution concepts for both the diffuse and sharp interface models and prove
convergence using relative entropy methods, which have recently proven to be a powerful tool in interface evo-
lution problems. With the same relative entropy, we prove a weak–strong uniqueness result, which relies on the
construction of gradient flow calibrations for our anisotropic energy functionals.

1. Introduction

We consider anisotropic mean curvature flow, a geometric evolution equation used to model microstruc-
ture in complex materials. The prototypical application is in multiphase grain growth for polycrystals. As
noted in [28], isotropic models, such as mean curvature flow, fail to capture phenomenological features
such as the dendritic growth of phases (see also [15]). In chemical kinetics, phase separation experi-
ences anisotropy due to the underlying lattice orientation of the solid host material [5]. Similarly, many
materials even display anisotropic surface tensions which are not smooth with respect to the interface
orientation (see also [3, 53, 54]): here, one can even consider the household setting of salt (NaCl) and
air. At the same time, the study of interface evolutions poses serious numerical and mathematical chal-
lenges and a large amount of insight has been gained by modeling such systems in terms of phase-field
models, where one replaces interfaces by continuous order parameters (see, e.g., [15]).

In this paper, we prove convergence of solutions of the anisotropic scalar Allen–Cahn equation, a
phase-field model, to anisotropic mean curvature flow using variational methods. This may be con-
sidered as a first step to proving convergence in the physically relevant vectorial setting. Our approach
generally sheds light onto anisotropic mean curvature flow and further enables us to prove a weak–strong
uniqueness result for the interface evolution.

Anisotropic mean curvature flow prescribes the evolution of an oriented hypersurface with the
surface velocity determined by a weighted mean curvature. Fixing a surface tension σ : Rd →R≥0 and
a mobility μ : Rd →R≥0 (where one can think of extending from the sphere by one-homogeneity), we
say that a time-parametrized collection of sets {A(t)}t∈[0,T] evolves by anisotropic mean curvature flow
if the boundary �(t) := ∂A(t) is smooth and satisfies

V = −μ(ν)Hσ on
⋃

t∈[0,T]

(�(t) × {t}) , (1.1)
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where ν is the outer unit normal of A, V is the surface normal velocity, and Hσ := div�(t)(Dσ (ν)) is
the anisotropic mean curvature with respect to σ . We note that Dσ (ν) is typically referred to as the
Cahn–Hoffman vector field, a generalization of the surface normal. In the case that σ =μ= | · | are
given by the Euclidean norm, one recovers the usual (isotropic) mean curvature flow V = −H.

Following the approach of Luckhaus and Sturzenhecker [47], one way to encode the motion (1.1) is
through the characteristic functions χ (t) := χA(t). Here A(t) are naturally given by sets of finite perimeter
instead of smooth open sets, allowing for distributional (or BV) weak solutions to (1.1). In the isotropic
setting, solutions were derived via a minimizing movements scheme (see also [1]) for the perimeter
functional. This was a natural approach as mean curvature flow can formally be viewed as the gradient
flow of the perimeter functional with an appropriate metric [36, 51].

To carry this analogy to our setting, the curvature flow (1.1) seeks to minimize an anisotropic surface
energy E : L2

loc(�) → [0, ∞] defined by

E[u] :=
⎧⎨
⎩

c0

∫
�
σ (ν)

∣∣∇χ ∣∣ if u = χ ∈ BVloc(�; {0, 1}),
∞ otherwise.

(1.2)

Here, ν = − ∇χ
|∇χ | is the measure-theoretic outer unit normal, and c0 is a positive constant quantifying

surface energy. Formally speaking (see Subsection 2.2), anisotropic mean curvature flow is a gradient
flow of the anisotropic perimeter E with respect to the weighted L2-surface metric

(V , W)� := c0

∫
�

1

μ(ν)
VWdHd−1. (1.3)

To construct solutions of interface evolutions, such as (1.1), one can approximate via diffuse-interface
models. The idea is that the sharp interface �(t), which captures a jump discontinuity of u = χ , is
replaced by a diffuse interface uε forming a continuous transition between values close to 1 and values
close to 0. Diffuse-interface or phase-field models are often used in practice and especially for numer-
ics, where tracking of the interface is reduced to a reaction-diffusion equation. Herein, we consider a
phase-field approximation of the curvature flow (1.1) given by the anisotropic Allen–Cahn equation

2g(−∇uε)∂tuε = −div (Df (−∇uε))− 1

ε2
W ′(uε) in �× (0, T),

uε(·, 0) = uε,0 in �,

(1.4)

where � is the d-dimensional torus, the function W : R→R≥0 is a double-well potential with its wells
at 0 and 1, and the anisotropic surface tension and mobility are encoded by the functions

f : Rd →R≥0, f (p) = σ 2(p) (1.5)

and

g : Rd →R>0, g(p) = σ (p) + 1

μ(p) + 1
. (1.6)

For the isotropic case σ =μ= | · |, we simply obtain f = | · |2 and g ≡ 1.
In contrast to the approach taken in [21], we have introduced a regularization (1.6) of the mobility

μ allowing us to take advantage of the gradient flow structure for the anisotropic Allen–Cahn equation.
We define the anisotropic Cahn–Hilliard energy Eε : L2(�) → [0, ∞] by

Eε[u] :=
⎧⎨
⎩

1
2

∫
�

(
εf (−∇u) + 1

ε
W(u)

)
dx if u ∈ H1(�) and W ◦ u ∈ L1(�),

∞ otherwise,
(1.7)

and introduce a weighted L2-metric given by

(v, w)u :=
∫
�

εg(−∇u)vwdx (1.8)
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for a given point u ∈ dom(Eε). Note that we omit the dependence on ε in the notation (·, ·)u for
convenience. A formal calculation shows that the Allen–Cahn equation (1.4) is equivalent to

∂tuε(t) = −∇uε (t)Eε[uε(t)], t ∈ [0, T],

where ∇uε (t) is the gradient on
(
L2(�), (·, ·)uε (t)

)
. The above equation encapsulates (1.4) as a gradient flow,

and this structure will be exploited for the construction of solutions to (1.4) in Section 3 as well as for
the sharp-interface limit in Section 4.

A first indication that (1.4) approximates (1.1) is the �-convergence of the associated energies (see
[10, 19]). With

c0 :=
∫ 1

0

√
W(s)ds, (1.9)

it was shown by Bouchitté [9] that Eε

�−→ E as ε↘ 0 with respect to the strong L1-topology on the
underlying space. Likewise in the spirit of Luckhaus and Modica [46], Cicalese et al. [18] verified an
anisotropic Gibbs–Thomson relation for the energies connecting the first variation of (1.7) to the limiting
minimal surface’s anisotropic curvature.

Early results on anisotropic mean curvature flow in the special case μ= σ are due to Chen, Giga, and
Goto [17], who proved the existence and uniqueness of viscosity solutions (up to fattening) for smooth
surface tensions σ . Almgren, Taylor, and Wang [1] introduced a time discretization in the form of a
minimizing movements scheme including crystalline surface tensions, yielding the so-called flat-flow
solutions for anisotropic mean curvature flow. They also proved a short-time existence result for strong
solutions if the surface tension σ is smooth. Bellettini and Paolini [7] provide a thorough introduction
of the anisotropic mean curvature flow equation for a Finsler metric σ , i.e., with the surface tension
possibly depending on the position in space, and argue formally that the time discretization, the level-
set equation proposed in [17], and the anisotropic Allen–Cahn equation lead to solutions to anisotropic
mean curvature flow.

Allowing for sufficiently regular convex surface tensions σ and arbitrary mobilities μ, Elliott and
Schätzle [21] proved that, in the sharp-interface limit, solutions to the anisotropic Allen–Cahn equa-
tion converge to anisotropic mean curvature flow in the sense of the viscosity formulation. Unlike in
the present work, Elliott and Schätzle used a discontinuous, nonregularized version of g and, therefore,
resorted to viscosity solutions of the phase-field equation. In [14], Chambolle and Novaga prove consis-
tency of the minimizing movements scheme [1] and the MBO thresholding scheme for the energy (1.2)
with anisotropic mean curvature flow using viscosity solutions. Similarly, using viscosity solutions and
distributional solutions with an energy convergence hypothesis, Chambolle et al. [11] prove convergence
of the minimizing movements scheme [1] for a translationally dependent energy to inhomogeneous
anisotropic mean curvature flow.

In the case of non-smooth (or crystalline) surface tensions, the Cahn–Hoffman vector field is effec-
tively described in terms of a differential inclusion νσ ∈ ∂σ (ν) and selection of the appropriate curvature
can make the problem nonlocal. Recently, a variety of work has been invested in understanding crys-
talline curvature flow. Giga and Giga were among the first to develop a robust solution concept in the
planar setting [29]. For crystalline surface tensions, existence and uniqueness was proven in dimension
d = 3 by Giga and Požár in [32], and the result was ultimately extended to arbitrary dimension in [33]
by the same authors. Chambolle, Morini, and Ponsiglione [13] introduced a novel definition of superso-
lutions, subsolutions, and weak solutions to anisotropic mean curvature flow that is also based on level
set techniques and is particularly useful for crystalline surface tensions. They presented an existence and
uniqueness result up to fattening and a comparison principle. The same authors together with Novaga
[12] extended this result from the special case μ= σ to arbitrary mobilities μ.

Many of the above results are qualitative, but in the spirit of Chen [16], given the power of viscos-
ity methods, quantitative rates of convergence have been derived and we refer the interested reader to
[6, 31] and references therein.

https://doi.org/10.1017/S0956792524000226 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000226


4 T. Laux et al.

In contrast to the above approaches, we will apply relative entropy methods to identify the limit of
(1.4). A related approach regarding a localized energy excess was introduced by the first author with
Otto in [41] where they proved convergence of the MBO thresholding scheme to multi-phase mean
curvature flow. A nontrivial modification of this idea – based on controlling the tilt excess of the sharp
or diffuse interface with regard to a smooth approximation – has been used to prove convergence of the
vectorial Allen–Cahn equation to multiphase mean curvature flow [42] and derive an associated rate of
convergence [25] along with optimal quantitative convergence rates for the Allen–Cahn equation to mean
curvature flow in the two-phase setting [24]. A key feature of viscosity type solutions is the associated
comparison principle, which automatically provides uniqueness of solutions up to the issue of fattening.
However, in the multiphase case, fundamentally different tools are needed to address uniqueness: The
relative entropy method [23] has been used to prove weak–strong uniqueness results for a variety of
geometric evolution equations including planar multiphase flows (see, e.g., [22, 35, 36, 40]).

In this paper, we prove convergence of the anisotropic Allen–Cahn equation (1.4) to anisotropic mean
curvature flow (1.1) for arbitrary Lipschitz mobilities μ and C2 surface tensions σ under an energy
convergence hypothesis, as is often used in application [38, 41, 43, 47]. This result provides a complete
proof for the result first announced in [39]. Further, we prove weak–strong uniqueness of the associated
distributional solution concept for anisotropic mean curvature flow: If a smooth solution (which we will
endow with the structure of a calibrated evolution) and a BV solution share the same initial data, it
follows that both solutions coincide for all times in their common interval of existence. We summarize
these results here and refer to Theorems 4.1 and 5.2 for precise details.

Theorem 1.1. Let μ be a Lipschitz mobility, σ a C2 uniformly convex surface tension, and � the d-
dimensional torus. Then the following holds:

• Any sequence of weak solutions uε of the anisotropic Allen–Cahn equation (1.4) with well-prepared
initial conditions has a subsequence converging to some limit u = χ with χ :�× (0, T) → {0, 1} as
ε→ 0. Under an energy convergence hypothesis, u is a weak solution of anisotropic mean curvature
flow.

• Let σ and μ be smooth. If {A(t)}t∈[0,T] is a strong solution of anisotropic mean curvature flow (1.1)
and χ :�× (0, T) → {0, 1} is a distributional solution of anisotropic mean curvature flow with the
same initial condition, i.e., χ (·, 0) = χA(0), then χ ≡ χA for all t ∈ [0, T].

We remark that convergence of the anisotropic Allen–Cahn equation is well-studied, but as far as the
authors are aware, this has exclusively been done from the perspective of viscosity solutions. Our result
considers this from the distributional setting and may ultimately be amenable to tackling the multiphase
setting that is most relevant to physical applications. Further, our uniqueness result for distributional
solutions shows that it may be possible to obtain quantitative convergence rates in the spirit of Fischer
et al. [24] for the anisotropic Allen–Cahn equation.

The structure of the paper is as follows: In Section 2, we introduce the admissible class of anisotropies
and, based on the closely connected notions of anisotropic surface energy and anisotropic mean curva-
ture, derive the anisotropic mean curvature flow equation as a formal gradient flow. Here, we further
introduce our notion of a distributional solution to anisotropic mean curvature flow. As a preparation for
the convergence result, Section 3 discusses the anisotropic Allen–Cahn equation (1.4) and establishes
the existence – via a time discretization – and regularity of weak solutions. Section 4 is devoted to the
proof of the conditional convergence theorem. Finally, Section 5 covers the weak–strong uniqueness
theorem.

Notation

Throughout the paper, let d ≥ 2 be the ambient dimension. We consider the equations with periodic
boundary conditions, i.e., for the domain we will always choose the flat torus � := R

d/Zd.
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The i-th unit vector will be denoted by ei, and the identity matrix in dimension d will be written
as Id ∈R

d×d. For the scalar products of vectors a, b ∈R
d and of matrices A, B ∈R

d×d, we write a · b :=∑d
i=1 aibi and A : B := ∑d

i,j=1 (A)ij(B)ij, respectively. The tensor product of a, b ∈R
d is a matrix a ⊗ b ∈

R
d×d, which is given by (a ⊗ b)ij = aibj.
The symbol ∇ is reserved for derivatives with respect to the space variable x ∈�. For a vector field

X :�→R
d, the derivative ∇X is a (d × d)-matrix defined by (∇X)ij = ∂jXi. Derivatives with respect to

variables p ∈R
d will be denoted by D = Dp. In contrast to ∇, Dσ (ν) will denote the column vector.

For a set A ⊂R
d, χA is the characteristic function taking the value 1 on A and 0 in the complement.

By a standard abuse of notation, we refer to the distributional derivative in space of a function χ ∈
BV(�; {0, 1}) by ∇χ . In the case that χ ∈ L1((0, T); BV(�)), we write ∇χ := ∇χ (·, t) ⊗L1

(0,T) in the
notation of Young measures.

The divergence of a vector field X :�→R
d is divX = ∑d

i=1 ∂iXi. The divergence of a matrix field
A :�→R

d×d is vector-valued, (divA)i = ∑d
j=1 ∂j(A)ij.

For a vector a ∈R
d we define the differential operator a · ∇ := ∑d

i=1 ai∂i. In particular, for a vector
field X, we have (a · ∇)X = (∇X)a.

2. Anisotropies and anisotropic mean curvature

In this section, we develop the necessary mathematical preliminaries for the rest of the paper. We intro-
duce the notion of admissible anisotropies in Subsection 2.1 and provide a calculation clarifying the
formal view of anisotropic mean curvature flow as gradient flow in Subsection 2.2. Finally, we show in
the smooth setting how the anisotropic curvature can be reinterpreted via integration by parts, allowing
us to introduce a distributional solution for anisotropic mean curvature flow in Subsection 2.3.

2.1 Admissible anisotropies

In this subsection, we introduce a suitable class of anisotropic surface tensions and mobilities and discuss
some elementary facts about admissible anisotropic surface tensions.

Definition 2.1. An admissible pair of anisotropies (σ ,μ) is comprised of an admissible surface tension
σ : Rd →R≥0 that satisfies

(S1) positive 1-homogeneity, i.e., σ (λp) = λσ (p) for all p ∈R
d, λ> 0,

(S2) positive definiteness, i.e., σ (p) = 0 if and only if p = 0,
(S3) smoothness, i.e., σ ∈ C2(Rd \ {0}),
(S4) uniform convexity, i.e., σ 2 : Rd →R≥0 is strongly convex in the sense that there exists a constant

c> 0 satisfying

σ 2((1 − t)p + tq) ≤ (1 − t)σ 2(p) + tσ 2(q) − c
t(1 − t)

2
|p − q|2

for all p, q ∈R
d, t ∈ (0, 1),

and an admissible mobility μ : Rd →R≥0 that satisfies

(M1) positive 1-homogeneity, i.e., μ(λp) = λμ(p) for all p ∈R
d, λ> 0,

(M2) positive definiteness, i.e., μ(p) = 0 if and only if p = 0,
(M3) regularity, i.e., μ ∈ C0,1(Rd).

The polar norm of σ is

σ ◦ : Rd →R≥0, σ ◦(q) = sup
p: σ (p)≤1

p · q. (2.1)
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Example 2.2. A useful class of admissible surface tensions, which is suitable to approximate arbitrary
norms, is introduced by Barrett, Garcke, and N FC;rnberg in [4, (1.12)] as follows: Let q ∈ [1, ∞),
L ∈N, and let G1, G2, . . . , GL ∈R

d×d be symmetric and positive definite. We define

σ (p) :=
(

L∑
l=1

σl(p)q

) 1
q

, σl(p) := √
p · Glp.

One can show that σ is an admissible surface tension in the above sense (see also [30, Remark 1.7.5]
and [7, Example 4.6]).

For convenience, let us collect several useful properties of surface tensions.

Lemma 2.3. Let σ be an admissible surface tension as in Definition 2.1. Then

(i) σ ◦ is an admissible surface tension and σ ◦◦ = σ ,
(ii) p · q ≤ σ (p)σ ◦(q) for all p, q ∈R

d,
(iii) we have 0<minSd−1 σ ≤ maxSd−1 σ <∞, and

(min
Sd−1

σ )|p| ≤ σ (p) ≤ (max
Sd−1

σ )|p| for all p ∈R
d,

(iv) Dσ is positively 0-homogeneous and D2σ is positively (−1)-homogeneous, i.e.,

Dσ (λp) = Dσ (p) and D2σ (λp) = 1

λ
D2σ (p) for all λ> 0, p ∈R

d \ {0},
(v) p · Dσ (p) = σ (p) for all p ∈R

d \ {0},
(vi) σ ◦(Dσ (p)) = 1 for all p ∈R

d \ {0},
(vii) σ ◦(q)Dσ(Dσ ◦(q))= q for all q ∈R

d \ {0}.
Proof. (ii) can be shown directly from the definition of σ ◦ and the positive 1-homogeneity of σ .

(iii) and (iv) follow from the positive 1-homogeneity and continuity resp. smoothness of σ .
(v) is a result of (iv) and the fundamental theorem of calculus, cf. [30, Section 1.7.2]:

σ (p) =
∫ 1

0

d

dλ
σ (λp) dλ=

∫ 1

0

Dσ (λp) · p dλ= Dσ (p) · p.

Giga [30, Section 1.7.2] also provides the proofs for (vi), (vii), and (i) except the uniform con-
vexity of σ ◦ and the duality statement σ ◦◦ = σ . A proof for σ ◦◦ = σ can be found in [50, Theorem
15.1 and Corollary 15.1.1]. The uniform convexity of σ ◦ can be proved in a similar way to [45,
Proposition 1.e.2].

A useful trick with regard to the Euclidean metric | · | is to control quadratic errors for unit vectors
via the inequality∣∣p − p′∣∣2 = 1 + |p′|2 − 2 p · p′ ≤ 2

(
1 − p · p′) whenever |p| = 1 and

∣∣p′∣∣ ≤ 1,

with equality if and only if |p′| = 1. In order to introduce a tilt excess functional for anisotropic mean
curvature flow, we are interested in an anisotropic counterpart to the above inequality.

The suitable anisotropic inequality bounds squared distances |p − p′|2 by a term of the form σ (p) −
|p′|Dσ (p′) · p. However, since the mapping p′ �→ |p′|Dσ (p′) is, in general, not continuously differentiable
at p′ = 0, we will use a truncated version instead. To this end, we fix a cutoff function ψ ∈ C∞([0, ∞))
satisfying

ψ(r) = 0 for all r ≤ 1

4
, ψ(r) = 1 for all r ≥ 1

2
, and ψ ′ ≥ 0. (2.2)

The following lemma contains two estimates featuring the truncated version.
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Lemma 2.4. Let σ be an admissible surface tension. There exist constants cσ , Cσ > 0 depending only
on σ such that

(i) we have

σ (p) − |p′|ψ(|p′|)Dσ (p′) · p ≥ cσ
∣∣p − p′∣∣2 (2.3)

for all p, p′ ∈R
d such that |p| = 1 and |p′| ≤ 1, and

(ii) we have

σ (p) − |p′|ψ(|p′|)Dσ (p′) · p ≤ Cσ

(∣∣p − p′∣∣2 + (
1 − ∣∣p′∣∣)) (2.4)

for all p, p′ ∈R
d such that |p| = 1 and |p′| ≤ 1.

Proof. Variants of (i) and (ii) were provided by Dziuk [20, Proposition 2.2] and Laux [39, Lemma 3.3
and Section 4.2], respectively. The proof is included here for the reader’s convenience.

For inequality (i), we consider two cases with respect to p′: First, if Dσ (p′) · p< σ (p)
2

or p′ = 0, we use
the estimate |p − p′|2 ≤ 4 to obtain

σ (p) − |p′|ψ(|p′|)Dσ (p′) · p ≥ σ (p)

(
1 − 1

2
|p′|ψ(|p′|)

)

≥ 1

2
σ (p)

≥ 1

8
(min

Sd−1
σ )|p − p′|2. (2.5)

Second, if p′ �= 0 and Dσ (p′) · p ≥ σ (p)
2

, we have
∣∣∣p + p′

|p′ |

∣∣∣ ≥ minSd−1 σ

maxSd−1 |Dσ | > 0 since

0 ≤ Dσ (p′) · p ≤ Dσ (p′) ·
(

− p′

|p′|
)

+ (max
Sd−1

|Dσ |)
∣∣∣∣p + p′

|p′|
∣∣∣∣

≤ −(min
Sd−1

σ ) + (max
Sd−1

|Dσ |)
∣∣∣∣p + p′

|p′|
∣∣∣∣ .

The uniform convexity assumption (S4) can equivalently be stated as follows (see [30, Remark 1.7.5]):
There exists a constant σ > 0 such that

D2σ (p∗) ≥ σ

|p∗| on {p∗}⊥ (2.6)

for all p∗ �= 0. We use a second-order Taylor expansion around p′
|p′ | and write the remainder in terms of

an intermediate point p∗ = (1 − t)p + t p′
|p′ | with t ∈ [0, 1]. Together with the convexity property (2.6), it

follows that

σ (p) − Dσ (p′) · p = σ (p) − σ

(
p′

|p′|
)

− Dσ

(
p′

|p′|
)

·
(

p − p′

|p′|
)

= 1

2

(
p − p′

|p′|
)

· D2σ (p∗)

(
p − p′

|p′|
)

≥ σ

2|p∗|
∣∣∣∣
(

p − p′

|p′|
)

−
((

p − p′

|p′|
)

· p∗

|p∗|
)

p∗

|p∗|
∣∣∣∣

2
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≥ σ

8

∣∣∣∣p + p′

|p′|
∣∣∣∣

2 ∣∣∣∣p − p′

|p′|
∣∣∣∣

2

≥ σ

8

(minSd−1 σ )2

(maxSd−1 |Dσ |)2

∣∣∣∣p − p′

|p′|
∣∣∣∣

2

. (2.7)

Furthermore, the assumption Dσ (p′) · p ≥ σ (p)
2

allows us to compute

(
1 − |p′|ψ(|p′|)) Dσ (p′) · p ≥ (

1 − |p′|) σ (p)

2
≥ minSd−1 σ

2

∣∣∣∣ p′

|p′| − p′
∣∣∣∣

2

. (2.8)

Finally, a combination of (2.7) and (2.8) together with an application of Young’s inequality yields

σ (p) − |p′|ψ(|p′|)Dσ (p′) · p = σ (p) − Dσ (p′) · p + (
1 − |p′|ψ(|p′|)) Dσ (p′) · p

≥ 2cσ

(∣∣∣∣p − p′

|p′|
∣∣∣∣

2

+
∣∣∣∣ p′

|p′| − p′
∣∣∣∣

2
)

≥ cσ
∣∣p − p′∣∣2

, (2.9)

which completes the proof of (i) in the second case.
For inequality (ii), we distinguish two cases again. First, in the easier case |p − p′| ≥ 1, we can

estimate

σ (p) − |p′|ψ(|p′|)Dσ (p′) · p ≤ max
Sd−1

σ + max
Sd−1

|Dσ | ≤
(
max
Sd−1

σ + max
Sd−1

|Dσ |
) ∣∣p − p′∣∣2

. (2.10)

Second, if |p − p′|< 1, then∣∣∣∣p − p′

|p′|
∣∣∣∣

2

= 2 − 2p · p′

|p′| ≤ 2 + 1

|p′|
(|p − p′|2 − 1

)
< 2

and, therefore, ∣∣∣∣(1 − t)p + t
p′

|p′|
∣∣∣∣

2

= 1 − (
t − t2

) ∣∣∣∣p − p′

|p′|
∣∣∣∣

2

≥ 1 − 1

4

∣∣∣∣p − p′

|p′|
∣∣∣∣

2

>
1

2

for all t ∈ [0, 1]. As in the proof of inequality (i) above, we introduce a second-order Taylor expansion
around p′

|p′ | with an intermediate point p∗ = (1 − t)p + t p′
|p′ | , where t ∈ [0, 1]. Using this expansion, Lemma

2.3(ii), (vi), and Young’s inequality, we obtain

σ (p) − |p′|ψ(|p′|)Dσ (p′) · p = σ (p) − σ

(
p′

|p′|
)

− Dσ

(
p′

|p′|
)

·
(

p − p′

|p′|
)

+ (
1 − |p′|ψ(|p′|)) Dσ (p′) · p

≤ 1

2

(
p − p′

|p′|
)

· D2σ (p∗)

(
p − p′

|p′|
)

+ (
1 − |p′|ψ(|p′|)) σ (p)

≤
√

2

2
(max

Sd−1
|D2σ |)

∣∣∣∣p − p′

|p′|
∣∣∣∣

2

+ 2(max
Sd−1

σ )
(
1 − |p′|)

≤ √
2(max

Sd−1
|D2σ |)|p − p′|2

+
(√

2(max
Sd−1

|D2σ |) + 2(max
Sd−1

σ )

) (
1 − |p′|) , (2.11)

from which (ii) follows in the case |p − p′|< 1.

The following fact on the duality of σ and σ ◦ will be used at a later point.
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Lemma 2.5. Let B ∈ L1(�)d, and let σ be an admissible surface tension. Then∫
�

σ (B)dx = sup
η

∫
�

B · η dx,

where the supremum is taken over all η ∈ C1(�)d such that σ ◦(η) ≤ 1.

Proof. For η ∈ C1(�)d such that σ ◦(η) ≤ 1, we have that∫
�

σ (B) dx ≥
∫
�

σ (B)σ ◦(η) dx ≥
∫
�

B · η dx

by Lemma 2.3. To see the other bound, whenever B �= 0 note that σ (B) = B · Dσ (B) and that
σ ◦(Dσ (B)) = 1 by Lemma 2.3. As {ν : σ ◦(ν) ≤ 1} is a convex set, if η is given by a smooth molli-
fication of Dσ (B), the inequality σ ◦(η) ≤ 1 still holds. Approximating Dσ (B) by such η shows that∫
�
σ (B)dx ≤ supη

∫
�

B · η dx, concluding the proof.

2.2 Anisotropic mean curvature and surface energy

In the remainder of this section, we assume that (σ ,μ) is an admissible pair of anisotropies according
to Definition 2.1.

Similarly to [7], we introduce the σ -mean curvature of a hypersurface � as the surface divergence of
the Cahn–Hoffman vector of the outer unit normal ν, i.e., Hσ = div�(Dσ (ν)). For the notion of the Cahn–
Hoffman vector, see [30, Section 1.3]. The surface divergence is given by div�X := divX − ν · ∇X ν.
Observe that, for every C1-extension of the normal ν to the whole space and every x ∈ �, we have

Hσ (x) = div�(Dσ (ν))(x)

= div(Dσ (ν))(x) − ν(x) · ∇(Dσ (ν))(x)ν(x)

= div(Dσ (ν))(x) − ν(x) · D2σ (ν(x))(∇ν(x))ν(x)

= div(Dσ (ν))(x),

where the last step uses the fact that D2σ (p)p = d
ds

∣∣∣
s=0

Dσ (esp) = d
ds

∣∣∣
s=0

Dσ (p) = 0 for all p ∈R
d \ {0} by

the positive 0-homogeneity of Dσ , Lemma 2.3(iv).
Furthermore, we define the anisotropic surface energy E as in (1.2). The relation between the

anisotropic mean curvature and anisotropic surface energy becomes clear from the following theorem,
which deals with the first variation and direction of steepest descent of the functional E:

Theorem 2.6. Let A ⊂R
d be a bounded open set with C2-boundary, and let ν denote the outer unit

normal on ∂A. Given a compactly supported vector field B ∈ C1
c (Rd)d, we define a one-parameter family

of diffeomorphisms

� : Rd × (−‖∇B‖−1
L∞ , ‖∇B‖−1

L∞
) →R

d, �t(x) = x + tB(x).

For |t|< ‖∇B‖−1
L∞ , let A(t) := �t(A) and u(x, t) := χ�(t)(x). Then

d

dt
E[u(·, t)]

∣∣∣
t=0

= c0

∫
∂A

Hσ ν · BdHd−1. (2.12)

Moreover, we define ‖B‖∗ :=
(

c0

∫
∂A
σ ◦(−sgn(Hσ )B)2 σ (ν)2

μ(ν)
dHd−1

) 1
2
, so that ‖ · ‖∗ is bounded from below

and above by the L2-norm for vector-valued functions ∂A →R
d. If we denote the right-hand side of (2.12)

by the dual pairing (dE, B), then a solution of the minimization problem

min
{
(dE, B)

∣∣‖B‖∗ ≤ 1
}

(2.13)

is given by a positive multiple of −Hσ
μ(ν)
σ (ν)

Dσ (ν).
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Proof. The identity for the first variation (2.12) was stated by Almgren, Taylor, and Wang [1,
Section 2.2] and proved by Bellettini and Paolini in the more general context of Finsler geometry [7,
Theorem 5.1]. The proof of the steepest descent statement follows the idea of [7, Proposition 5.1] but
incorporates the (arbitrary) mobility μ:

Let B ∈ L2(∂A)d, then by Lemma 2.3(ii) and the Cauchy–Schwarz inequality it follows that

(dE, B) = c0

∫
∂A

Hσ ν · BdHd−1

= −c0

∫
∂A

|Hσ |ν · (−sgn(Hσ )B) dHd−1

≥ −c0

∫
∂A

|Hσ |σ (ν) σ ◦(−sgn(Hσ )B) dHd−1

≥ −c0

(∫
∂A

|Hσ |2μ(ν) dHd−1

) 1
2
(∫

∂A

σ ◦(−sgn(Hσ )B)2 σ (ν)2

μ(ν)
dHd−1

) 1
2

= −√
c0

(∫
∂A

|Hσ |2μ(ν) dHd−1

) 1
2

‖B‖∗,

and Lemma 2.3(v), (vi) yield that the first inequality is an equality if B = −λsgn(Hσ )Dσ (ν) for some
nonnegative function λ : ∂A →R≥0. Therefore, if B is a constant positive multiple of −Hσ

μ(ν)
σ (ν)

Dσ (ν),
then both inequalities are equalities. The statement follows by the positive 1-homogeneity of ‖ · ‖∗.

This theorem helps us to justify the gradient flow structure for anisotropic mean curvature flow as
introduced earlier via (1.2) and (1.3): Considering that tangential components of the velocity B do not
contribute to the variation of A, let us restrict ourselves to velocities of the form B = −λsgn(Hσ )Dσ (ν),
where λ ∈ C(∂A; R≥0). The normal component of such a vector field B is V = B · ν = −λsgn(Hσ )σ (ν),
and the metric term becomes

‖B‖2
∗ = c0

∫
∂A

σ ◦(λDσ (ν))2 σ (ν)2

μ(ν)
dHd−1 = c0

∫
∂A

λ2 σ (ν)2

μ(ν)
dHd−1 = c0

∫
∂A

1

μ(ν)
V2dHd−1,

which is in accordance with (1.3). The velocity of steepest descent which was given in Theorem 2.6
satisfies

V = −Hσ

μ(ν)

σ (ν)
Dσ (ν) · ν = −μ(ν)Hσ

by Lemma 2.3(v), which (formally) verifies the gradient flow structure of (1.1).

2.3 Distributional solutions to anisotropic mean curvature flow

We introduce a distributional formulation for (1.1) that was proposed in [39]. The idea behind this
formulation is to encode the σ -mean curvature by a (d × d)-matrix via an integration by parts as follows:

Remark 2.7. Let A ⊂R
d be a bounded open set with C2-boundary. For every vector field B ∈ C1(Rd)d,

we have ∫
∂A

(σ (ν)Id − ν ⊗ Dσ (ν)) : ∇B dHd−1 =
∫
∂A

Hσ B · ν dHd−1. (2.14)

To see this, we extend the normal ν to a vector field ν ∈ C1(Rd)d, e.g., as a truncation of the normalized
gradient ∇sdist

|∇sdist| of the signed distance function. There exists an open neighborhood U of ∂A where ν �= 0,
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and in this neighborhood we can decompose the vector field B as

B =
(

B − 1

σ (ν)
(B · ν)Dσ (ν)

)
+ 1

σ (ν)
(B · ν)Dσ (ν)

=: B1 + B2.

The restriction of B1 to ∂A is tangential since, by Lemma 2.3(v), we have B1 · ν = 0. By the divergence
theorem on the closed surface ∂A, we obtain

0 =
∫
∂A

div∂A (σ (ν)B1) dHd−1

=
∫
∂A

(σ (ν)divB1 + Dσ (ν) · ∇νB1 − σ (ν)ν · ∇B1ν) dHd−1

=
∫
∂A

(σ (ν)divB1 − ν · ∇B1Dσ (ν) + (Dσ (ν) − σ (ν)ν) · ∇νB1 +

+ ν · ∇B1 (Dσ (ν) − σ (ν)ν)) dHd−1

=
∫
∂A

((σ (ν)Id − ν ⊗ Dσ (ν)) :∇B1 + (Dσ (ν) − σ (ν)ν) · ∇νB1 +

− B1 · ∇ν (Dσ (ν) − σ (ν)ν)) dHd−1

=
∫
∂A

(σ (ν)Id − ν ⊗ Dσ (ν)) :∇B1 dHd−1. (2.15)

In this computation, the third equality follows by adding zero and using that
ν · ∇ν B1 = B1 · ∇ (

1
2
|ν|2

) = 0. For the fourth equality observe that (∇B1)Tν + B1)Tν + (∇ν)TB1 =
∇(B1 · ν) = 0 since B1 is tangential. holds true because the second fundamental form

IIx : Tx∂A × Tx∂A →R, IIx(v, w) := w · (v · ∇)ν(x)

is symmetric for all x ∈ ∂A (see [30, Section 1.3]).
On the other hand, we have

∇B2 = − 1

σ 2(ν)
(B · ν)Dσ (ν) ⊗ (∇ν)TDσ (ν) + 1

σ (ν)
Dσ (ν) ⊗ (∇ν)TB

+ 1

σ (ν)
Dσ (ν) ⊗ (∇B)Tν + 1

σ (ν)
(B · ν)D2σ (ν)∇ν,

which yields

(σ (ν)Id − ν ⊗ Dσ (ν)) :∇B2 = div(Dσ (ν))B · ν = HσB · ν. (2.16)

From (2.15) and (2.16) we obtain (2.14).
Using the integration by parts (2.14), we arrive at a distributional formulation for anisotropic mean

curvature which resembles the isotropic version due to Luckhaus and Sturzenhecker [47]. Following
[39], our definition for BV solutions to anisotropic mean curvature flow also includes an optimal energy
dissipation inequality, which alludes to the gradient flow structure of the problem.

Definition 2.8 (Distributional solutions to anisotropic mean curvature flow). Let χ0 ∈ BV(�; {0, 1}).
A distributional (or BV) solution to V = −μ(ν)Hσ with initial condition χ0 is a function χ ∈
BV (�× (0, T); {0, 1})∩ C0, 1

2
(
[0, T]; L1(�)

) ∩ L∞ (0, T; BV(�)) such that
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(i) there exists a
∣∣∇χ ∣∣-measurable function V :�× (0, T) →R such that∫ T

0

∫
�

V2
∣∣∇χ ∣∣<∞, (2.17)

which is the normal velocity in the sense that for all ζ ∈ C1(�× [0, T]) and T ′T ′ ∈ (0, T]:∫
�

ζ (x, T ′)χ (x, T ′)dx −
∫
�

ζ (x, 0)χ0(x)dx

=
∫ T ′

0

∫
�

∂tζ (x, t)χ (x, t)dxdt +
∫ T ′

0

∫
�

ζ (x, t)V(x, t)
∣∣∇χ ∣∣, (2.18)

(ii) the relation V = −μ(ν)Hσ is satisfied in a distributional sense, i.e., for all B ∈ C1(�× [0, T])d,
we have

−
∫ T

0

∫
�

1

μ(ν)
VB · ν∣∣∇χ ∣∣ =

∫ T

0

∫
�

∇B : (σ (ν)Id − ν ⊗ Dσ (ν))
∣∣∇χ ∣∣, (2.19)

and
(iii) the function χ satisfies the optimal energy dissipation inequality∫

�

σ (ν)|∇χ (T ′)| +
∫ T ′

0

∫
�

1

μ(ν)
V2

∣∣∇χ ∣∣ ≤
∫
�

σ (ν)|∇χ0| (2.20)

for every T ′ ∈ [0, T].

A prime example of anisotropic mean curvature flow is the following self-similar solution, which gen-
eralizes the evolution of shrinking spheres by (isotropic) mean curvature flow. This example of motion
by anisotropic mean curvature flow is derived in [30, Section 1.7.2].

Example 2.9 (The Wulff shape). Let σ be an admissible surface tension, and suppose that μ= σ . The
Wulff shape associated with σ is the set

Wσ :=
{

x ∈R
d
∣∣∣σ ◦(x) ≤ 1

}
. (2.21)

Then

• the σ -mean curvature of ∂Wσ is Hσ ≡ d − 1, and
• the family {�(t)}t∈[0, 1

2(d−1) ) defined by �(t) = √
1 − 2(d − 1)t ∂Wσ evolves by anisotropic mean

curvature flow V = −σ (ν)Hσ .

In Theorem 4.1, we will prove convergence of the anisotropic Allen–Cahn equation (1.4) to a dis-
tributional solution of anisotropic mean curvature flow in the sense of Definition 2.8, but first we must
introduce an appropriate notion of solution for (1.4).

3. The anisotropic Allen–Cahn equation

The goal of this chapter is to construct solutions to the anisotropic Allen–Cahn equation (1.4) and to
establish spatial H2-regularity for these solutions.

From now on, our assumptions on the double-well potential W are

(W1) W(0) = W(1) = 0 and W(s)> 0 for all s ∈R \ {0, 1},
(W2) W ∈ C1(R),
(W3) W is twice differentiable at 0 and 1, with W ′′(0), W ′′(1)> 0,
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(W4) there exists λ> 0 such that W is λ-convex (see Remark 3.1), and
(W5) W is nonincreasing on (−∞, 0] and nondecreasing on [1, ∞).

While (W1) and (W2) are common assumptions on double-well potentials, (W3) is motivated by the
desirable property of exponential convergence of solutions to (1.4) to the wells far away from the diffuse
interface and is not necessary for the main results of existence and sharp-interface limit. This assumption
was used in a similar way by Sternberg [52]. A reference which makes use of the exponential convergence
is [24], where Fischer, Simon, and the first author derive a convergence rate for the sharp-interface limit
in the isotropic case.

Assumption (W4) is needed in the proof of existence of solutions to guarantee the convergence of
the approximate energies. Assumption (W5) is dispensable if one only considers solutions uε to (1.4)
that satisfy 0 ≤ uε ≤ 1 almost everywhere.

Up to a linear scaling, a possible choice for W is the standard double-well potential W(s) =
9
16

(
1 − s2

)2. Here, the prefactor 9
16

is chosen such that c0 := ∫ 1

−1

√
W(s)ds = 1.

Remark 3.1. Let X be a Hilbert space and λ> 0. A function F : X → [0, ∞] is called λ-convex if the
following equivalent conditions are satisfied:

(i) For all x0 ∈X , the mapping x �→ F(x) + λ

2
‖x − x0‖2

X is convex,
(ii) for all x, y ∈X and μ ∈ (0, 1), we have

F ((1 −μ)x +μy)≤ (1 −μ)F(x) +μF(y) + λ

2
μ(1 −μ) ‖y − x‖2

X .

Furthermore, we will always assume that (σ ,μ) is an admissible pair of anisotropies in accordance
with Definition 2.1. The information on the surface tension σ and mobilityμ is contained in the functions
f , g as defined in (1.5) and (1.6), respectively. We remark that there is some freedom with regard to the
choice of g: Since σ (p)

μ(p)
is not defined for p = 0, adding +1 in the numerator as well as the denominator (cf.

(1.6)) is a means of avoiding a singularity at 0. Our existence and conditional convergence statements
rely merely on the following properties of g:

Lemma 3.2. Letting g be as in (1.6), the following holds:

(i) The function g : Rd →R>0 is continuous,
(ii) we have cg := infRd g> 0, and
(iii)

lim
|p|→∞

∣∣∣∣g(p) − σ (p)

μ(p)

∣∣∣∣ = 0. (3.1)

The following weak solution concept for the anisotropic Allen–Cahn equation combines an integra-
tion by parts in space (ii) with an optimal energy dissipation identity (iii), which hints at the gradient
flow structure of (1.4). Prescribing the initial data as in (i) is possible because uε(0) is well-defined via
the embedding H1(�× (0, T)) ⊂ C0, 1

2
(
[0, T]; L2(�)

)
.

Definition 3.3 (Solutions to the anisotropic Allen–Cahn equation). Let ε > 0 and uε,0 ∈ dom(Eε).
A function

uε ∈ H1(�× (0, T)) ∩ L∞(�× (0, T))

is a solution to the anisotropic Allen–Cahn equation with initial data uε,0 if
(i)

uε(0) = uε,0, (3.2)
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(ii) ∫ T

0

∫
�

g(−∇uε)∂tuεϕ dxdt =
∫ T

0

∫
�

1

2

(
Df (−∇uε)) · ∇ϕ − 1

ε2
W ′(uε)ϕ

)
dxdt (3.3)

for all ϕ ∈ C1(�× [0, T]), and
(iii)

Eε[uε(T
′)] +

∫ T ′

0

∫
�

εg(−∇uε)(∂tuε)
2dxdt = Eε[uε,0] (3.4)

for all T ′ ∈ (0, T].

We comment on the typical behavior of the anisotropic Allen–Cahn equation (1.4).

Remark 3.4. The reaction term − 1
ε2 W ′(uε) forces the solution uε towards the wells of W, i.e., towards

the set {0, 1}. The interplay of the reaction term with the anisotropic diffusion term −div (Df (−∇uε))
results in a transition layer of width O(ε) whose shape also depends on the direction of the approximate
outer normal − ∇uε

|∇uε | . More precisely, the typical width of the transition layer is εσ
(
− ∇uε

|∇uε |

)
.

To see this, one can choose the 1-dimensional stationary ansatz

uε : Rd ×R≥0 →R, uε(x, t) = Uε(x · ν), (3.5)

with ν ∈ Sd−1 being a fixed unit-length vector. Together with a monotonicity assumption on the transition,
this admits the solution

uε(x, t) =�

(
− x · ν
εσ (ν)

)
, (3.6)

where � is the unique solution to

�′ = √
W(�), �(0) = 1/2. (3.7)

With this in mind, we note that the weighted L2-metric (1.8) depends on σ andμ, whereas anisotropic
mean curvature is a gradient flow with respect to the metric (1.3), which depends only on μ. This can be
explained by the idea that, in the anisotropic Allen–Cahn equation, the metric (1.8) has to compensate
for the typical width of the transition layer varying with the orientation of the normal.

3.1 Existence of weak solutions

Theorem 3.5 (Existence). Let ε > 0 and u0 ∈ dom(Eε) ∩ L∞(�). For any finite time horizon T ∈ (0, ∞),
there exists a solution u to the anisotropic Allen–Cahn equation in the sense of Definition 3.3 with initial
data u0. Furthermore, u satisfies

‖u − 1/2‖L∞(�×(0,T)) ≤ max
{‖u0 − 1/2‖L∞(�), 1/2

}
. (3.8)

To prove this existence theorem, we exploit the gradient-flow structure of the equation and construct
solutions via a minimizing movements scheme. To this end, we consider an approximation of the PDE
(1.4) that replaces the time derivative by difference quotients: Given a time-step size h> 0, let us look
for functions {un

h}n∈N0 that solve

2g(−∇un−1
h )

un
h − un−1

h

h
= −div(Df (−∇un

h)) − 1

ε2
W ′(un

h), n ∈N, (3.9)

u0
h = u0. (3.10)

In fact, equation (3.9) is the strong Euler–Lagrange equation of the variational problem

un
h ∈ arg min

u∈L2(�)

{
Eε[u] + 1

2h

∥∥u − un−1
h

∥∥2

un−1
h

}
, n ∈N, (3.11)
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where we recall the energy (1.7) and the inner-product (1.8) for which we use the notation

‖v‖u := (v, v)u

1
2 ,

in which the dependence on ε is suppressed again.
Equation (3.9) does not precisely resemble an implicit Euler scheme as it features the explicit term

g(−∇un−1
h ) rather than the implicit term g(−∇un

h). Instead (3.9) can be viewed an implicit-explicit
splitting discretization scheme of (1.4). This is mirrored in the minimization problem (3.11) by the
occurrence of the metric (·, ·)un−1

h
, which is taken with respect to the constant point un−1

h and therefore
does not depend on u. Thanks to this choice, one can immediately prove that (3.11) admits a unique
solution as soon as h is small enough, using the direct method in the calculus of variations:

Lemma 3.6. Let Eε be defined as in (1.7) and assumptions (W1)–(W5) hold. It follows that:

(i) The energy Eε is λ

2ε
-convex on L2(�),

(ii) if h< 2ε2cg

λ
, then u �→ Eε[u] + 1

2h

∥∥u − un−1
h

∥∥2

un−1
h

is strongly convex,

(iii) for all h> 0, the mapping u �→ Eε[u] + 1
2h

∥∥u − un−1
h

∥∥2

un−1
h

is lower semicontinuous on L2(�),

(iii) for h< 2ε2cg

λ
and un−1

h ∈ dom(Eε), there exists a unique minimizer un
h ∈ dom(Eε) for (3.11), and

‖un
h‖L∞ ≤ max

{‖un−1
h ‖L∞ , 1

}
.

Proof.

(i) Let u, v ∈ L2(�) and μ ∈ [0, 1]. We will use the equivalent formulation (ii) in Remark 3.1, so
that we have to show that

Eε[(1 −μ)u +μv] ≤ (1 −μ)Eε[u] +μEε[v] + λ

4ε
μ(1 −μ)‖v − u‖2

L2

for all u, v ∈ L2(�) and μ ∈ (0, 1). We can assume without loss of generality that u, v ∈ dom(Eε).
Exploiting the convexity of f as well as the λ-convexity of W (W4), we obtain

Eε[(1 −μ)u +μv] = 1

2

∫
�

(
εf (− (1 −μ)∇u −μ∇v) + 1

ε
W((1 −μ)u +μv)

)
dx

≤ 1

2

∫
�

(ε(1 −μ)f (−∇u) + εμf (−∇v)) dx

+ 1

2

∫
�

(
1 −μ

ε
W(u) + μ

ε
W(v) + λ

2ε
μ(1 −μ)|v − u|2

)
dx

≤ (1 −μ)Eε[u] +μEε[v] + λ

4ε
μ(1 −μ) ‖v − u‖2

L2 . (3.12)

(ii) This follows from (i) and quantifying the strong convexity of the metric term: Given u, v ∈ L2(�)
and μ ∈ (0, 1), we compute

1

2h

∥∥((1 −μ)u+μv) − un−1
h

∥∥2

un−1
h

= 1 −μ

2h
‖u − un−1

h ‖2
un−1

h
+ μ

2h
‖v − un−1

h ‖2
un−1

h

− μ(1 −μ)

2h

∫
�

εg(−∇un−1
h )|v − u|2dx
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≤ 1 −μ

2h
‖u − un−1

h ‖2
un−1

h
+ μ

2h
‖v − un−1

h ‖2
un−1

h

− εcg

2h
μ(1 −μ) ‖v − u‖2

L2 . (3.13)

Combining (3.12) with (3.13) yields strong convexity for u �→ Eε[u] + 1
2h

∥∥u − un−1
h

∥∥2

un−1
h

if λ

4ε
<

εcg

2h
, or, equivalently, if h< 2ε2cg

λ
.

(iii) This will follow from the lower semi-continuity of the individual terms. To see that the
anisotropic Dirichlet energy is lower semi-continuous, we can assume without restriction that
vk ∈ H1(�) for all k ∈N, so that it remains to prove that

ε

2

∫
�

f (−∇v)dx ≤ lim inf
k→∞

ε

2

∫
�

f (−∇vk)dx.

Without loss of generality, vk converge to v weakly in H1(�), and lower semi-continuous follows
from convexity of f . The lower semicontinuity of the potential term

∫
�

W(u) dx and the metric
term u �→ 1

2h

∥∥u − un−1
h

∥∥2

un−1
h

follow from Fatou’s lemma.

(iv) The functional to be minimized is proper. Let {vk}k∈N be a minimizing sequence, i.e.,

lim
k→∞

(
Eε[vk] + 1

2h

∥∥vk − un−1
h

∥∥2

un−1
h

)
= inf

u∈L2(�)

{
Eε[u] + 1

2h

∥∥u − un−1
h

∥∥2

un−1
h

}
.

Every minimizing sequence is bounded in H1(�) since

‖vk‖2
H1 ≤ 2

∥∥vk − un−1
h

∥∥2

L2 + 2
∥∥un−1

h

∥∥2

L2 + ‖∇vk‖2
L2

≤ 2

εcg

∥∥vk − un−1
h

∥∥2

un−1
h

+ 2
∥∥un−1

h

∥∥2

L2 + 1

(minSd−1 σ )2

∫
�

f (−∇vk)dx

≤ 2
∥∥un−1

h

∥∥2

L2 +
(

4h

εcg

+ 2

ε(minSd−1 σ )2

)(
Eε[vk] + 1

2h

∥∥vk − un−1
h

∥∥2

un−1
h

)
. (3.14)

By Rellich’s theorem, there exists a subsequence converging in L2(�) to a limit function v ∈
L2(�). The lower semicontinuity (iii) then shows that

v ∈ arg min
u∈L2(�)

{
Eε[u] + 1

2h

∥∥u − un−1
h

∥∥2

un−1
h

}
.

The minimizer v is unique due to the strong convexity (ii). For the L∞-bound, we define a
truncated version of un

h by

v(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−αn−1 + 1
2

if un
h(x)<−αn−1 + 1

2
,

un
h(x) if |un

h(x) − 1
2
| ≤ αn−1,

αn−1 + 1
2

if un
h(x)>αn−1 + 1

2
,

where αn−1 := max{‖un−1
h − 1

2
‖L∞ , 1

2
}. Letting A := {x ∈� ∣∣ v(x) �= un

h(x)}, it follows from un
h ∈

dom(Eε) ⊆ H1(�) and a general fact about Sobolev spaces that v ∈ H1(�) and

∇v(x) =
⎧⎨
⎩

∇un
h(x) for almost every x ∈� \ A,

0 for almost every x ∈ A.
(3.15)
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Then, using (3.15), the positive definiteness of σ , the monotonicity assumption (W5), and the
pointwise inequality |v − un−1

h | ≤ |un
h − un−1

h |, one obtains

Eε[v] + 1

2h

∥∥v − un−1
h

∥∥2

un−1
h

≤ ε

2

∫
�

f (−∇un
h)dx + 1

2ε

∫
�

W(un
h)dx

+ ε

2h

∫
�

g(−∇un−1
h )|un

h − un−1
h |2dx

= Eε[u
n
h] + 1

2h

∥∥un
h − un−1

h

∥∥2

un−1
h

.

By the uniqueness of minimizers, this implies that v = un
h and, therefore,

‖un
h − 1

2
‖L∞ = ‖v − 1

2
‖L∞ ≤ αn−1 = max

{‖un−1
h − 1

2
‖L∞ , 1

2

}
.

In order to pass to the limit h ↘ 0, we define one affine and two piecewise constant interpolations:
For n ∈N such that t ∈ [(n − 1)h, nh) let

uh(t) := t − (n − 1)h

h
un

h + nh − t

h
un−1

h ,

uh(t) := un
h,

uh(t) := un−1
h , (3.16)

where u0
h ∈ dom(E) and un

h are defined inductively via (3.11) for n ∈N.
Before we turn to the limiting function u, let us prove the following inequality, which is a consequence

of the λ

2ε
-convexity of Eε and the minimizing property of the time steps un

h un
h (3.11):

Lemma 3.7. Let h< 2ε2cg

λ
and w ∈ L2(�× (0, T)). Then

Eε[w(t)] ≥ Eε[uh(t)] −
∫
�

εg(−∇uh(t))∂tuh(t) (w(t) − uh(t)) dx − λ

4ε

∫
�

|w(t) − uh(t)|2 dx (3.17)

for almost every t ∈ (0, T).

Proof. It suffices to prove the corresponding inequality involving the time steps un
h, n ∈N: Let h< ε2cg

2λ

and n ∈N. Then for all v ∈ L2(�), we have

Eε[v] ≥ Eε[u
n
h] −

∫
�

εg(−∇un−1
h )

un
h − un−1

h

h

(
v − un

h

)
dx − λ

4ε

∫
�

∣∣v − un
h

∣∣2
dx. (3.18)

Clearly, one can write the interpolations uh, uh, and uh on the left-hand side of (3.17) in terms of the
time steps, choosing n = n(t) ∈N such that t ∈ [(n(t) − 1)h, n(t)h). We also observe that the piecewise
affine interpolation uh ∈ C

(
[0, T]; L2(�)

)
has a weak time derivative ∂tuh given by

∂tuh(t) = uh(t) − uh(t)

h
= un(t)

h − un(t)−1
h

h

for almost every t ∈ (0, T). Therefore, (3.17) follows from (3.18) by reformulating the interpolation in
terms of the time steps and using v = w(t) for fixed t ∈ (0, T).

To prove (3.18), let v ∈ L2(�) and δ ∈ (0, 1). Again, we use the equivalent characterization of λ

2ε
-

convexity in Remark 3.1(ii). For computational ease, first note, that

|δv + (1 − δ)un
h − un−1

h |2 = δ2|v − un
h|2 + 2δ(v − un

h)(un
h − un−1

h ) + |un
h − un−1

h |2.
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Subtracting (1 − δ)|un − un−1|2 from both sides of the above equality, we may directly compute

Eε[v] ≥ 1

δ

(
Eε[δv + (1 − δ)un

h] − (1 − δ)Eε[u
n
h]
) − (1 − δ)

λ

4ε

∫
�

|v − un
h|2dx

= 1

δ

(
Eε[δv + (1 − δ)un

h] + 1

2h

∥∥δv + (1 − δ)un
h − un−1

h

∥∥2

un−1
h

− (1 − δ)Eε[u
n
h] − (1 − δ)

1

2h

∥∥un
h − un−1

h

∥∥2

un−1
h

)

− 1

2h

∫
�

εg(−∇un−1
h )

(
2(un

h − un−1
h )(v − un

h) + (un
h − un−1

h )2 + δ(un
h − v)2

)
dx

− (1 − δ)
λ

4ε

∫
�

|v − un
h|2dx

≥ 1

δ

(
Eε[u

n
h] + 1

2h

∥∥un
h − un−1

h

∥∥2

un−1
h

− (1 − δ)Eε[u
n
h] − (1 − δ)

1

2h

∥∥un
h − un−1

h

∥∥2

un−1
h

)

− 1

2h

∫
�

εg(−∇un−1
h )

(
2(un

h − un−1
h )(v − un

h) + (un
h − un−1

h )2 + δ(un
h − v)2

)
dx

− (1 − δ)
λ

4ε

∫
�

|v − un
h|2dx

= Eε[u
n
h] −

∫
�

εg(−∇un−1
h )

un
h − un−1

h

h
(v − un

h)dx − δ

2h

∫
�

εg(−∇un−1
h )(un

h − v)2dx

− (1 − δ)
λ

4ε

∫
�

|v − un
h|2dx, (3.19)

where the third step is an application of (3.11), with δv + (1 − δ)un
h acting as a contender for the

minimization problem. Taking the limit δ↘ 0 finally yields (3.18).

An application of the Arzelà–Ascoli theorem, as performed in the lemma below, shows that a sub-
sequence of {uh}h converges strongly, and the derivatives in time and space will turn out to converge
weakly in L2. However, due to the nonlinear term g(−∇u) in the anisotropic Allen–Cahn equation (1.4),
weak convergence of the gradients is not sufficient to show that the limit function solves the equation.
We will therefore use a convexity argument to also prove strong convergence of the gradients.

Lemma 3.8. Let {u0
h}h∈(0,

2ε2cg
λ )

⊂ dom(E) such that lim suph↘0 Eε[u0
h]<∞ and lim suph↘0 ‖u0

h‖L∞(�) <

∞. Then there exist a sequence h ↘ 0, denoted without relabeling, and a limit function u ∈ H1(�×
(0, T)) such that

(i)

uh(t), uh(t), uh(t) −→ u(t) in L2(�) uniformly in t ∈ [0, T],

(ii)

∂tuh⇀∂tu in L2(�× (0, T)),

(iii)

∇uh, ∇uh, ∇uh −→ ∇u in L2(�× (0, T))d
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as h ↘ 0, where uh, uh, and uh are constructed as above. Furthermore, the mapping u : [0, T] → L2(�) is
1
2
-Hölder continuous and satisfies the L∞-bound ‖u − 1

2
‖L∞(�×(0,T)) ≤ max

{
lim suph↘0 ‖u0

h − 1
2
‖L∞(�), 1

2

}
.

Proof.

(i) The first step is to prove a H1-bound for the minimizers un
h, n ∈N0:∥∥un

h

∥∥2

H1(�)
= ‖un

h‖2
L2(�) +

∥∥∇un
h

∥∥2

L2(�)

≤ ∥∥un
h

∥∥2

L∞(�)
+ 1

minSd−1 σ 2

∫
�

f (−∇un
h)dx

≤ ∥∥un
h

∥∥2

L∞(�)
+ 2

εminSd−1 σ 2
Eε[u

n
h]

≤ max
{∥∥u0

h

∥∥2

L∞(�)
, 1

}
+ 2

εminSd−1 σ 2
Eε[u

0
h], (3.20)

where the last inequality uses Lemma 3.6(iv) and (3.11) repeatedly.
For any t ∈ [0, T], the function uh(t) is a convex combination of two minimizers un−1

h , un−1
h , un

h of
(3.11). Applying the triangle inequality yields

sup
t∈[0,T]

lim sup
h↘0

‖uh(t)‖H1(�) ≤
(
max

{
lim sup

h↘0

∥∥un
h

∥∥2

L∞(�)
, 1

}

+ 2

εminSd−1 σ 2
lim sup

h↘0
Eε[u

0
h]

) 1
2

<∞. (3.21)

It follows from Rellich’s compact embedding theorem that any sequence {uhk (t)}k∈NN with
t ∈ [0, T] and limk→∞ hk = 0 has a subsequence converging in L2(�). To prove equicontinu-
ity in time, which is the second requirement for the Arzelà–Ascoli theorem, we will – as
is standard with minimizing movement approximations – show the stronger statement that
uh ∈ C

(
[0, T]; L2(�)

)
are 1

2
-Hölder continuous and the Hölder constants are uniformly bounded

as h ↘ 0. Indeed, for n ∈N, we use the definition of the metric (·, ·)un−1
h

and the minimization
property (3.11) to show that

∥∥un
h − un−1

h

∥∥2

L2(�)
≤ 1

εcg

∥∥un
h − un−1

h

∥∥2

un−1
h

= 2h

εcg

(
Eε[u

n
h] + 1

2h

∥∥un
h − un−1

h

∥∥2

un−1
h

− Eε[u
n
h]

)

≤ 2h

εcg

(
Eε[u

n−1
h ] − Eε[u

n
h]
)

. (3.22)

Inequality (3.22) allows us to bound the L2-norms of the weak time derivates ∂tuh as

‖∂tuh‖2
L2(0,T; L2(�))

≤
� T

h �∑
n=1

∫ nh

(n−1)h

‖∂tuh(t)‖2
L2(�)dt

=
� T

h �∑
n=1

∫ nh

(n−1)h

‖un
h − un−1

h ‖2
L2(�)

h2
dt
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≤
� T

h �∑
n=1

2

εcg

(
Eε[u

n−1
h ] − Eε[u

n
h]
)

≤ 2

εcg

Eε[u
0
h]. (3.23)

The fundamental theorem of calculus for vector-valued functions together with the Cauchy–
Schwarz inequality now yields

‖uh(t) − uh(s)‖L2(�) ≤
∫

(s,t)

‖∂tuh(r)‖L2(�)dr

≤ ‖∂tuh‖L2(s,t;L2(�))

√|t − s|

≤
√

2Eε[u0
h]

εcg

√|t − s| (3.24)

for all s, t ∈ [0, T]. This is the one-dimensional case of Morrey’s inequality.
By (3.24) and the assumption on the initial data, the Hölder constants are bounded as h ↘ 0.
Families of functions with bounded Hölder constants are equicontinuous. These equicontinu-
ity and precompactness statements allow us to apply the Arzelà–Ascoli theorem, which states
that there exists a subsequence h ↘ 0 and a function u ∈ C

(
[0, T]; L2(�)

)
such that uh → u in

C
(
[0, T]; L2(�)

)
. Furthermore, the Hölder continuity carries over to the limit function, i.e.,

‖u(t) − u(s)‖L2(�) ≤
√

2 lim suph↘0 Eε[u0
h]

ε0
Eε[u0

h]εcg

√|t − s| for all s, t ∈ [0, T]. (3.25)

One can extract a further subsequence {uhk}k∈N such that hk ↘ 0 and uhk (x, t) → u(x, t) almost
everywhere in �× (0, T). This pointwise convergence together with the triangle inequality
yields

‖u − 1
2
‖L∞(�×(0,T)) ≤ lim sup

k→∞
‖uhk − 1

2
‖L∞(�×(0,T))

≤ lim sup
h↘0

‖uh − 1
2
‖L∞(�×(0,T))

≤ lim sup
h↘0

sup
n∈N

‖un
h − 1

2
‖L∞(�)

≤ max

{
lim sup

h↘0
‖u0

h − 1
2
‖L∞(�), 1

2

}
.

In a last step, we argue briefly that the piecewise constant interpolations uh and uh converge
uniformly.
Given t ∈ [0, T], we find n ∈N such that t ∈ [(n − 1)h, nh). Then

‖uh(t) − uh(t)‖L2(�) = ‖uh(nh) − uh(t)‖L2(�) ≤
√

2Eε[u0
h]

εcg

√
nh − t ≤

√
2Eε[u0

h]

εcg

√
h,

and a similar argument shows that

‖uh(t) − uh(t)‖L2(�) ≤
√

2Eε[u0
h]

εcg

√
h.
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Combining this bound with the uniform convergence uh → u in C
(
[0, T]; L2(�)

)
, we obtain

lim sup
h↘0

sup
t∈[0,T]

max
{‖uh(t) − u(t)‖L2(�), ‖uh(t) − u(t)‖L2(�)

}

≤ lim sup
h↘0

sup
t∈[0,T]

‖uh(t) − u(t)‖L2(�) + lim
h↘0

√
2Eε[u0

h]

εcg

√
h

= 0.

(ii) It follows from (i) that uh → u as h ↘ 0 in L2
(
0, T; L2(�)

) ∼= L2(�× (0, T)). Furthermore, by
(3.23), the time derivatives {∂tuh} are bounded in L2(�× (0, T)) as h ↘ 0. By, e.g., [2, Prop.
2.5(b)], one concludes that u has a weak time derivative ∂tu ∈ L2(�× (0, T)), and that ∂tuh ⇀∂tu
in L2(�× (0, T)) as h ↘ 0.

(iii) We will prove the desired convergence result for the piecewise constant interpolation uh first.
Integrating (3.20) from 0 to T shows that the gradients {∇uh} are bounded in L2(�× (0, T))d

as h ↘ 0. Just like in (ii), it then follows from the strong convergence uh → u in L2(�× (0, T))
that the limit function u has a weak gradient ∇u ∈ L2(�× (0, T))d, and that ∇uh⇀∇u as h ↘ 0
in L2(�× (0, T))d.
The next step is to upgrade this weak convergence statement for the gradients to strong
convergence in L2. The key ingredient for the argument will be the energy convergence

Eε[uh(·)]⇀Eε[u(·)] in L1(0, T). (3.26)

Let us first argue how (3.26) implies strong convergence of the gradients. Since the Cahn–
Hilliard energy Eε is made up of a Dirichlet energy and a nonconvex term involving W, we will
use the convergence result (3.26) for the Cahn–Hilliard energies and a liminf inequality for the
nonconvex part to derive a limsup inequality for the Dirichlet energy, which will allow us to
prove the strong convergence statement.
Similarly to the proof of Lemma 3.6(iii), an application of Fatou’s lemma yields

lim inf
h↘0

∫ T

0

∫
�

W(uh)dxdt ≥
∫ T

0

∫
�

W(u)dxdt. (3.27)

One can now test (3.26) with a constant test function and combine this convergence statement
with (3.27), which yields

lim sup
h↘0

∫ T

0

∫
�

f (−∇uh)dxdt = 2

ε
lim
h↘0

∫ T

0

Eε[uh(t)]dt − 1

ε2
lim inf

h↘0

∫ T

0

∫
�

W(uh)dxdt

≤ 2

ε

∫ T

0

Eε[u(t)]dt − 1

ε2

∫ T

0

∫
�

W(u)dxdt

=
∫ T

0

∫
�

f (−∇u)dxdt. (3.28)

The function f is strongly convex, i.e., there exists a constant c> 0 such that f (p′) ≥ f (p) +
Df (p) · (p′ − p) + c

2
|p′ − p|2 for all p, p′ ∈R

d. Thus, if (3.28) holds true, then

lim sup
h↘0

c

2

∫ T

0

∫
�

|∇uh − ∇u|2 dxdt

≤ lim sup
h↘0

(∫ T

0

∫
�

f (−∇uh)dxdt −
∫ T

0

∫
�

f (−∇u)dxdt

−
∫ T

0

∫
�

Df (−∇u) · (∇u − ∇uh)dxdt

)
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≤ lim sup
h↘0

∫ T

0

∫
�

f (−∇uh)dxdt −
∫ T

0

∫
�

f (−∇u)dxdt

− lim inf
h↘0

∫ T

0

∫
�

Df (−∇u) · (∇u − ∇uh)dxdt

≤ 0,

where the last step also uses the fact that ∇uh⇀∇u in L2(�× (0, T))d. This computation implies
that ∇uh → ∇u strongly in L2(�× (0, T)).
In order to prove (3.26), it suffices to consider nonnegative test functions ζ ∈ L∞ (

0, T; R≥0

)
.

We will prove a liminf inequality and a limsup inequality separately.
On the one hand, by Fatou’s lemma, the lower semicontinuity of Eε, and (i), we obtain

lim inf
h↘0

∫ T

0

ζ (t)Eε[uh(t)]dt ≥
∫ T

0

ζ (t) lim inf
h↘0

Eε[uh(t)]dt ≥
∫ T

0

ζ (t)Eε[u(t)]dt. (3.29)

On the other hand, choosing w(x, t) := u(x, t) in (3.17) and integrating against ζ yields∫ T

0

ζ (t)Eε[u(t)]dt ≥
∫ T

0

ζ (t)Eε[uh(t)]dt

−
∫ T

0

ζ (t)
∫
�

(
εg(−∇uh)∂tuh(u − uh) + λ

4ε
|u − uh|2

)
dxdt.

In the limit h ↘ 0, the second integral on the right-hand side vanishes since uh → u in L2(�×
(0, T)) and g is bounded in L∞ by Lemma 3.2. Thus,∫ T

0

ζ (t)Eε[u(t)]dt ≥ lim sup
h↘0

∫ T

0

ζ (t)Eε[uh(t)]dt. (3.30)

Combining (3.29) and (3.30) yields (3.26).
We have shown that ∇uh → ∇u in L2(�× (0, T)) as h ↘ 0. As for ∇uh, one computes

‖∇uh−∇u‖2
L2(�×(0,T))

=
∫ h

0

∫
�

|∇uh − ∇u|2dxdt +
∫ T

h

∫
�

|∇uh − ∇u|2dxdt

=
∫ h

0

∫
�

|∇u0
h − ∇u|2dxdt +

∫ T

h

∫
�

|∇uh(x, t − h) − ∇u(x, t)|2dxdt

≤ 2h
∫
�

|∇u0
h|2dx + 2

∫ h

0

∫
�

|∇u|2dxdt

+ 2
∫ T−h

0

∫
�

|∇uh(x, t) − ∇u(x, t)|2dxdt

+ 2
∫ T−h

0

∫
�

|∇u(x, t) − ∇u(x, t + h)|2dxdt

−→ 0 as h ↘ 0,

where the last integral vanishes as h ↘ 0 due to the continuity of translation.
Lastly, ∇uh(x, t) is a convex combination of ∇uh(x, t) and ∇uh(x, t) for almost all (x, t) ∈�×
(0, T). Hence, it follows from ∇uh → ∇u and ∇uh → ∇u that, as h ↘ 0, we have ∇uh → ∇u in
L2(�× (0, T)) as well.
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We are now ready to pass to the limit h ↘ 0 in (3.17), which will eventually allow us to prove Theorem
3.5. This is the content of the following lemma:

Lemma 3.9. Let w ∈ L2(�× (0, T)) and ζ ∈ L∞(0, T) such that ζ ≥ 0 almost everywhere. Then∫ T

0

ζ (t)

(
Eε[w(t)] − Eε[u(t)] +

∫
�

εg(−∇u)∂tu(w − u)dx + λ

4ε

∫
�

|w − u|2dx

)
dt ≥ 0. (3.31)

In other words, for every w ∈ L2(�× (0, T)), the inequality Eε[w(t)] ≥ Eε[u(t)] − ∫
�
εg(−∇u)∂tu(w −

u)dx − λ

4ε

∫
�

|w − u|2dx holds true for almost every t ∈ (0, T).

Proof. First, by the weak convergence (3.26), it follows that

lim
h↘0

∫ T

0

ζ (t)Eε[uh(t)]dt =
∫ T

0

ζ (t)Eε[u(t)]dt (3.32)

for any function ζ ∈ L∞(0, T) such that ζ ≥ 0.
Second, for the term involving the time derivative, we know from Lemma 3.8(ii) that ∂tuh⇀∂tu in

L2(�× (0, T)). Thus, to derive the convergence of the integrals, it suffices to show that g(−∇uh)(w −
uh) → g(−∇u)(w − u) (strongly) in L2(�× (0, T)).

By Lemma 3.8(iii), we know that ∇uh, ∇uh → ∇u in L2(�× (0, T)). Since g is a continuous function,
every subsequence of g(−∇uh) as h ↘ 0 has a further subsequence that converges pointwise almost
everywhere to g(−∇u). By the uniform boundedness of g and the dominated convergence theorem, it
follows that

g(−∇uh(t))(w(t) − uh(t)) → g(−∇u(t))(w(t) − u(t)) in L2(�) for almost all t ∈ (0, T).

It remains to show the L2-convergence on the product space �× (0, T). Using the generalized
dominated convergence theorem with

∥∥g(−∇uh(t))(w(t) − uh(t))
∥∥

L2(�)
≤ (sup

Rd

g)

(∫
�

(w(t) − uh(t))
2dx

) 1
2

−→ (sup
Rd

g)

(∫
�

(w(t) − u(t))2dx

) 1
2

in L2(0, T),

it follows that ∫ T

0

∥∥g(−∇uh(t))(w(t) − uh(t)) − g(−∇u(t))(w(t) − u(t))
∥∥2

L2(�)
dt −→ 0,

i.e., by Fubini’s theorem, g(−∇uh)(w − uh) → g(−∇u)(w − u) in L2(�× (0, T)). In total, we obtain

lim
h↘0

∫ T

0

ζ (t)
∫
�

εg(−∇uh(t))∂tuh(t)(w(t) − uh(t))dxdt

=
∫ T

0

ζ (t)
∫
�

εg(−∇u(t))∂tu(t)(w(t) − u(t))dxdt. (3.33)

Third, it follows from Lemma 3.8(i) that

lim
h↘0

λ

4ε

∫ T

0

ζ (t)
∫
�

|w(t) − uh(t)|2dxdt = λ

4ε

∫ T

0

ζ (t)
∫
�

|w(t) − u(t)|2dxdt. (3.34)

Integrating (3.17) against ζ , taking the limit h ↘ 0, and plugging in (3.32)–(3.34) proves the desired
inequality.

With the help of Lemma 3.9, it can be seen that −∂tu(t) lies in the u(t)-subdifferential ∂u(t)Eε[u(t)] for
almost every t ∈ (0, T). Thus, it seems plausible that the limiting trajectory u(t) is a gradient flow for Eε.

Proof of Theorem 3.5. Choosing u0
h = u0, one can construct the functions uh, uh, and uh by Lemma 3.6

and (3.16). Invoking Lemma 3.8 yields a subsequence h ↘ 0 as well as a function u ∈ H1(�× (0, T)) ∩
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L∞(�× (0, T)) such that ‖u − 1
2
‖L∞(�×(0,T)) ≤ max

{‖u0 − 1
2
‖L∞(�), 1

2

}
, and such that the three conver-

gence results in Lemma 3.8(i)–(iii) hold true. It remains to be shown that u is a weak solution to the
anisotropic Allen–Cahn equation with initial data u0 in the sense of Definition 3.3.

As for the initial condition, it follows from the uniform convergence in Lemma 3.8(i) and the choice
u0

h = u0 that

u(0) = lim
h↘0

uh(0) = lim
h↘0

u0
h = u0,

where all limits are in L2(�).
For the optimal energy dissipation relation (3.4) let T ′ ∈ (0, T] be a fixed time horizon. We define an

extension of u :�× [0, T ′] →R to �×R by

ũ(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u(x, t) if 0 ≤ t ≤ T ′,

u(x, 0) if t< 0,

u(x, T ′) if t> T ′.

Then ũ ∈ H1
loc(�×R), with the weak time derivative being given by ∂tũ(x, t) = χ�×(0,T ′)∂tu(x, t).

Taking a> 0, ζ := 1
a
χ(0,T ′), and w(x, t) := ũ(x, t + a) in (3.31) yields∫ T ′

0

∫
�

εg(−∇u(t))∂tu(t)
ũ(t + a) − ũ(t)

a
dxdt + a

∫ T ′

0

∫
�

λ

4ε

(
ũ(t + a) − ũ(t)

a

)2

dxdt

≥ −
∫ T ′

0

Eε[ũ(t + a)] − Eε[ũ(t)]

a
dt

= 1

a

∫ a

0

Eε[ũ(t)]dt − 1

a

∫ T ′+a

T ′
Eε[ũ(t)]dt

= 1

a

∫ a

0

Eε[u(t)]dt − Eε[u(T ′)], (3.35)

where we have replaced u by ũ on �× (0, T ′) several times and used the definition of ũ in the last line.
Let us now take a ↘ 0 in the inequality above. As a consequence of the lower semicontinuity of Eε

and the L2-continuity of the map t �→ u(t), we have

lim inf
a↘0

1

a

∫ a

0

Eε[u(t)]dt ≥ Eε[u(0)] = Eε[u0].

Furthermore, it follows from a general fact about Sobolev functions that
ũ(· + a) − ũ(·)

a
⇀∂tũ( = ∂tu) in L2(�× (0, T)) as a ↘ 0

(see [34, Lemma 7.23 and proof of Lemma 7.24]). In particular, the integral
∫ T ′

0

∫
�

λ

2ε

(
ũ(t+a)−ũ(t)

a

)2
dxdt

is bounded as a ↘ 0.
Therefore, the limiting inequality of (3.35) as a ↘ 0 reads∫ T ′

0

∫
�

εg(−∇u(t))(∂tu(t))2dxdt ≥ Eε[u0] − Eε[u(T ′)], (3.36)

which is one inequality in the optimal energy dissipation relation (3.4).
For the converse inequality, we proceed analogously by taking w(x, t) := ũ(x, t − a) and

a ↘ 0. Using first the fact that ũ(·−a)−ũ(·)
a

⇀− ∂tu in L2(�× (0, T ′)), and second the inequality
lim infa↘0

1
a

∫ T ′
T ′−a

Eε[u(t)]dt ≥ Eε[u(T ′)], we obtain∫ T ′

0

∫
�

εg(−∇u(t))(∂tu(t))2dxdt ≤ Eε[u0] − Eε[u(T ′)]. (3.37)
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The combination of (3.36) and (3.37) is precisely the optimal energy dissipation identity (3.4).
For the distributional formulation of the PDE (3.3) let ϕ ∈ C1(�× [0, T]) and s> 0. By plugging in

ζ ≡ 1 and w = u + sϕ into (3.31), we obtain
∫ T

0

(
Eε[u(t) + sϕ(t)] − Eε[u(t)] +

∫
�

εg(−∇u(t))∂tu(t)sϕ(t)dx

+ λ

4ε

∫
�

s2ϕ(t)2dx

)
dt ≥ 0.

Dividing by s and taking s ↘ 0 leads to
∫ T

0

∫
�

εg(−∇u)∂tuϕ dxdt ≥ − lim inf
s↘0

∫ T

0

Eε[u(t) + sϕ(t)] − Eε[u(t)]

s
dt

= −1

2
lim inf

s↘0

(
ε

∫ T

0

∫
�

f (−∇u − s∇ϕ) − f (−∇u)

s
dxdt

+ 1

ε

∫ T

0

∫
�

W(u + sϕ) − W(u)

s
dxdt

)

= ε

2

∫ T

0

∫
�

Df (−∇u) · ∇ϕ dxdt − 1

2ε

∫ T

0

∫
�

W ′(u)ϕ dxdt,

where the limit and the integrals can be interchanged in the last step because u is essentially bounded.
We divide by ε to obtain one inequality in (3.3). The converse inequality follows by taking s< 0,

s ↗ 0.

3.2 Regularity of weak solutions

The remainder of this section is devoted to proving a regularity result which states that solutions to the
anisotropic Allen–Cahn equation have weak second derivatives in space. We apply a difference quotient
method for elliptic regularity. The idea for this proof is taken from [26]. The fact that f is, in general, not
twice continuously differentiable on R

d due to a singularity at 0 will not pose a problem when proving
the existence of second derivatives, but it prevents us from deriving an additional PDE for the second
derivatives.

Theorem 3.10 (Spatial regularity of distributional solutions). Let ε > 0. If u is a solution to (1.4) in the
sense of Definition 3.3, then u ∈ L2

(
0, T; H2(�)

)
.

It suffices to prove the following

Claim 1. Let u ∈ H1(�), and suppose that u is a weak solution to −div(Df (−∇u)) = h for some function
h ∈ L2(�). More precisely, we assume that∫

�

Df (−∇u) · ∇w dx =
∫
�

hw dx

for all w ∈ H1(�). Then u has a weak second derivative in space ∇2u ∈ L2(�)d×d and ‖∇2u‖L2(�) ≤
C‖h‖L2(�).

Theorem 3.10 follows from this claim by choosing h = 2g(−∇u)∂tu + 1
ε2 W ′(u) and slicing in time.

Then we have h(·, t) ∈ L2(�) for almost every t ∈ (0, T) since ∂tu ∈ L2(�× (0, T)), u ∈ L∞(�× (0, T)),
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and W ∈ C1(R). The fact that (3.3) holds true for test functions w ∈ L2
(
0, T; H1(�)

)
instead of just

C1(�× [0, T]) can be shown with a density argument.

Proof of the claim. Given a function w as in the claim, we define the difference quotient

Ds
l w(x) := w(x + sel) − w(x)

s

for s �= 0 and l = 1, . . . , d. Then Ds
l w ∈ L2

(
0, T; H1(�)

)
. The weak formulation of the PDE and the

substitution y = x + sel yield∫
�

hDs
l w dx =

∫
�

Df (−∇u) · ∇Ds
l w dx

=
∫
�

Df (−∇u(x, t)) · ∇w(x + sel) − ∇w(x)

s
dx

=
∫
�

Df (−∇u(x − sel)) − Df (−∇u(x))

s
· ∇w(x) dx. (3.38)

In order to deal with the right-hand side, we will use the following identity for i = 1, 2, . . . , d and for
almost every x ∈�:

∂ξi f (−∇u(x − sel)) − ∂ξi f (−∇u(x))

= −
d∑

j=1

∫ 1

0

∂2
ξiξj

f (−r∇u(x − sel) − (1 − r)∇u(x)) dr

· (∂ju(x − sel) − ∂ju(x)
)

=
d∑

j=1

As
ij(x)

(
∂ju(x) − ∂ju(x − sel)

)
, (3.39)

where the shorthand notation in the last line is to be read as

As
ij(x) :=

∫ 1

0

∂2
ξiξj

f (−r∇u(x − sel) − (1 − r)∇u(x)) dr.

If the line segment between ∇u(x − sel) and ∇u(x) does not contain the origin, then f is twice contin-
uously differentiable in a neighborhood of the line segment, so that (3.39) follows immediately from the
fundamental theorem of calculus. On the other hand, if 0 ∈ conv ({∇u(x − sel), ∇u(x, t)}), then (3.39)
can be deduced by decomposing the line segment into two parts and applying the fundamental theorem
of calculus on each part.

By the strong convexity of f , there exists a constant c> 0 such that

ξ · D2f (p)ξ ≥ c|ξ |2

for all ξ ∈R
d, p ∈R

d \ {0}. Using the definition of As
ij, we obtain

∇D−s
l u · As(x)∇D−s

l u ≥ c|∇D−s
l u|2 (3.40)

for almost every x ∈�.
One can now choose w = D−s

l u in (3.38) and use (3.39) with (3.40) as is standard (see, e.g., [34,
Lemma 7.23]) to conclude ∫

�

∣∣∇D−s
l u

∣∣2
dx ≤ C

∫
�

h2 dx<∞.

As ∇D−s
l u⇀∂l∇u as s → 0, this concludes the claim.
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4. Convergence of the anisotropic Allen–Cahn equation to anisotropic mean curvature flow

The goal of this section is to prove a conditional convergence result for the sharp-interface limit of the
anisotropic Allen–Cahn equation. In order to conclude that the limit is a BV solution to (1.1) in the sense
of Definition 2.8, a critical assumption is the convergence of the time-integrated energies. A statement
of the result and a sketch of the proof are included in the notes [39]. Here, we complete the proof and
correct a mistake with respect to the phase-field equation (1.4): In [39], the function g was defined as
g(p) = |p|

μ(p)
, thereby missing the effect of the anisotropic surface tension σ on g.

Theorem 4.1. Let (σ ,μ) be an admissible pair of anisotropies, and let f , g be given by equations
(1.5), (1.6), respectively. Suppose that W is a double-well potential satisfying (W1)–(W5). Let {uε}ε>0

be solutions to the anisotropic Allen–Cahn equation in the sense of Definition 3.3 with initial data
uε,0 ∈ dom(Eε) and such that ‖uε − 1

2
‖L∞(�×(0,T)) ≤ max{‖uε,0 − 1

2
‖L∞(�), 1

2
}. Assume that

• the initial conditions are well-prepared,

uε,0 −→ u0 in L2(�) and Eε[uε,0] −→ E[u0] =: E0 <∞ (4.1)

as ε↘ 0, and that
• there is a uniform L∞-bound on the initial conditions,

lim sup
ε↘0

∥∥uε,0
∥∥

L∞(�)
<∞. (4.2)

Then there exists a subsequence ε↘ 0 as well as a function

u = χ ∈ BV (�× (0, T); {−1, 1})∩ C0, 1
2
(
[0, T]; L1(�)

) ∩ L∞ (0, T; BV(�))

such that uε → u in L2(�× (0, T)) as ε↘ 0.
If, furthermore,

lim
ε↘0

∫ T

0

Eε[uε(t)]dt =
∫ T

0

E[u(t)]dt, (4.3)

then u is a distributional solution to anisotropic mean curvature flow with initial condition u(0) = u0 in
the sense of Definition 2.8.

Similarly to [47], where a minimizing movements construction for isotropic mean curvature is per-
formed, the intuitive meaning of the assumption of energy convergence (4.3) is that no surface area is
lost in the limit.

We will first argue by compactness that a limiting function u exists. Assumption (4.3) then allows us
to prove an equipartition of energy between the anisotropic Dirichlet energy and the nonconvex potential
energy as ε↘ 0. In addition, this assumption guarantees the existence of a normal velocity V in the sense
of (2.18). We introduce a relative entropy functional which serves as a tilt excess. Using this tilt excess
to bound the occurring error terms, we will derive the weak formulation (2.19) from the distributional
formulation (3.3) and the optimal energy dissipation inequality (2.20) from (3.4).

4.1 Compactness

To prove the compactness statement for the solutions {uε}ε>0 to the anisotropic Allen–Cahn equation
from Theorem 3.5, we will first show a W1,1-bound for the compositions of a suitable continuous func-
tion with uε. This argument was performed, for example, by Fonseca and Tartar [27] in the isotropic case
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(see also [44]). However, some simplifications are possible since we assume an L∞-bound on the
functions {uε} instead of prescribing growth conditions on the double-well potential W.

Lemma 4.2. Let uε be solutions of the anisotropic Allen–Cahn equation as in Theorem 3.5. Under
the assumptions of Theorem 4.1 except (4.3), there exist a subsequence ε↘ 0 and a function u = χ ∈
BV (�× (0, T); {0, 1})∩ C0, 1

2
(
[0, T]; L1(�)

) ∩ L∞ (0, T; BV(�)) such that

• uε → u in L2(�× (0, T)),

• φ ◦ uε
∗
⇀φ ◦ u = c0χ in BV(�× (0, T)), and

• φ ◦ uε(t)
∗
⇀c0χ (t) in BV(�) for all t ∈ [0, T]

as ε↘ 0, where the function φ : R→R is defined via

φ(z) :=
∫ z

0

√
W(u)du. (4.4)

The first step of the proof is to show that

lim sup
ε↘0

‖φ ◦ uε‖W1,1(�×(0,T)) <∞. (4.5)

For this step, we observe that, by assumption (4.2), there exists a finite constant R> 0 such that
uε(x, t) ∈ [−R, R] for almost every (x, t) ∈�× (0, T) and for all sufficiently small ε > 0. Using the
continuity of φ, we first estimate

∫ T

0

∫
�

|φ(uε)| dxdt ≤ T sup
z∈[−R,R]

|φ(z)|<∞ (4.6)

for ε > 0 small enough.
Furthermore, the chain rule for Sobolev functions is applicable to the compositionsφ ◦ uε even though

φ need not be globally Lipschitz continuous: By virtue of its definition as a primitive function, φ is
continuously differentiable. In particular, φ ′∣∣

[−R,R]
is bounded, and we can assume without restriction

that φ ′ is bounded. Thus, one can estimate

∫ T

0

∫
�

|∇(φ ◦ uε)| dxdt =
∫ T

0

∫
�

φ ′(uε) |∇uε| dxdt

≤ 1

minSd−1 σ

∫ T

0

∫
�

φ ′(uε)σ (−∇uε)dxdt

≤ 1

2 minSd−1 σ

∫ T

0

∫
�

(
εσ (−∇uε)

2 + 1

ε
φ ′(uε)

2

)
dxdt

= 1

2 minSd−1 σ

∫ T

0

∫
�

(
εf (−∇uε) + 1

ε
W(uε)

)
dxdt

= 1

minSd−1 σ

∫ T

0

Eε[uε(t)]dt (4.7)

for ε > 0 sufficiently small.
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Lastly, a similar argument for small ε yields∫ T

0

∫
�

|∂t(φ ◦ uε)| dxdt =
∫ T

0

∫
�

φ ′(uε) |∂tuε| dxdt

≤
(∫ T

0

∫
�

1

ε
W(uε)dxdt

) 1
2
(∫ T

0

∫
�

ε|∂tuε|2dxdt

) 1
2

≤
(

2
∫ T

0

Eε[uε(t)]dt

) 1
2
(

1

cg

∫ T

0

∫
�

εg(−∇uε)|∂tuε|2dxdt

) 1
2

≤
√

2

cg

Eε[uε,0]
√

T , (4.8)

where the fourth inequality uses the optimal energy dissipation identity (3.4) in the first and in the second
factor.

It is known from assumption (4.1) that

lim sup
ε↘0

Eε[uε,0] = E0 <∞ and lim sup
ε↘0

∫ T

0

Eε[uε(t)]dt ≤ lim
ε↘0

TEε[uε,0] = TE0 <∞,

where the second estimate makes use of the fact that t �→ Eε[uε(t)] is nonincreasing by (3.4). Thus, the
estimates (4.6)–(4.8) suffice to prove (4.5).

In addition to (4.5), we want to derive a uniform W1,1-estimate for fixed times t ∈ (0, T), namely

lim sup
ε↘0

ess sup
t∈(0,T)

‖φ ◦ uε(t)‖W1,1(�) <∞. (4.9)

Indeed, it follows by Fubini’s theorem that ‖uε(t)‖L∞ ≤ R for almost every t ∈ (0, T) if ε > 0 is small
enough, and we can argue similarly as in (4.6) and (4.7) to show that∫

�

|φ ◦ uε(x, t)| dx ≤ sup
z∈[−R,R]

|φ(z)|<∞

and ∫
�

|∇(φ ◦ uε)(x, t)| dx ≤ 1

minSd−1 σ
Eε[uε(t)] ≤ 1

minSd−1 σ
Eε[uε,0]<∞

for a.e. t ∈ (0, T) and all ε > 0 sufficiently small. These two observations prove (4.9).
Bounded sequences in BV(�× (0, T)) admit a weakly-∗ convergent subsequence by a version of

[2, Theorem 3.23]. Thus, by (4.5), we can find a subsequence ε↘ 0 such that φ ◦ uε converge weakly-∗ in
BV(�× (0, T)) as ε↘ 0. Let us denote the limiting function by v ∈ BV(�× (0, T)). Then, in particular,
φ ◦ uε → v in L1(�× (0, T)), and we can assume without restriction that

φ ◦ uε(x, t) −→ v(x, t) for a.e. (x, t) ∈�× (0, T) (4.10)

and

φ ◦ uε(t) −→ v(t) in L1(�) for a.e. t ∈ (0, T), (4.11)

which can be accomplished by taking a further subsequence. It follows from (4.9), (4.11), and the char-
acterization [2, Proposition 3.13] of weak-∗ convergence in BV that φ ◦ uε(t)

∗
⇀v(t) in BV(�) for a.e.

t ∈ (0, T).
From now on, the limit ε↘ 0 is to be understood as the limit along a subsequence {εj}j∈N such that

εj ↘ 0 and φ ◦ uεj

∗
⇀v in BV(�× (0, T)) as j → ∞, and such that the pointwise convergence properties

as in (4.10) and (4.11) hold true.
The following argument for the Hölder continuity v ∈ C0, 1

2
(
[0, T]; L1(�)

)
is adapted from [35,

Lemma 2], where Hensel and the first author deal with the Hölder continuity in the isotropic case:
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Let 0 ≤ s ≤ t ≤ T . If we proceed as in (4.8), but only integrate from s to t, we find∫
�

|φ(uε(x, t)) − φ(uε(x, s))| dx ≤
∫ t

s

∫
�

|∂t(φ ◦ uε)| dxdt

≤
√

2

cg

Eε[uε,0]
√

t − s. (4.12)

There exists a null set N ⊂ (0, T) such that, for all s, t ∈ (0, T) \ N, we can pass to the limit ε↘ 0 to
obtain ∫

�

|v(x, t) − v(x, s)| dx ≤
√

2

cg

E0

√
t − s.

This allows us to redefine v on the null set �× N so that v ∈ C0, 1
2
(
[0, T]; L1(�)

)
.

We identify φ ◦ uε with their Hölder continuous representatives due to (4.12). If a sequence of uni-
formly Hölder continuous functions converges pointwise almost everywhere, it follows that the sequence
converges pointwise. In particular, we can upgrade the L1(�)-convergence for a.e. t ∈ (0, T) in (4.11) to
L1(�)-convergence for all t ∈ [0, T].

Using the continuity φ ◦ uε ∈ C0, 1
2
(
[0, T]; L1(�)

)
and the lower semicontinuity of the variation

[2, Remark 3.5], we conclude from (4.9) that

lim sup
ε↘0

sup
t∈[0,T]

‖φ ◦ uε(t)‖BV(�) <∞,

i.e., we can also upgrade the essential boundedness of the BV-norm to uniform boundedness in time.
From this, one finds that φ ◦ uε(t)

∗
⇀v(t) in BV(�) for all t ∈ [0, T] and that v ∈ L∞ (0, T; BV(�)). (This

statement includes the measurability of the measure-valued map t �→ ∇v(t) in the sense of [2, Definition
2.25], which follows from the fact that we have supt∈[0,T]

∫
�

|∇v(t)|<∞ and v(t) → v(t0) in L1(�) as
t → t0, and therefore ∇v(t)

∗
⇀∇v(t0) in M(�) as t → t0.)

Let us turn to the convergence result for the solutions uε. As the function
√

W is strictly positive
except at two isolated points, the primitive function φ is strictly increasing. Therefore, there exists a
continuous inverse φ−1, and we obtain from (4.10) that

uε(x, t) −→ u(x, t) := φ−1(v(x, t)) as ε↘ 0 for almost all (x, t) ∈�× (0, T).

By (4.2) and the dominated convergence theorem, we may conclude uε → u in L2(�× (0, T)) as ε↘ 0.
To see that the limiting function u takes values in {0, 1} it suffices to use Fatou’s lemma:∫ T

0

∫
�

W(u) dx dt ≤ lim inf
ε→0

∫ T

0

∫
�

W(uε) dx dt ≤ lim inf ε
∫ T

0

Eε[uε(·, t)] dt = 0.

Consequently, we have W(u) = 0, i.e., u ∈ {0, 1} almost everywhere in �× (0, T).
The representation v = φ ◦ u = c0χ now follows from φ(0) = 0 and φ(1) = c0. Since v ∈

BV (�× (0, T); R)∩ C0, 1
2
(
[0, T]; L1(�)

) ∩ L∞ (0, T; BV(�)), it follows that the same holds true for
u = 1

c0
v.

4.2 Equipartition of energy

The following theorem states that, asymptotically as ε↘ 0, the anisotropic Dirichlet energy 1
2

∫ T

0

∫
�
εf (−

∇uε)dxdt and the nonconvex term 1
2

∫ T

0

∫
�

1
ε
W(uε)dxdt contribute equally to the Cahn-Hilliard energy. The

equipartition of energy also holds true in a localized form. The argument relies crucially on the energy
convergence assumption (4.3) and uses a trick introduced by Modica–Mortola for Gamma-convergence
of the energies [49] (see also [8]). Equipartition results of this kind have been used to prove conditional
convergence in the static or dynamic case since [46, 48].
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Statements (i) and (ii) can be viewed primarily as preparatory results for the equipartition statements
(iii)–(v).

Theorem 4.3. Under the assumptions of Theorem 4.1, including the energy convergence (4.3), the
following convergence statements hold true in the limit ε↘ 0:

(i)

1

2

(
εf (−∇uε) + 1

ε
W(uε)

)
∗
⇀c0σ (ν)

∣∣∇χ ∣∣ in M(�× [0, T]), (4.13)

(ii)

σ (−∇(φ ◦ uε))
∗
⇀c0σ (ν)

∣∣∇χ ∣∣ in M(�× [0, T]), (4.14)
(iii)

√
εf (−∇uε) −

√
1

ε
W(uε) −→ 0 in L2(�× (0, T)), (4.15)

(iv)

1

2

(
εf (−∇uε) − 1

ε
W(uε)

)
−→ 0 in L1(�× (0, T)), (4.16)

(v)

εf (−∇uε)
∗
⇀c0χ

∣∣ and
1

ε
W(uε)

∗
⇀c0σ (ν)

∣∣∇χ ∣∣ in M(�× [0, T]). (4.17)

Proof.

(i) It suffices to show that

1

2

∫ T

0

∫
�

(
εf (−∇uε) + 1

ε
W(uε)

)
ζdxdt → c0

∫ T

0

∫
�

σ (ν)ζ
∣∣∇χ ∣∣

for all ζ ∈ C1(�× [0, T]) with 0 ≤ ζ ≤ 1. By a density and linearity argument, the same conver-
gence then holds true for all ζ ∈ C(�× [0, T]).
If ζ ∈ C1(�× [0, T]) and 0 ≤ ζ ≤ 1, we can use Young’s inequality and the chain rule for Sobolev
functions to estimate

1

2

∫ T

0

∫
�

(
εf (−∇uε) + 1

ε
W(uε)

)
ζdxdt ≥

∫ T

0

∫
�

√
f (−∇uε)W(uε) ζdxdt

=
∫ T

0

∫
�

σ ( − φ ′(uε)∇uε)ζdxdt

=
∫ T

0

∫
�

σ (−∇(φ ◦ uε))ζdxdt.

By Lemma 2.5, we have that

∫ T

0

∫
�

σ (B) dxdt = sup
η∈C1(�×[0,T])

σ◦(η)≤1

∫ T

0

∫
�

B · η dxdt (4.18)

for all B ∈ L1(�× (0, T))d.
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We apply (4.18) and the L1-convergence φ ◦ uε → c0χ as ε↘ 0 to the above estimate, which,
recalling Lemma 2.3, yields

lim inf
ε↘0

1

2

∫ T

0

∫
�

(
εf (−∇uε) + 1

ε
W(uε)

)
ζdxdt

≥ lim inf
ε↘0

∫ T

0

∫
�

σ (−∇(φ ◦ uε))ζdxdt

= lim inf
ε↘0

sup
η

∫ T

0

∫
�

η · (−∇(φ ◦ uε))ζdxdt

= lim inf
ε↘0

sup
η

∫ T

0

∫
�

(φ ◦ uε)div(ζη)dxdt

≥ c0 sup
η

∫ T

0

∫
�

χdiv(ζη)dxdt

= −c0 sup
η

∫ T

0

∫
�

ζη · ∇χ∣∣∇χ ∣∣ ∣∣∇χ ∣∣
= c0 sup

η

∫ T

0

∫
�

ζη · ν∣∣∇χ ∣∣
= c0

∫ T

0

∫
�

σ (ν)ζ
∣∣∇χ ∣∣, (4.19)

where the supremum is taken over all η ∈ C1(�× [0, T])d such that σ ◦(η) ≤ 1. To prove the esti-
mate from above, we observe that (4.19) also applies to the function 1 − ζ instead of ζ , and use
the energy convergence assumption (4.3). Indeed,

lim sup
ε↘0

1

2

∫ T

0

∫
�

(
εf (−∇uε) + 1

ε
W(uε)

)
ζdxdt

= lim sup
ε↘0

(
1

2

∫ T

0

∫
�

(
εf (−∇uε) + 1

ε
W(uε)

)
dxdt

−1

2

∫ T

0

∫
�

(
εf (−∇uε) + 1

ε
W(uε)

)
(1 − ζ )dxdt

)

= lim
ε↘0

∫ T

0

Eε[uε(t)]dt

− lim inf
ε↘0

1

2

∫ T

0

∫
�

(
εf (−∇uε) + 1

ε
W(uε)

)
(1 − ζ )dxdt

≤
∫ T

0

E[u(t)]dt − c0

∫ T

0

∫
�

σ (ν)(1 − ζ )
∣∣∇χ ∣∣

= c0

∫ T

0

∫
�

σ (ν)ζ
∣∣∇χ ∣∣. (4.20)

The combination of the two inequalities (4.19) and (4.20) yields the first claim.
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(ii) In the same manner as in (i), it suffices to show that∫ T

0

∫
�

σ (−∇(φ ◦ uε))ζdxdt → c0

∫ T

0

∫
�

σ (ν)ζ
∣∣∇χ ∣∣

whenever ζ ∈ C1(�× [0, T]) and 0 ≤ ζ ≤ 1.
The lim inf inequality follows from the chain of inequalities in (4.19).
For the lim sup inequality, we can use Young’s inequality and (i) to compute

lim sup
ε↘0

∫ T

0

∫
�

σ (−∇(φ ◦ uε))ζdxdt ≤ lim
ε↘0

1

2

∫ T

0

∫
�

(
εf (−∇uε) + 1

ε
W(uε)

)
ζdxdt

= c0

∫ T

0

∫
�

σ (ν)ζ
∣∣∇χ ∣∣.

(iii) By taking ζ ≡ 1 as test functions for the weak-∗ limits in (i) and (ii), we see that

lim
ε↘0

1

2

∫ T

0

∫
�

(
εf (−∇uε) + 1

ε
W(uε)

)
dxdt = lim

ε↘0

∫ T

0

∫
�

σ (−∇(φ ◦ uε))dxdt

= c0

∫ T

0

∫
�

σ (ν)
∣∣∇χ ∣∣. (4.21)

This observation allows us to compute∫ T

0

∫
�

(√
εf (−∇uε) −

√
1

ε
W(uε)

)2

dxdt

=
∫ T

0

∫
�

(
εf (−∇uε) + 1

ε
W(uε)

)
dxdt − 2

∫ T

0

∫
�

√
f (−∇uε)W(uε)dxdt

=
∫ T

0

∫
�

(
εf (−∇uε) + 1

ε
W(uε)

)
dxdt − 2

∫ T

0

∫
�

σ (−∇(φ ◦ uε))dxdt

−→ 0 as ε↘ 0.

(iv) Young’s inequality yields∣∣∣∣εf (−∇uε) − 1

ε
W(uε)

∣∣∣∣ ≤ δ
(√

εf (−∇uε) +
√

1

ε
W(uε)

)2

+ 1

4δ

(√
εf (−∇uε) −

√
1

ε
W(uε)

)2

for all δ > 0. Taking the limit ε↘ 0 and using (iii) as well as (4.21), we obtain

lim sup
ε↘0

∫ T

0

∫
�

∣∣∣∣εf (−∇uε) − 1

ε
W(uε)

∣∣∣∣ dxdt

≤ δ lim sup
ε↘0

∫ T

0

∫
�

(√
εf (−∇uε) +

√
1

ε
W(uε)

)2

dxdt

= δ lim sup
ε↘0

∫ T

0

∫
�

(
εf (−∇uε) + 1

ε
W(uε) + 2σ (−∇(φ ◦ uε))

)
dxdt

= 4δc0

∫ T

0

∫
�

σ (ν)
∣∣∇χ ∣∣.
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Since δ > 0 is arbitrary, it follows that

lim
ε↘0

∫ T

0

∫
�

∣∣∣∣εf (−∇uε) − 1

ε
W(uε)

∣∣∣∣ dxdt = 0.

(v) The two convergence results follow from adding and subtracting (i) and (iv), respectively.

4.3 Construction of the normal velocity

This construction follows the argument in the first step of [42, Proposition 2.10], where it was carried
out by Simon and the first author for the (multiphase) isotropic case. The idea is to introduce the velocity
as a Radon–Nikodým density V := ∂tχ∣∣∇χ∣∣ .

For simplicity of notation, we denote the energy density of the anisotropic Cahn–Hilliard energy by

eε(u, x) := ε

2
f (−∇u(x)) + 1

2ε
W(u(x)).

Lemma 4.4. Under the assumptions of Theorem 4.1, including the energy convergence (4.3), there
exists a |∇χ |-measurable normal velocity V :�× (0, T) →R satisfying (2.17) and (2.18).

The first step of the proof is to show that the Radon–Nikodým theorem is applicable: Given a smooth
test function ζ ∈ C∞

c (�× (0, T)), the definition of distributional derivatives and an application of the
Cauchy–Schwarz inequality yield∣∣∣∣

∫ T

0

∫
�

(φ ◦ uε)∂tζdxdt

∣∣∣∣ =
∣∣∣∣
∫ T

0

∫
�

∂t(φ ◦ uε)ζdxdt

∣∣∣∣
=

∣∣∣∣
∫ T

0

∫
�

φ ′(uε)∂tuεζdxdt

∣∣∣∣
≤

(∫ T

0

∫
�

ε
∣∣∂tuε

∣∣2
dxdt

) 1
2
(∫ T

0

∫
�

1

ε
W(uε)ζ

2dxdt

) 1
2

≤ √
2

(∫ T

0

∫
�

ε
∣∣∂tuε

∣∣2
dxdt

) 1
2
(∫ T

0

∫
�

eε(uε(t), x)ζ 2dxdt

) 1
2

. (4.22)

It follows from (4.13) that

lim
ε→0

∫ T

0

∫
�

eε(uε(t), x)ζ 2dxdt = c0

∫ T

0

∫
�

ζ 2σ (ν)
∣∣∇χ ∣∣. (4.23)

Thus, by taking the limit inferior on both sides of (4.22) and recalling that φ ◦ uε → c0χ in L1(�× (0, T))
as ε↘ 0, we find

c0

∣∣∣∣
∫ T

0

∫
�

χ∂tζdxdt

∣∣∣∣ ≤ √
2 lim inf

ε→0

(∫ T

0

∫
�

ε
∣∣∂tuε

∣∣2
dxdt

) 1
2
(

c0

∫ T

0

∫
�

ζ 2σ (ν)
∣∣∇χ ∣∣) 1

2

≤
(

2E0

cg

) 1
2
(

c0

∫ T

0

∫
�

ζ 2σ (ν)
∣∣∇χ ∣∣) 1

2

, (4.24)

where the second inequality follows from the optimal energy dissipation inequality (3.4).
It is desirable to reformulate (4.24) in terms of open sets instead of test functions: Given an open

set A ⊆�× (0, T), let us maximize the left-hand side of (4.24) over all ζ ∈ C∞
c (A) with

∣∣ζ ∣∣ ≤ 1.
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This provides us with the inequality

|∂tχ | (A) ≤
(

2E0

c0cg

) 1
2

sup
ζ∈C∞

c (A)
|ζ |≤1

(∫ T

0

∫
�

ζ 2σ (ν)
∣∣∇χ ∣∣) 1

2

≤
(

2E0 maxSd−1 σ

c0cg

) 1
2 √∣∣∇χ ∣∣(A). (4.25)

Making use of the outer regularity of Radon measures, we see that

|∂tχ | (E) = inf
A⊇E

A open

|∂tχ | (A) ≤
(

2E0 maxSd−1 σ

c0cg

) 1
2

inf
A⊇E

A open

√∣∣∇χ ∣∣(A) = 0

for all Borel sets E ⊆�× (0, T) such that
∣∣∇χ ∣∣(E) = 0, i.e., ∂tχ � ∣∣∇χ ∣∣. By the Radon–Nikodým

theorem, there exists a
∣∣∇χ ∣∣-measurable function V such that ∂tχ = V

∣∣∇χ ∣∣ on the open set �× (0, T).
In order to prove the square integrability (2.17) of V , we go back to (4.24). Let us first fix a finite

number M > 0 and find a sequence {ζk}k∈N of smooth test functions such that ζk → Vχ{|V|≤M} in L2(
∣∣∇χ ∣∣)

and |ζk| ≤ M for all k ∈N. Then it follows by dominated convergence that Vζk → V2χ{|V|≤M} in L1(
∣∣∇χ ∣∣)

and, therefore,∫ T

0

∫
�

χ∂tζkdxdt = −
∫ T

0

∫
�

ζk ∂tχ = −
∫ T

0

∫
�

Vζk

∣∣∇χ ∣∣ −→ −
∫ T

0

∫
�

V2χ{|V|≤M}
∣∣∇χ ∣∣,

whereas the L2-convergence gives∫ T

0

∫
�

ζ 2
k σ (ν)

∣∣∇χ ∣∣ −→
∫ T

0

∫
�

V2χ{|V|≤M}σ (ν)
∣∣∇χ ∣∣.

Plugging in ζk and taking the limit k → ∞ in (4.24), we now obtain

c0

∫ T

0

∫
�

V2χ{|V|≤M}
∣∣∇χ ∣∣ ≤

(
2E0

cg

) 1
2
(

c0

∫ T

0

∫
�

V2χ{|V|≤M}σ (ν)
∣∣∇χ ∣∣) 1

2

≤
(

2E0 maxSd−1 σ

cg

) 1
2
(

c0

∫ T

0

∫
�

V2χ{|V|≤M}
∣∣∇χ ∣∣) 1

2

.

By rearranging this inequality and taking M → ∞ with the help of the monotone convergence
theorem, we find the desired integrability statement, namely∫ T

0

∫
�

V2
∣∣∇χ ∣∣ ≤ 2E0 maxSd−1 σ

c0cg

<∞. (4.26)

The final step is to prove the identity (2.18) (see also [35, Lemma 7]). Given a test function ζ ∈
C1(�× [0, T]) and an intermediate time T ′ ∈ (0, T], we introduce a cutoff ηα in time such that

ηα ∈ C1(R; [0, 1]), ηα ≡ 0 on (−∞,
α

2
] ∪ [T ′ − α

2
, ∞), ηα ≡ 1 on [α, T ′ − α],

and set ζα(x, t) := ζ (x, t)ηα(t). Then, in particular, we have ζα ∈ C1
c (�× (0, T)) for sufficiently small

α > 0. The definition of V as a Radon–Nikodým density yields∫ T ′

0

∫
�

ζα(x, t)V(x, t)
∣∣∇χ ∣∣ = −

∫ T ′

0

∫
�

χ (x, t)∂tζα(x, t) dxdt

= −
∫ T ′

0

∫
�

χ (x, t)ηα(t)∂tζ (x, t) dxdt

−
∫ T ′

0

∫
�

χ (x, t)ζ (x, t) dx η′
α
(t) dt. (4.27)
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In the limit α↘ 0, the left-hand side integral and the first right-hand side integral converge due to the
dominated convergence theorem. For the last integral, we observe that η′

α

∗
⇀δ0 − δT ′ in M(R) as α↘ 0.

Furthermore, we have χ = u ∈ C0, 1
2
(
[0, T]; L1(�)

)
by Lemma 4.2, and ζ is uniformly continuous, so

that the map t �→ ∫
�
χ (x, t)ζ (x, t)dx is continuous on [0, T]. We can therefore compute the limits of all

three integrals and obtain∫ T ′

0

∫
�

ζ (x, t)V(x, t)
∣∣∇χ ∣∣ = −

∫ T ′

0

∫
�

χ (x, t)∂tζ (x, t) dxdt −
∫
�

χ0(x)ζ (x, 0) dx

+
∫
�

χ (x, T ′)ζ (x, T ′) dx,

which proves (2.18).

4.4 Relative entropies

A key ingredient to derive the sharp interface limit is the following notions of relative entropies.

Definition 4.5.

(i) Let u = χ ∈ BV(�) take values in {0, 1} almost everywhere. As in the definition of the
anisotropic surface energy, let ν := − ∇χ

|∇χ | be the measure-theoretic outer unit normal. The
relative entropy of u with respect to a vector field ξ ∈ C(�)d is

E
[
u
∣∣ξ] := c0

∫
�

(σ (ν) − |ξ |ψ(|ξ |)Dσ (ξ ) · ν) ∣∣∇χ ∣∣, (4.28)

where ψ ∈ C∞([0, ∞) is a cutoff function such that the three properties in (2.2) hold true.
(ii) Let ε > 0 and uε ∈ H1(�) ∩ L∞(�). The ε-relative entropy of uε with respect to a vector field

ξ ∈ C(�)d is

Eε
[
uε

∣∣ξ] :=
∫
�

(σ (−∇uε) + |ξ |ψ(|ξ |)Dσ (ξ ) · ∇uε)
√

W(uε)dx. (4.29)

Remark 4.6.

(i) For u = χ as in Definition 4.5(i), we can define the set of finite perimeter A := {
x ∈� ∣∣ u(x) = 1

}
(up to a null set). By De Giorgi’s structure theorem (see [2, Theorem 3.59]), one can replace
the total variation measure |∇χ | with the (d − 1)-dimensional Hausdorff measure and write

E
[
u
∣∣ξ] = c0

∫
∂∗A

(σ (ν) − |ξ |ψ(|ξ |)Dσ (ξ ) · ν) dHd−1,

with ∂∗ denoting the reduced boundary of a set of finite perimeter.
(ii) One can also show that |∇χ (t)| ⊗L1 (0, T) = |∇χ | as Radon measures on �× (0, T). Thus,

integrating the relative entropy over time yields∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt = c0

∫ T

0

∫
�

(σ (ν) − |ξ |ψ(|ξ |)Dσ (ξ ) · ν) |∇χ (t)|dt

= c0

∫ T

0

∫
�

(σ (ν) − |ξ |ψ(|ξ |)Dσ (ξ ) · ν) ∣∣∇χ ∣∣.
If ξ is chosen to be a smooth approximation of the normal, then these relative entropies serve as tilt

excesses and can be used to control quadratic error terms: Let ξ ∈ C (�× [0, T])d such that |ξ | ≤ 1 on
�× [0, T]. By Lemma 2.4(i), we have∫ T

0

∫
�

|ξ − ν|2
∣∣∇χ ∣∣ ≤ 1

c0cσ

∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt. (4.30)
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The link between the relative entropy E and the phase-field version Eε is the following convergence
statement:

Lemma 4.7. Under the assumptions of Theorem 4.1, including the energy convergence (4.3), we have

lim
ε↘0

∫ T

0

Eε
[
uε(t)

∣∣ξ (t)
]
dt =

∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt

for every vector field ξ ∈ C (�× [0, T])d such that |ξ | ≤ 1 on �× [0, T], where u = χ is the limiting
function constructed in Lemma 4.2.

Proof. A direct computation yields

∫ T

0

Eε
[
uε(t)

∣∣ξ (t)
]
dt =

∫ T

0

∫
�

(σ (−∇uε) + |ξ |ψ(|ξ |)Dσ (ξ ) · ∇uε)
√

W(uε)dxdt

=
∫ T

0

∫
�

σ(−∇ (φ ◦ uε)) dxdt

+
∫ T

0

∫
�

|ξ |ψ(|ξ |)Dσ (ξ ) · ∇(φ ◦ uε)dxdt

→ c0

∫ T

0

σ (ν)
∣∣∇χ ∣∣ + c0

∫ T

0

∫
�

|ξ |ψ(|ξ |)Dσ (ξ ) · ∇χ

=
∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt, (4.31)

where the first term converges due to Theorem 4.3(ii). The convergence of the second term follows from
the observation that ∇(φ ◦ uε)

∗
⇀c0∇χ in M(�× [0, T]), which is a consequence of the bound in (4.7)

and the L1-convergence φ ◦ uε → c0χ .

While we have only used the first inequality in Lemma 2.4 so far, the second inequality helps us
to show that the tilt excess can be made arbitrarily small by approximating the normal ν with suitable
vector fields ξ .

Lemma 4.8. For every δ > 0, there exists a smooth vector field ξ ∈ C1(�× [0, T])d such that |ξ | ≤ 1 in
�× [0, T] and

∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt< δ.

Proof. The outer unit normal ν is
∣∣∇χ ∣∣-measurable, and the estimate

∫ T

0

∫
�

|ν|2
∣∣∇χ ∣∣ =

∫ T

0

∫
�

∣∣∇χ ∣∣ ≤ 1

c0 minSd−1 σ

∫ T

0

E[u(t)]dt<∞

shows that ν ∈ L2(
∣∣∇χ ∣∣). Since

∣∣∇χ ∣∣ is a Radon measure on �× [0, T], there exists an approximating
sequence {ξn}n∈N ⊂ C∞(�× [0, T]) such that ξn → ν in L2(

∣∣∇χ ∣∣) as n → ∞.
Clearly, ν takes values in the closed convex set B1 =

{
p ∈R

d
∣∣∣ |p| ≤ 1

}
almost everywhere with

respect to
∣∣∇χ ∣∣, so we can choose ξn in a way that ensures that |ξn| ≤ 1 on �× [0, T] for all n ∈N.
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By Lemma 2.4(ii) and the Cauchy–Schwarz inequality, we obtain∫ T

0

E
[
u(t)

∣∣ξn(t)
]
dt ≤ c0 Cσ

∫ T

0

∫
�

(|ν − ξn|2 + (|ν| − |ξn|)
) ∣∣∇χ ∣∣

≤ c0 Cσ

∫ T

0

∫
�

|ν − ξn|2
∣∣∇χ ∣∣

+ c0 Cσ

(∫ T

0

∫
�

∣∣∇χ ∣∣) 1
2
(∫ T

0

∫
�

|ν − ξn|2
∣∣∇χ ∣∣) 1

2

≤ c0 Cσ ‖ν − ξn‖2
L2(|∇χ |)

+
√

c0

minSd−1 σ
Cσ

(∫ T

0

E[u(t)]dt

) 1
2

‖ν − ξn‖L2(|∇χ |)

−→ 0

as n → ∞.

4.5 Convergence of the curvature term

The following two subsections are dedicated to proving the distributional law of anisotropic mean cur-
vature flow (2.19) for the limit function u. The strategy is to use B · ε∇uε as a test function in the
distributional formulation of the anisotropic Allen–Cahn equation (3.3), where B ∈ C1(�× [0, T])d, and
then pass to the limit as ε↘ 0 on both sides separately.

Here and in the following subsections, C denotes a generic positive constant that may depend on the
pair of anisotropies (σ ,μ), the double-well potential W, the time horizon T , and the cutoff function ψ .
The constant C is not necessarily the same on every occurrence.

Theorem 4.9. Under the assumptions of Theorem 4.1, including the energy convergence (4.3), we have

lim
ε↘0

∫ T

0

∫
�

1

2

(
Df (−∇uε) · ∇(B · ε∇uε) − 1

ε2
W ′(uε)B · ε∇uε

)
dxdt

= c0

∫ T

0

∫
�

∇B : (σ (ν)Id − ν ⊗ Dσ (ν))
∣∣∇χ ∣∣ (4.32)

for all B ∈ C1(�× [0, T])d.

This theorem was first proved by Cicalese, Nagase, and Pisante in [18, Theorem 3.3]. However, we
proceed with the alternative strategy of proof proposed in [39, Proposition 4.5].

We define the energy-stress tensor Tε by

Tε := 1

2

(
εf (−∇uε) + 1

ε
W(uε)

)
Id + ε∇uε ⊗ 1

2
Df (−∇uε). (4.33)

With this definition, the statement of Theorem 4.9 can be rewritten as a weak-∗ convergence claim
for the energy-stress tensor: Indeed, an integration by parts on the flat torus � yields∫ T

0

∫
�

∇B : Tε dxdt = −
∫ T

0

∫
�

B · divTε dxdt

= −1

2

∫ T

0

∫
�

B · ∇
(
εf (−∇uε) + 1

ε
W(uε)

)
dxdt
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− 1

2

∫ T

0

∫
�

div(Df (−∇uε))B · ε∇uε dxdt

− 1

2

∫ T

0

∫
�

B · ε∇2uεDf (−∇uε)dxdt

= −1

2

∫ T

0

∫
�

B · 1

ε
∇ (W(uε)) dxdt

− 1

2

∫ T

0

∫
�

div(Df (−∇uε))B · ε∇uε dxdt

=
∫ T

0

∫
�

1

2

(
Df (−∇uε) · ∇(B · ε∇uε) − 1

ε2
W ′(uε)B · ε∇uε

)
dxdt. (4.34)

We observe that the right-hand side is exactly the term appearing in (4.32). Thus, in order to prove
Theorem 4.9, it suffices to show that Tε

∗
⇀c0 (σ (ν)Id − ν ⊗ Dσ (ν))

∣∣∇χ ∣∣ asRd×d-valued Radon measures
on �× [0, T].

As for the first summand of the energy-stress tensor Tε, it follows immediately from the equipartition
of energy statement in Theorem 4.3(i) that

1

2

(
εf (−∇uε) + 1

ε
W(uε)

)
Id

∗
⇀c0σ (ν)Id

∣∣∇χ ∣∣.
The following lemma covers the convergence of the second summand of Tε, thereby completing the

proof of Theorem 4.9.

Lemma 4.10. Under the assumptions of Theorem 4.1, including the energy convergence (4.3), we have

ε∇uε ⊗ 1

2
Df (−∇uε)

∗
⇀− c0ν ⊗ Dσ (ν)

∣∣∇χ ∣∣ in M(�× [0, T])d×d (4.35)

as ε↘ 0.

To prove Lemma 4.10, let us first fix a vector field ξ ∈ C(�× [0, T])d such that |ξ | ≤ 1 in�× [0, T].
This vector field will serve as an approximation for the measure-theoretic normal ν. Furthermore let
A ∈ C(�× [0, T])d×d be a test function.

For shorter notation, we introduce the approximate outer unit normal νε via

νε(x) :=
⎧⎨
⎩

− ∇uε
|∇uε | (x) if ∇uε(x) �= 0,

e1 if ∇uε(x) = 0.
(4.36)

Applying the product rule to f = σ 2 and exploiting the positive 0-homogeneity of Dσ , one can rewrite
the left-hand side of (4.35) as

ε∇uε ⊗ 1

2
Df (−∇uε) = εσ (−∇uε)∇uε ⊗ Dσ (−∇uε) = εσ (−∇uε)∇uε ⊗ Dσ (νε), (4.37)

where one can now conveniently insert the vector field ξ at the cost of two errors controlled by the tilt
excess E: Let us add zero twice and compute
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∫ T

0

∫
�

(
ε∇uε ⊗ 1

2
Df (−∇uε)

)
: A dxdt + c0

∫ T

0

∫
�

(ν ⊗ Dσ (ν)) : A
∣∣∇χ ∣∣

=
∫ T

0

∫
�

(εσ (−∇uε)∇uε ⊗ (Dσ (νε) −ψ(|ξ |)Dσ (ξ ))) : A dxdt

+
∫ T

0

∫
�

(εσ (−∇uε)∇uε ⊗ψ(|ξ |)Dσ (ξ )) : A dxdt

+ c0

∫ T

0

∫
�

(ν ⊗ψ(|ξ |)Dσ (ξ )) : A
∣∣∇χ ∣∣

+ c0

∫ T

0

∫
�

(ν ⊗ (Dσ (ν) −ψ(|ξ |)Dσ (ξ ))) : A
∣∣∇χ ∣∣. (4.38)

As a consequence of the smoothness and homogeneity of σ and since ψ ≡ 0 in a neighborhood of
zero, the map p �→ψ(|p|)Dσ (p) is Lipschitz continuous, i.e.,

|ψ(|q|)Dσ (q) −ψ(|p|)Dσ (p)| ≤ C|q − p| for all p, q ∈R
d. (4.39)

The first right-hand side integral of (4.38) can now be estimated as follows:∣∣∣∣
∫ T

0

∫
�

(εσ (−∇uε)∇uε ⊗ (Dσ (νε) −ψ(|ξ |)Dσ (ξ ))) : A dxdt

∣∣∣∣
≤ C‖A‖L∞

∫ T

0

∫
�

εσ (−∇uε)|∇uε||νε − ξ |dxdt

≤
√

2 C‖A‖L∞

minSd−1 σ

(∫ T

0

∫
�

ε

2
f (−∇uε)dxdt

) 1
2
(∫ T

0

∫
�

εf (−∇uε)|νε − ξ |2dxdt

) 1
2

≤
√

2 C‖A‖L∞

minSd−1 σ

∫ T

0

Eε[uε(t)]dt

1
2
(∫ T

0

∫
�

εf (−∇uε)|νε − ξ |2dxdt

) 1
2

,

and with the help of the energy convergence assumption (4.3) and Lemma 4.11 below, we obtain

lim sup
ε↘0

∣∣∣∣
∫ T

0

∫
�

(εσ (−∇uε)∇uε ⊗ (Dσ (νε) −ψ(|ξ |)Dσ (ξ ))) : A dxdt

∣∣∣∣
≤ C‖A‖L∞

(∫ T

0

E[u(t)]dt

) 1
2
(∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt

) 1
2

. (4.40)

Similarly recalling (4.30), the last integral on the right-hand side of (4.38) can be controlled by the
tilt excess via ∣∣∣∣c0

∫ T

0

∫
�

(ν ⊗ (Dσ (ν) −ψ(|ξ |)Dσ (ξ ))) : A
∣∣∇χ ∣∣dt

∣∣∣∣
≤ c0 C‖A‖L∞

∫ T

0

∫
�

|ν − ξ |∣∣∇χ ∣∣

≤ c0

C‖A‖L∞√
minSd−1 σ

(∫ T

0

∫
�

σ (ν)
∣∣∇χ ∣∣) 1

2
(∫ T

0

∫
�

|ν − ξ |2
∣∣∇χ ∣∣) 1

2

≤ C‖A‖L∞√
cσ minSd−1 σ

(∫ T

0

E[u(t)]dt

) 1
2
(∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt

) 1
2

. (4.41)
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As for the remaining terms in (4.38), we have to show that

∫ T

0

∫
�

(εσ (−∇uε)∇uε ⊗ψ(|ξ |)Dσ (ξ )) : A dxdt

+ c0

∫ T

0

∫
�

(ν ⊗ψ(|ξ |)Dσ (ξ )) : A
∣∣∇χ ∣∣ −→ 0

as ε↘ 0. Since ψ(|ξ |)A Dσ (ξ ) is a continuous vector field on �× [0, T], this problem reduces to
proving that εσ (−∇uε)∇uε

∗
⇀− c0ν

∣∣∇χ ∣∣ in M(�× [0, T])d.
To prove this weak-∗ convergence statement, we rewrite

εσ (−∇uε)∇uε =
(
εσ (−∇uε) − √

W(uε)
)

∇uε + √
W(uε)∇uε

=
(√

εf (−∇uε) −
√

1

ε
W(uε)

)
√
ε∇uε + ∇(φ ◦ uε).

The first summand converges strongly to 0 in L1(�× (0, T)): This follows by the Cauchy–Schwarz
inequality if we recall that

√
ε∇uε is bounded in L2(�× (0, T)) as ε↘ 0 and

√
εf (−∇uε) −

√
1
ε
W(uε) →

0 in L2(�× (0, T)) by Theorem 4.3(iii).
It has been shown in (4.6)–(4.8) that φ ◦ uε is bounded in W1,1 as ε↘ 0. In particular, the total vari-

ation
∫ ∫ |∇uε| is uniformly bounded as ε↘ 0. Since φ ◦ uε → c0χ in L1(�× (0, T)), it follows that

∇(φ ◦ uε)
∗
⇀c0∇χ = −c0ν

∣∣∇χ ∣∣ in M(�× [0, T])d.
In total, we have

εσ (−∇uε)∇uε
∗
⇀− c0ν

∣∣∇χ ∣∣ in M(�× [0, T])d. (4.42)

By plugging in (4.40), (4.41), and (4.42) into (4.38), one arrives at

lim sup
ε↘0

∣∣∣∣
∫ T

0

∫
�

(
ε∇uε ⊗ 1

2
Df (−∇uε)

)
: A dxdt + c0

∫ T

0

∫
�

(ν ⊗ Dσ (ν)) : A
∣∣∇χ ∣∣∣∣∣∣

≤ C‖A‖L∞

(∫ T

0

E[u(t)]dt

) 1
2
(∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt

) 1
2

.

This concludes the proof of Lemma 4.10 since, appealing to Lemma 4.8, the time-integrated relative
entropy can be made arbitrarily small.

Lemma 4.11. Under the assumptions of Theorem 4.1, including the energy convergence (4.3), and with
νε defined in (4.36), we have

lim sup
ε↘0

∫ T

0

∫
�

εf (−∇uε)|νε − ξ |2dxdt ≤ maxSd−1 σ

cσ

∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt. (4.43)

Proof. We apply Lemma 2.4(i), the estimate |νε − ξ | ≤ 2, and the Cauchy–Schwarz inequality in order
to control the occurring integrals by the anisotropic Cahn–Hilliard energy and the ε-relative entropy.
Precisely,
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∫ T

0

∫
�

εf (−∇uε)|νε − ξ |2dxdt

=
∫ T

0

∫
�

√
W(uε)σ (−∇uε)|νε − ξ |2dxdt

+
∫ T

0

∫
�

(√
εf (−∇uε) −

√
1

ε
W(uε)

)
√
εσ (−∇uε)|νε − ξ |2dxdt

≤ maxSd−1 σ

cσ

∫ T

0

∫
�

√
W(uε)|∇uε| (σ (νε) − |ξ |ψ(|ξ |)Dσ (ξ ) · νε) dxdt

+ 4

(∫ T

0

∫
�

εf (−∇uε) dxdt

) 1
2

⎛
⎝∫ T

0

∫
�

(√
εf (−∇uε) −

√
1

ε
W(uε)

)2

dxdt

⎞
⎠

1
2

≤ maxSd−1 σ

cσ

∫ T

0

Eε
[
uε(t)

∣∣ξ (t)
]
dt

+ 4
√

2

(∫ T

0

Eε[uε(t)]dt

) 1
2

⎛
⎝∫ T

0

∫
�

(√
εf (−∇uε) −

√
1

ε
W(uε)

)2

dxdt

⎞
⎠

1
2

.

One can now take the limit superior on both sides and note that, by assumption, we have
lim supε↘0

∫ T

0
Eε[uε(t)]dt<∞. Thus, applying Lemma 4.7 in the first term and Theorem 4.3(iii) in the

second term yields

lim sup
ε↘0

∫ T

0

∫
�

εf (−∇uε)|νε − ξ |2dxdt ≤ maxSd−1 σ

cσ

∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt.

4.6 Convergence of the velocity term

The analogue of Theorem 4.9 for the left-hand side terms is

Theorem 4.12. Under the assumptions of Theorem 4.1, including the energy convergence (4.3), we have

lim
ε↘0

∫ T

0

∫
�

g(−∇uε)∂tuεB · ε∇uε dxdt = −c0

∫ T

0

∫
�

1

μ(ν)
VB · ν∣∣∇χ ∣∣ (4.44)

for all B ∈ C1(�× [0, T])d.

Similarly to the argument for the curvature term, we replace the approximate outer normal νε by
a νε by a vector field ξ ∈ C(�× [0, T])d such that |ξ | ≤ 1 on terms can be controlled by the relative
entropy. An additional error term arises as we replace the term g(−∇uε) by its ‘asymptotic’ version
σ (νε )
μ(νε )

: Expanding both sides of (4.44), we obtain

∫ T

0

∫
�

g(−∇uε)∂tuεB · ε∇uε dxdt + c0

∫ T

0

∫
�

1

μ(ν)
VB · ν∣∣∇χ ∣∣

=
∫ T

0

∫
�

(
g(−∇uε) − σ (νε)

μ(νε)

)
∂tuεB · ε∇uε dxdt
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−
∫ T

0

∫
�

∂tuεB · εσ (−∇uε)

(
1

μ(νε)
νε − ψ(|ξ |)

μ(ξ )
ξ

)
dxdt

−
∫ T

0

∫
�

∂tuεB · εσ (−∇uε)
ψ(|ξ |)
μ(ξ )

ξ dxdt + c0

∫ T

0

∫
�

VB · ψ(|ξ |)
μ(ξ )

ξ
∣∣∇χ ∣∣

+ c0

∫ T

0

∫
�

VB ·
(

1

μ(ν)
ν − ψ(|ξ |)

μ(ξ )
ξ

) ∣∣∇χ ∣∣, (4.45)

where we have used the identity −σ (νε)∇uε = σ (νε)|∇uε|νε = σ (−∇uε)νε.
To see that the third line on the right-hand side converges to zero as ε↘ 0, it suffices to show that

∫ T

0

∫
�

ε∂tuεσ (−∇uε)ζ dxdt −→ c0

∫ T

0

∫
�

Vζ
∣∣∇χ ∣∣ (4.46)

as ε↘ 0 for all ζ ∈ C1(�× [0, T]). A density argument then yields the same statement for all ζ ∈ C(�×
[0, T]), so that one can choose ζ = B · ψ(|ξ |)

μ(ξ )
ξ .

In order to prove (4.46), we integrate by parts and write

∫ T

0

∫
�

ε∂tuεσ (−∇uε)ζ dxdt =
∫ T

0

∫
�

√
ε∂tuε

(
√
εσ (−∇uε) −

√
1

ε
W(uε)

)
ζ dxdt

−
∫ T

0

∫
�

(φ ◦ uε) ∂tζ dxdt

+
∫
�

φ(uε(x, T))ζ (x, T) dx −
∫
�

φ(uε,0(x))ζ (x, 0) dx.

The first integral converges to zero as ε↘ 0 due to the equipartiton of energy, Theorem 4.3(iii), and
the optimal dissipation. For the other three integrals, we apply the convergence statements for the
subsequence ε↘ 0 given in Lemma 4.2, which leads to

lim
ε↘0

∫ T

0

∫
�

ε∂tuεσ (−∇uε)ζ dxdt

= −c0

∫ T

0

∫
�

χ∂tζ dxdt + c0

∫
�

χ (x, T)ζ (x, T) dx − c0

∫
�

χ0(x)ζ (x, 0) dx.

The distributional criterion (2.18) for the normal velocity yields (4.46), and so it follows that the third
line on the right-hand side of (4.45) converges to zero.

It remains to estimate the “error” terms in (4.45). For the first integral on the right-hand side, one
uses the asymptotic description of g provided by Lemma 3.2(iii): For every δ > 0, there exists a positive
constant R such that

∣∣∣g(p) − σ (p)
μ(p)

∣∣∣< δ whenever |p| ≥ R. Therefore, we obtain

∣∣∣∣
∫ T

0

∫
�

(
g(−∇uε) − σ (νε)

μ(νε)

)
∂tuεB · ε∇uε dxdt

∣∣∣∣
≤

∫ T

0

∫
�

χ{|∇uε |≤R}

∣∣∣∣g(−∇uε) − σ (νε)

μ(νε)

∣∣∣∣ |∂tuε| |B · ε∇uε| dxdt

+
∫ T

0

∫
�

χ{|∇uε |>R}

∣∣∣∣g(−∇uε) − σ (νε)

μ(νε)

∣∣∣∣ |∂tuε| |B · ε∇uε| dxdt
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≤ 2R (sup
Rd

g)‖B‖L∞

∫ T

0

∫
�

ε|∂tuε| dxdt

+ δ‖B‖L∞

∫ T

0

∫
�

|∂tuε|ε|∇uε| dxdt

≤ 2R (sup
Rd

g)‖B‖L∞
√
εT

(∫ T

0

∫
�

ε(∂tuε)
2dxdt

) 1
2

+ δ‖B‖L∞

(∫ T

0

∫
�

ε(∂tuε)
2dxdt

) 1
2
(∫ T

0

∫
�

ε|∇uε|2dxdt

) 1
2

≤ √
ε

2R
√

T sup
Rd g√

cg

‖B‖L∞Eε[uε,0]
1
2

+ δ

√
2√

cg minSd−1 σ
‖B‖L∞Eε[uε,0]

1
2

(∫ T

0

Eε[uε(t)]dt

) 1
2

, (4.47)

from which it follows that

lim sup
ε↘0

∣∣∣∣
∫ T

0

∫
�

(
g(−∇uε) − σ (νε)

μ(νε)

)
∂tuεB · ε∇uε dxdt

∣∣∣∣
≤ δC‖B‖L∞E

1
2
0

(∫ T

0

E[u(t)]dt

) 1
2

. (4.48)

Since δ > 0 is arbitrary, we have shown that the first integral on the right-hand side of (4.45) converges
to zero as ε↘ 0.

As for the second integral on the right-hand side, we use that the map p �→ ψ(|p|)
μ(p)

p is Lipschitz
continuous on R

d, so that
∣∣∣∣
∫ T

0

∫
�

∂tuεB · εσ (−∇uε)

(
1

μ(νε)
νε − ψ(|ξ |)

μ(ξ )
ξ

)
dxdt

∣∣∣∣
≤ C‖B‖L∞

∫ T

0

∫
�

|∂tuε|εσ (−∇uε)|νε − ξ |dxdt

≤ C‖B‖L∞

(∫ T

0

∫
�

ε(∂tuε)
2dxdt

) 1
2
(∫ T

0

∫
�

εf (−∇uε)|νε − ξ |2dxdt

) 1
2

≤ C√
cg

‖B‖L∞Eε[uε,0]
1
2

(∫ T

0

∫
�

εf (−∇uε)|νε − ξ |2dxdt

) 1
2

.

It follows with the help of Lemma 4.11 that

lim sup
ε↘0

∣∣∣∣
∫ T

0

∫
�

∂tuεB · εσ (−∇uε)

(
1

μ(νε)
νε − ψ(|ξ |)

μ(ξ )
ξ

)
dxdt

∣∣∣∣
≤ C‖B‖L∞E

1
2
0

(∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt

) 1
2

. (4.49)
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Again making use of the Lipschitz continuity and Lemma 2.4(i), the last integral on the right-hand
side of (4.45) can be estimated as∣∣∣∣c0

∫ T

0

∫
�

VB ·
(

1

μ(ν)
ν − ψ(|ξ |)

μ(ξ )
ξ

) ∣∣∇χ ∣∣∣∣∣∣
≤ c0C‖B‖L∞

∫ T

0

∫
�

|V||ν − ξ |∣∣∇χ ∣∣

≤ c0C‖B‖L∞

(∫ T

0

∫
�

V2
∣∣∇χ ∣∣) 1

2
(∫ T

0

∫
�

|ν − ξ |2
∣∣∇χ ∣∣) 1

2

≤ C
√

c0√
cσ

‖B‖L∞‖V‖L2(|∇χ |)

(∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt

) 1
2

. (4.50)

Plugging in the results for each right-hand side integral into (4.45) leads to

lim sup
ε↘0

∣∣∣∣
∫ T

0

∫
�

g(−∇uε)∂tuεB · ε∇uε dxdt + c0

∫ T

0

∫
�

1

μ(ν)
VB · ν∣∣∇χ ∣∣∣∣∣∣

≤ C‖B‖L∞
(

E
1
2
0 + ‖V‖L2(|∇χ |)

) (∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt

) 1
2

.

The proof of Theorem 4.12 is complete once we take into account that, by Lemma 4.8, the time-
integrated relative entropy can be made arbitrarily small for suitable choices of vector fields ξ .

4.7 Optimal energy dissipation inequality

Lemma 4.13. Under the assumptions of Theorem 4.1, including the energy convergence (4.3), the
inequality

E[u(T ′)] + c0

∫ T ′

0

∫
�

1

μ(ν)
V2

∣∣∇χ ∣∣ ≤ E0

holds true for all T ′ ∈ [0, T].

The strategy to prove this lemma is to take ε↘ 0 in the optimal energy dissipation identity (3.4)
for the anisotropic Allen–Cahn equation. By the well-preparedness of the initial data (4.1), we have
limε↘0 Eε[uε,0] = E0. Furthermore, the �-convergence Eε

�−→ E on L1(�) (see [9, Theorem 3.5]) yields
lim infε↘0 Eε[uε(T ′)] ≥ E[u(T ′)] since it follows from the conditions in Lemma 4.2 that uε(t) → u(t) in
all t ∈ [0, T].

We remark that Bouchitté [9] defines dom(Eε) = Lip(�), so that the liminf inequality for our def-
inition in (1.7) does not immediately follow. However, the liminf inequality is the easier part of the
�-convergence statement and can be shown by combining the Modica–Mortola argument in Theorem
4.3(i) above with the truncation of W that can be found in [44, Proof of Theorem 1.6].

Therefore, the proof of the lemma reduces to proving the following inequality:

Claim 2. For every T ′ ∈ [0, T], we have

lim inf
ε↘0

∫ T ′

0

∫
�

εg(−∇uε)(∂tuε)
2dxdt ≥ c0

∫ T ′

0

∫
�

1

μ(ν)
V2

∣∣∇χ ∣∣. (4.51)

Let ζ ∈ C(�× [0, T]) and ξ ∈ C(�× [0, T])d such that |ξ | ≤ 1 in �× [0, T]. We apply Young’s
inequality in the form a2 ≥ 2ab − b2 and add zero multiple times in order to replace g with its asymptotic
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version and νε with ξ , similarly to the approach in (4.45). In this case, we obtain

∫ T ′

0

∫
�

εg(−∇uε)(∂tuε)
2dxdt

≥ 2
∫ T ′

0

∫
�

εg(−∇uε)∂tuεσ (−∇uε)ζ dxdt −
∫ T ′

0

∫
�

εg(−∇uε)f (−∇uε)ζ
2dxdt

= 2
∫ T ′

0

∫
�

ε

(
g(−∇uε) − σ (νε)

μ(νε)

)
∂tuεσ (−∇uε)ζ dxdt

−
∫ T ′

0

∫
�

ε

(
g(−∇uε) − σ (νε)

μ(νε)

)
f (−∇uε)ζ

2dxdt

+ 2
∫ T ′

0

∫
�

ε

(
σ (νε)

μ(νε)
−ψ(|ξ |)σ (ξ )

μ(ξ )

)
∂tuεσ (−∇uε)ζ dxdt

−
∫ T ′

0

∫
�

ε

(
σ (νε)

μ(νε)
−ψ(|ξ |)σ (ξ )

μ(ξ )

)
f (−∇uε)ζ

2dxdt

+ 2
∫ T ′

0

∫
�

εψ(|ξ |)σ (ξ )

μ(ξ )
∂tuεσ (−∇uε)ζ dxdt

−
∫ T ′

0

∫
�

εψ(|ξ |)σ (ξ )

μ(ξ )
f (−∇uε)ζ

2dxdt. (4.52)

To show that the first integral on the right-hand side converges to zero, let δ > 0. By Lemma 3.2(iii),
there exists some R> 0 such that

∣∣∣g(p) − σ (p)
μ(p)

∣∣∣< δ for all p ∈R
d with |p| ≥ R. Arguing as in (4.47), we

find

∣∣∣∣∣2
∫ T ′

0

∫
�

ε

(
g(−∇uε) − σ (νε)

μ(νε)

)
∂tuεσ (−∇uε)ζ dxdt

∣∣∣∣∣
≤ 4R

(maxSd−1 σ )(sup
Rd g)√

cg

‖ζ‖L∞
√
εT Eε[uε,0]

1
2

+ 2
√

2 δ
maxSd−1 σ√
cg minSd−1 σ

‖ζ‖L∞Eε[uε,0]
1
2

(∫ T ′

0

Eε[uε(t)]dt

) 1
2

.

Taking first ε↘ 0, then δ↘ 0 leads to

lim
ε↘0

∣∣∣∣∣2
∫ T ′

0

∫
�

ε

(
g(−∇uε) − σ (νε)

μ(νε)

)
∂tuεσ (−∇uε)ζ dxdt

∣∣∣∣∣ = 0. (4.53)

For the second line on the right-hand side of (4.52), we argue analogously and obtain

lim
ε↘0

∣∣∣∣∣−
∫ T ′

0

∫
�

ε

(
g(−∇uε) − σ (νε)

μ(νε)

)
f (−∇uε)ζ

2dxdt

∣∣∣∣∣ = 0. (4.54)
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Due to the Lipschitz continuity of the map p �→ψ(|p|) σ (p)
μ(p)

, the third integral can be estimated as
∣∣∣∣∣2

∫ T ′

0

∫
�

ε

(
σ (νε)

μ(νε)
−ψ(|ξ |)σ (ξ )

μ(ξ )

)
∂tuεσ (−∇uε)ζ dxdt

∣∣∣∣∣
≤ 2C‖ζ‖L∞

∫ T ′

0

∫
�

ε|νε − ξ ||∂tuε|σ (−∇uε) dxdt

≤ 2C‖ζ‖L∞

(∫ T ′

0

∫
�

ε(∂tuε)
2dxdt

) 1
2
(∫ T ′

0

∫
�

ε|νε − ξ |2f (−∇uε) dxdt

) 1
2

≤ 2
C√
cg

‖ζ‖L∞Eε[uε,0]
1
2

(∫ T ′

0

∫
�

ε|νε − ξ |2f (−∇uε) dxdt

) 1
2

,

so that, by appealing to Lemma 4.11, we obtain

lim sup
ε↘0

∣∣∣∣∣2
∫ T ′

0

∫
�

ε

(
σ (νε)

μ(νε)
−ψ(|ξ |)σ (ξ )

μ(ξ )

)
∂tuεσ (−∇uε)ζ dxdt

∣∣∣∣∣
≤ C‖ζ‖L∞E

1
2
0

(∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt

) 1
2

. (4.55)

For the fourth line of the right-hand side of (4.52), a very similar computation yields

lim sup
ε↘0

∣∣∣∣∣−
∫ T ′

0

∫
�

ε

(
σ (νε)

μ(νε)
−ψ(|ξ |)σ (ξ )

μ(ξ )

)
f (−∇uε)ζ

2dxdt

∣∣∣∣∣
≤ C‖ζ‖2

L∞

(∫ T

0

E[u(t)]dt

) 1
2
(∫ T

0

E
[
u(t)

∣∣ξ (t)
]
dt

) 1
2

. (4.56)

Finally, it follows from (4.46) and the equipartition of energy, Theorem 4.3(v), that

lim
ε↘0

(
2
∫ T ′

0

∫
�

εψ(|ξ |)σ (ξ )

μ(ξ )
∂tuεσ (−∇uε)ζ dxdt −

∫ T ′

0

∫
�

εψ(|ξ |)σ (ξ )

μ(ξ )
f (−∇uε)ζ

2dxdt

)

= 2c0

∫ T ′

0

∫
�

ψ(|ξ |)σ (ξ )

μ(ξ )
Vζ

∣∣∇χ ∣∣ − c0

∫ T ′

0

∫
�

σ (ν)ψ(|ξ |)σ (ξ )

μ(ξ )
ζ 2

∣∣∇χ ∣∣. (4.57)

It is now desirable to let ξ → ν in L2(
∣∣∇χ ∣∣) so that

∫ T

0
E
[
u(t)

∣∣ξ (t)
]
dt → 0. This is possible by

Lemma 4.8 and Lemma 2.4(i). By the dominated convergence theorem, we also have ψ(|ξ |) σ (ξ )
μ(ξ )

→ σ (ν)
μ(ν)

in L2(
∣∣∇χ ∣∣). Under this convergence, it follows from (4.52) and the computations (4.53)–(4.57) that

lim inf
ε↘0

∫ T ′

0

∫
�

εg(−∇uε)(∂tuε)
2dxdt

≥ 2c0

∫ T ′

0

∫
�

σ (ν)

μ(ν)
Vζ

∣∣∇χ ∣∣ − c0

∫ T ′

0

∫
�

σ (ν)
σ (ν)

μ(ν)
ζ 2

∣∣∇χ ∣∣.
In a last step we let ζ → V

σ (ν)
in L2(

∣∣∇χ ∣∣), which yields the lower bound as stated in the claim.
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4.8 Proof of Theorem 4.1

We simply wrap up the proof of the theorem.

Proof. The compactness follows from Lemma 4.2. Under the energy convergence assumption, the dis-
tributional formulation for the time derivative (2.18) follows from Lemma 4.4. The optimal energy
dissipation relation (2.20) follows from Lemma 4.13. To obtain the distributional formulation for the
curvature in (2.19), we use B · ε∇uε as a test function in the distributional formulation of the anisotropic
Allen–Cahn equation (3.3), where B ∈ C1(�× [0, T])d, where we recall that by Theorem 3.10, we have
B · ε∇uε ∈ L2

(
0, T; H1(�)

)
, and that these functions are admissible test functions in (3.3). To pass to

the limit as ε↘ 0 in the left-hand side, one applies Theorem 4.12, and likewise for the right-hand side,
apply Theorem 4.9.

5. Weak–strong uniqueness for anisotropic mean curvature flow

The goal of this section is to prove that, as long as a strong solution to anisotropic mean curvature flow
(1.1) exists, any BV solution with the same initial data coincides with the strong solution. One needs
to require additional regularity for (σ ,μ) to make sure that strong solutions will be sufficiently smooth,
and we will also rely on the higher regularity of σ in the proof of the weak–strong uniqueness statement.
Thus, we assume that σ ,μ ∈ C∞(

R
d \ {0}). Further, without loss of generality, we let c0 = 1. Following

Hensel and Moser [37, Definition 10], we define strong solutions to (1.1) as follows:

Definition 5.1. Let T > 0 be a finite time horizon. A family {A(t)}t∈[0,T] of open subsets of� is a strong
solution to anisotropic mean curvature flow if

• ∂A(0) is an embedded C∞-submanifold,
• there exists a C∞-map� :�× [0, T] →� such that�(·, t) is a diffeomorphism for all t ∈ [0, T],

furthermore �(·, 0) = id� and

�(A(0), t) = A(t), �(∂A(0), t) = ∂A(t)

for all t ∈ [0, T], and
• {∂A(t)}t∈[0,T] evolves by (1.1) in the classical sense.

The setup in [37, Definition 10 and Remark 15] also suggests that the C∞-regularity for (σ ,μ), �,
and ∂A(0) can be relaxed.

We are now ready to formulate the central theorem of this section:

Theorem 5.2. Let {A(t)}t∈[0,T] be a solution of anisotropic mean curvature flow (1.1), and further, let
{A(t)}t∈[0,T] be time parametrized collection of sets with χ := χA a distributional solution of anisotropic
mean curvature flow as in Definition 2.8. If

|A(0)�A(0)| = 0,

then

|A(t)�A(t)| = 0

for all t ∈ [0, T].

The proof for this theorem is modeled after [35, Sections 2.2, 4], where Hensel and the first author
derive an analogous result for multiphase isotropic mean curvature flow. The key step in this argument is
to find a gradient flow calibration (see below) for the smooth evolution {A(t)}t∈[0,T]. While the existence
of a gradient flow calibration is nontrivial in the multiphase case (see [37, Theorem 4] for a gradient flow
calibration for multiphase mean curvature flow in d = 2 with constant contact angle), such a calibration
can always be constructed explicitly for a smooth two-phase evolution.
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5.1 Gradient flow calibrations

In the remainder of this chapter, C<∞ and c> 0 denote positive constants (‘large’ and ‘small’, respec-
tively) that may depend on the pair of anisotropies (σ ,μ), on the time horizon T , and on the smooth
evolution {A(t)}t∈[0,T]. These constants need not be the same on every occurrence.

Definition 5.3. Let {A(t)}t∈[0,T] be a strong solution to anisotropic mean curvature flow consisting of
nonempty open proper subsets of �. A gradient flow calibration for {A(t)}t∈[0,T] is a triple

(ξ , B, ϑ) ∈ C2
1(�× [0, T])d × C

(
[0, T]; C2(�)

)d × C1(�× [0, T]; [ − 1, 1])

satisfying

• the approximate evolution equations∣∣∂tξ + (B · ∇)ξ + (∇B)Tξ
∣∣ (x, t) ≤ C dist(x, ∂A(t)) in �× [0, T], (5.1)

|ξ · (∂tξ + (B · ∇)ξ)| (x, t) ≤ C dist2(x, ∂A(t)) in �× [0, T], (5.2)
|∂tϑ + (B · ∇)ϑ | (x, t) ≤ C dist(x, ∂A(t)) in �× [0, T], (5.3)

• the compatibility condition
|B · ξ +μ(ξ )div(|ξ |ψ(|ξ |)Dσ (ξ ))| (x, t) ≤ C dist(x, ∂A(t)) in �× [0, T], (5.4)

• and with ν∂A(t) denoting the outer unit normal of the set A(t), we have the coercivity conditions

ξ (x, t) = ν∂A(t)(x) on
⋃

t∈[0,T]

(∂A(t) × {t}) , (5.5)

|ξ (x, t)| ≤ 1 − c dist2(x, ∂A(t)) in �× [0, T], (5.6)

ϑ(x, t)> c dist(x, ∂A(t)) in
⋃

t∈[0,T]

(
A(t)

c × {t}
)

, (5.7)

ϑ(x, t)<−c dist(x, ∂A(t)) in
⋃

t∈[0,T]

(A(t) × {t}) . (5.8)

Intuitively, ξ is an extension of the outer unit normal ν∂A(t) (with an additional coercivity property),
whereas B extends the normal velocity vector and ϑ is comparable to a signed distance function. The
compatibility condition (5.4) encodes the motion by anisotropic mean curvature. The space C2

1(�×
[0, T]) is defined as

C2
1(�× [0, T]) :=

{
f ∈ C(�× [0, T])

∣∣∣∣ ∂tf , ∇f , D2f are continuous on �× [0, T]

}
.

Let us collect the key inequalities for gradient flow calibrations that will be used in the proof of
Theorem 5.2.

Lemma 5.4. Let (ξ , B, ϑ) be a gradient flow calibration for {A(t)}t∈[0,T]. Then the following estimates
hold true for all (x, t) ∈�× [0, T]:

(i)

c dist2(x, ∂A(t)) ≤ 1 − |ξ | (x, t) ≤ C dist2(x, ∂A(t)),

(ii)

c dist2(x, ∂A(t)) ≤ 1 − |ξ |2 (x, t) ≤ C dist2(x, ∂A(t)),

(iii)

|ξ · (ξ · ∇)B| (x, t) ≤ C dist(x, ∂A(t)).

If ν :�× [0, T] →R
d such that |ν| ≡ 1, then
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(iv)

|ν − ξ |2 ≤ C (σ (ν) − |ξ |ψ(|ξ |)Dσ (ξ ) · ν) ,

(v)

1 − |ξ | ≤ C (σ (ν) − |ξ |ψ(|ξ |)Dσ (ξ ) · ν) , and

(vi)

|ξ · (ν − ξ )| ≤ C (σ (ν) − |ξ |ψ(|ξ |)Dσ (ξ ) · ν) .

Proof.

(i) The lower bound is precisely the coercivity condition (5.6).
For the upper bound, we observe that, due to (5.5) and (5.6), |ξ | attains its maximum on ∂A(t)
for every t ∈ [0, T]. In particular, we have ∇|ξ | = 0 on ∂A(t). A second-order Taylor expansion
yields 1 − |ξ |(x, t) ≤ C dist2(x, ∂A(t)). For this argument, we use the smoothness of ξ (i.e., the
continuity of ∇ξ and ∇2ξ on �× [0, T]) and the compactness of the domain �× [0, T].

(ii) This follows immediately from (i) since the condition |ξ | ≤ 1 allows us to compute

1 − |ξ | ≤ 1 − |ξ |2 = (1 − |ξ |)(1 + |ξ |) ≤ 2(1 − |ξ |),
i.e., 1 − |ξ |2 is bounded from below and above by a rescaled 1 − |ξ |.

(iii) This inequality is a consequence of (5.1) and (5.2): We have

|ξ · (ξ · ∇)B| (x, t) = ∣∣ξ · (∂tξ + (B · ∇)ξ + (∇B)Tξ
) − ξ · (∂tξ + (B · ∇)ξ)

∣∣ (x, t)

≤ C dist(x, ∂A(t)) + C dist2(x, ∂A(t))

≤ C dist(x, ∂A(t)).

(iv) This is the statement of Lemma 2.4(i).
(v) This is another elementary estimate: With the help of Lemma 2.3(ii), (vi), one computes

σ (ν) − |ξ |ψ(|ξ |)Dσ (ξ ) · ν ≥ σ (ν) − |ξ |ψ(|ξ |)σ (ν)

≥ (min
Sd−1

σ ) (1 − |ξ |ψ(|ξ |))

≥ (min
Sd−1

σ ) (1 − |ξ |).
(vi) follows from the previous two estimates since

ξ · (ν − ξ ) = −1

2

(
1 − 2 ν · ξ + |ξ |2

) + 1

2

(
1 − |ξ |2

) = −1

2
|ν − ξ |2 + 1

2

(
1 − |ξ |2

)
.

Lemma 5.5. Every strong solution {A(t)}t∈[0,T] to anisotropic mean curvature flow (1.1) that consists of
nonempty open proper subsets of � admits a gradient flow calibration (ξ , B, ϑ).

Proof. There exists a positive δ > 0 such that in the neighborhood

U :=
⋃

t∈[0,T]

(Bδ(∂A(t)) × {t}) ,

the signed distance function sdist : U → ( − δ, δ) and the orthogonal projection

p : U →
⋃

t∈[0,T]

(∂A(t) × {t})

with respect to ∂A(t) are well-defined and regular (see [34, Lemmas 14.16, 14.17]). We use the sign
convention that sdist(x, t)< 0 for x ∈ A(t) ∩ Bδ(∂A(t)).
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Let ζ ∈ C∞
c (( − δ, δ)) be a cutoff function such that ζ (s) = 1 − s2 for |s| ≤ δ

2
and sζ ′(s) ≤ 0 on ( − δ, δ).

Furthermore, we define another truncation f ∈ C∞(R) such that f (s) = s for |s| ≤ δ

2
, f (s) = sgn(s)δ for

|s| ≥ 3
4
δ, and f ′ ≥ 0. Let now

ξ (x, t) := ζ (sdist(x, t))∇sdist(x, t).

Second, we define ϑ := f ◦sdist on U, which can be extended locally constantly to �× [0, T]. Third,
let

B(x, t) = −μ(ξ (x, t))div (Dσ (∇sdist(·, t)))
∣∣

p(x,t)
ξ (x, t) for (x, t) ∈ U, (5.9)

which can be extended to �× [0, T] by zero using a cutoff function.
To show that (ξ , B, ϑ) is a gradient flow calibration for {A(t)}t∈[0,T] as in Definition 5.3, we rely on a

generic equation for the signed distance of a smoothly evolving surface with normal velocity vector B,
valid in the neighborhood U. Precisely, for a smoothly evolving surface, we have

∂tsdist(x, t) + B(p(x, t), t) · ∇sdist(x, t) = 0 for all (x, t) ∈ U. (5.10)

Supposing (5.10), we may differentiate this equation in space and replace ∇sdist by ξ when it makes an
explicit appearance but also in B (recalling (5.9)) to recover (5.1); note the error O(dist(x, ∂A(t))) comes
from the replacement of ∇2sdist by ∇ξ and ∂t(∇ sdist). Unsurprisingly, given the definition of ϑ above
and (5.10), we immediately obtain (5.3). To recover (5.2), we note that |ξ | ≡ 1 on ∪t∈[0,T] (∂A(t) × {t})
so that

(∂t + B(p(x, t), t) · ∇)|ξ |2(x, t) = 0 for all x ∈ ∂A(t).

One can then explicitly verify that

ξ · ∇ (
(∂t + B(p(x, t), t) · ∇)|ξ |2

)
(x, t) = 0 for all x ∈ ∂A(t),

which allows one to recover the quadratic error in (5.2). Finally, the remaining properties of the
calibration are easily verified by the choice of cutoff functions.

We briefly outline how to prove (5.10) at a space-time point (x, t) ∈ U. Suppose first that x �∈ A(t) and
that surface velocity B(x, t) := B(p(x, t), t) (a hopefully forgivable abuse of notation) points from the
interface in the direction of x. Straightforward geometric reasoning on the line segment x +R∇sdist(x, t)
then shows that

∂t sdist(x, t) ≤ −B(x, t) · ∇ sdist(x, t).

Supposing by contradiction that the previous inequality is strict, we have
sdist(x, t + ε) − sdist(x, t)

ε
<−B(x, t) · ∇sdist(x, t) − η, (5.11)

for ε > 0 sufficiently small, where η > 0 is a small fixed constant. Letting yε ∈ ∂A(t + ε) be such that
sdist(x, t + ε) = |x − yε|, we let ȳε := p(yε, t). One may argue by smoothness of the interface evolution
and the projection operator that for small enough ε > 0 (depending on η), we have

|yε − ȳε| ≤ ε

⎛
⎜⎜⎝ sup

|x0−p(x,t)|≤Cε

|t0−t|≤ε

|B(x0, t0)|

⎞
⎟⎟⎠ ≤ ε(B(x, t) · ∇sdist(x, t) + η/2), (5.12)

where on the right-hand side we used that B(x, t) · ∇sdist(x, t) = |B(x, t)| and C> 0 is a constant
depending only on the smooth interface. Synthesizing (5.11) and (5.12) we have

|x − ȳε| ≤ sdist(x, t + ε) + |yε − ȳε| ≤ sdist(x, t) − ε(η/2),

a contradiction to the definition of sdist(x, t). This shows (5.10) at (x, t) under the contingent hypotheses;
the other cases are verified similarly (reversing the flow in time when necessary).
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5.2 A Grönwall-type stability estimate

We wish to prove Theorem 5.2 by deriving a Grönwall-type estimate for a suitable quantity. A straight-
forward way to measure the difference between the calibrated evolution A(t) and the weak solution A(t)
(χA(t) satisfying Definition 2.8) at a given time t ∈ [0, T] is the bulk error

B
[
χ (t)

∣∣ϑ(t)
]

:=
∫

A(t)�A(t)

|ϑ(x, t)|dx.

Since |ϑ(·, t)| is strictly positive outside ∂A(t), and hence almost everywhere in R
d this bulk error van-

ishes if and only if |A(t)�A(t)| = 0. However, the available stability estimate for the bulk error is not
strong enough to apply Grönwall’s lemma immediately:

Lemma 5.6. Let {A(t)}t∈[0,T] be a solution of anisotropic mean curvature flow (1.1) that is calibrated in
the sense of Definition 5.3. Further, let {A(t)}t∈[0,T] be time parametrized collection of sets with χ := χA

a distributional solution of anisotropic mean curvature flow as in Definition 2.8. Recalling the definition
of E

[·∣∣·] in (4.28) (with c0 = 1), the following holds:

(i) The bulk error B
[
χ (T ′)

∣∣ϑ(T ′)
]

at an arbitrary time T ′ ∈ [0, T] is given by

B
[
χ (T ′)

∣∣ϑ(T ′)
] = B

[
χ (0)

∣∣ϑ(0)
] +

∫ T ′

0

∫
�

(
χA(t) − χA(t)

)
(∂tϑ + (B · ∇)ϑ) dxdt

+
∫ T ′

0

∫
�

(
χA(t) − χA(t)

)
ϑdivB dxdt

+
∫ T ′

0

∫
∂∗A(t)

ϑB · (ξ − ν) dHd−1dt

+
∫ T ′

0

∫
∂∗A(t)

ϑ(V − B · ξ ) dHd−1dt.

(ii) For every δ > 0, there exists a constant C(δ)> 0, which also depends on the calibrated evolution,
such that

B
[
χ (T ′)

∣∣ϑ(T ′)
] ≤ B

[
χ (0)

∣∣ϑ(0)
] + C(δ)

∫ T ′

0

(
B

[
χ (t)

∣∣ϑ(t)
] + E

[
χ (t)

∣∣ξ (t)
])

dt

+ δ

∫ T ′

0

∫
∂∗A(t)

|V − B · ξ |2dHd−1dt (5.13)

for all T ′ ∈ [0, T].

Proof. See [35, Sections 4.2, 4.3], where the argument is carried out for isotropic mean curvature flow.
The same argument applies in our anisotropic setting since the definition of the bulk error functional
has remained unchanged.

To compensate for the additional error term on the right-hand side of (5.13), we make use of another
stability estimate for the relative entropy:

Lemma 5.7. Let the hypotheses of Lemma 5.6 hold. For all T ′ ∈ [0, T], we have

E
[
χ (T ′)

∣∣ξ (T ′)
] ≤ E

[
χ (0)

∣∣ξ (0)
] + C

∫ T ′

0

E
[
χ (t)

∣∣ξ (t)
]
dt

− 1

4 maxSd−1 μ

∫ T ′

0

∫
∂∗A(t)

|V − B · ξ |2dHd−1dt. (5.14)
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A combination of the two stability estimates yields

B
[
χ (T ′)

∣∣ϑ(T ′)
] + E

[
χ (T ′)

∣∣ξ (T ′)
] ≤ B

[
χ (0)

∣∣ϑ(0)
] + E

[
χ (0)

∣∣ξ (0)
]

+ C
∫ T ′

0

(
B

[
χ (t)

∣∣ϑ(t)
] + E

[
χ (t)

∣∣ξ (t)
])

dt.

In particular, it follows by Grönwall’s lemma that B
[
χ (T ′)

∣∣ϑ(T ′)
] = 0 for all T ′ ∈ [0, T] if

B
[
χ (T ′)

∣∣ϑ(0)
] + E

[
χ (T ′)

∣∣ξ (0)
] = 0, which completes the proof of Theorem 5.2.

5.3 Stability of the relative entropy

The goal of this subsection is to prove Lemma 5.7.
With the help of the divergence theorem and the surface energy (1.2) with c0 = 1, one can rewrite the

relative entropy functional as

E
[
χ (t)

∣∣ξ (t)
] = E[χ (t)] −

∫
A(t)

div (|ξ |ψ(|ξ |) Dσ (ξ )) dx,

which using the distributional formulation of the time derivative from (2.19) leads to

E
[
χ (T ′)

∣∣ξ (T ′)
] = E

[
χ (0)

∣∣ξ (0)
] + E[A(T ′)] − E[A(0)]

−
∫ T ′

0

∫
∂∗A(t)

div (|ξ |ψ(|ξ |) Dσ (ξ )) VdHd−1dt

−
∫ T ′

0

∫
∂∗A(t)

∂t (|ξ |ψ(|ξ |) Dσ (ξ )) · νdHd−1dt

≤ E
[
χ (0)

∣∣ξ (0)
] −

∫ T ′

0

∫
∂∗A(t)

1

μ(ν)
V2dHd−1dt

−
∫ T ′

0

∫
∂∗A(t)

div (|ξ |ψ(|ξ |) Dσ (ξ )) VdHd−1dt

−
∫ T ′

0

∫
∂∗A(t)

∂t (|ξ |ψ(|ξ |) Dσ (ξ )) · νdHd−1dt.

Note, in the last step, we used the optimal energy dissipation inequality (2.20) for the weak solu-
tion χ . We introduce the notation F(ξ ) = |ξ |ψ(|ξ |)Dσ (ξ ) and M(ξ ) := DξF(ξ ) = |ξ |ψ(|ξ |) D2σ (ξ ) +(
ψ(|ξ |)

|ξ | +ψ ′(|ξ |)
)

Dσ (ξ ) ⊗ ξ and complete squares three times to write

E
[
χ (T ′)

∣∣ξ (T ′)
]

≤ E
[
χ (0)

∣∣ξ (0)
] + 1

2

∫ T ′

0

∫
∂∗A(t)

(
−

∣∣∣∣ 1√
μ(ν)

V − 1√
μ(ν)

B · ν
∣∣∣∣

2

−
∣∣∣∣√μ(ν)div(F(ξ )) + 1√

μ(ν)
V

∣∣∣∣
2

+
∣∣∣∣√μ(ν)div(F(ξ )) + 1√

μ(ν)
B · ν

∣∣∣∣
2
)

dHd−1dt
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−
∫ T ′

0

∫
∂∗A(t)

1

μ(ν)
VB · νdHd−1

∫ T ′

0

∫
∂∗A(t)

div(F(ξ ))B · νdHd−1dt

−
∫ T ′

0

∫
∂∗A(t)

∂t (|ξ |ψ(|ξ |) Dσ (ξ )) · νdHd−1dt. (5.15)

The second square can be trivially estimated. We will now deal with the other squared terms as well
as the remaining integrals separately:

The first square will later be used to compensate for a term in the stability estimate of the bulk error.
To this end, it will be useful to estimate the term with the help of the inequality −a2 ≤ − 1

2
(a + b)2 + b2

and (4.30):

−1

2

∫ T ′

0

∫
∂∗A(t)

∣∣∣∣ 1√
μ(ν)

V − 1√
μ(ν)

B · ν
∣∣∣∣

2

dHd−1dt

≤ −1

4

∫ T ′

0

∫
∂∗A(t)

∣∣∣∣ 1√
μ(ν)

V − 1√
μ(ν)

B · ξ
∣∣∣∣

2

dHd−1dt

+ 1

2

∫ T ′

0

∫
∂∗A(t)

∣∣∣∣ 1√
μ(ν)

B · (ν − ξ )

∣∣∣∣
2

dHd−1dt

≤ − 1

4 maxSd−1 μ

∫ T ′

0

∫
∂∗A(t)

|V − B · ξ |2 dHd−1dt

+ 1

2 minSd−1 μ
‖B‖2

C0

∫ T ′

0

∫
∂∗A(t)

|ν − ξ |2 dHd−1dt

≤ − 1

4 maxSd−1 μ

∫ T ′

0

∫
∂∗A(t)

|V − B · ξ |2 dHd−1dt

+ C
∫ T ′

0

E
[
χ (t)

∣∣ξ (t)
]
dt. (5.16)

Similarly, for the third square, the inequality a2 ≤ 2(a − b)2 + 2b2 (applied twice), the Lipschitz
continuity of μ, the compatibility condition (5.4), and finally (4.30) yield

1

2

∫ T ′

0

∫
∂∗A(t)

∣∣∣∣√μ(ν)div(F(ξ )) + 1√
μ(ν)

B · ν
∣∣∣∣

2

dHd−1dt

≤ 1

2 minSd−1 μ

∫ T ′

0

∫
∂∗A(t)

|μ(ν)div(F(ξ )) + B · ν|2 dHd−1dt

≤ 1

minSd−1 μ

∫ T ′

0

∫
∂∗A(t)

|μ(ν)div(F(ξ )) + B · ξ |2 dHd−1dt

+ 1

minSd−1 μ

∫ T ′

0

∫
∂∗A(t)

|B · (ν − ξ )|2 dHd−1dt

≤ 2

minSd−1 μ

∫ T ′

0

∫
∂∗A(t)

|μ(ξ )div(F(ξ )) + B · ξ |2 dHd−1dt

+ 2

minSd−1 μ

∫ T ′

0

∫
∂∗A(t)

|(μ(ν) −μ(ξ ))M(ξ ):∇ξ |2 dHd−1dt
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+ 1

minSd−1 μ

∫ T ′

0

∫
∂∗A(t)

|B · (ν − ξ )|2 dHd−1dt

≤ C
∫ T ′

0

∫
∂∗A(t)

min{1, dist2(·, ∂∗A(t))}dHd−1dt

+ C
∫ T ′

0

∫
∂∗A(t)

|ν − ξ |2dHd−1dt

≤ C
∫ T ′

0

E
[
χ (t)

∣∣ξ (t)
]
dt. (5.17)

It remains to show that∣∣∣∣∣
∫ T ′

0

∫
∂∗A(t)

1

μ(ν)
VB · νdHd−1dt

∫ T ′

0

∫
∂∗A(t)

div(F(ξ ))B · νdHd−1dt

+
∫ T ′

0

∫
∂∗A(t)

∂t (|ξ |ψ(|ξ |) Dσ (ξ )) · νdHd−1dt

∣∣∣∣∣
≤ C

∫ T ′

0

E
[
χ (t)

∣∣ξ (t)
]
dt. (5.18)

The third integral on the left-hand side can be expanded in a way that resembles the approximate
evolution equations (5.1) and (5.2):∫ T ′

0

∫
∂∗A(t)

∂t (|ξ |ψ(|ξ |) Dσ (ξ )) · νdHd−1dt =
∫ T ′

0

∫
∂∗A(t)

(ν ⊗ ∂tξ ) : M(ξ ) dHd−1dt

=
∫ T ′

0

∫
∂∗A(t)

(
(ν − ξ ) ⊗ (

∂tξ + (B · ∇)ξ + (∇B)Tξ
))

: M(ξ ) dHd−1dt

+
∫ T ′

0

∫
∂∗A(t)

(ξ ⊗ (∂tξ + (B · ∇)ξ)) : M(ξ ) dHd−1dt

−
∫ T ′

0

∫
∂∗A(t)

(ν ⊗ (B · ∇)ξ) : M(ξ ) dHd−1dt

−
∫ T ′

0

∫
∂∗A(t)

(ξ ⊗ (ν − ξ )) :
(
(∇B)M(ξ )T

)
dHd−1dt. (5.19)

Here, the first two integrals in the right-hand side expression are already in a suitable form: For the
first integral this can be seen directly from (5.1), whereas for the second term a computation yields

(ξ ⊗ (∂tξ + (B · ∇)ξ)) : M(ξ ) = |ξ |ψ(|ξ |) ξ · D2σ (ξ ) (∂tξ + (B · ∇) ξ)

+
(
ψ(|ξ |)

|ξ | +ψ ′(|ξ |)
)

(Dσ (ξ ) · ξ ) (ξ · (∂tξ + (B · ∇)ξ ))

= |ξ |ψ(|ξ |) (∂tξ + (B · ∇) ξ) · D2σ (ξ )ξ

+
(
ψ(|ξ |)

|ξ | +ψ ′(|ξ |)
)
σ (ξ ) ξ · (∂tξ + (B · ∇)ξ )

=
(
ψ(|ξ |)

|ξ | +ψ ′(|ξ |)
)
σ (ξ ) ξ · (∂tξ + (B · ∇)ξ ),
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so that one can invoke (5.2). Here we have used a fact that follows from the positive 0-homogeneity of
Dσ , namely that D2σ (ξ )ξ = d

ds

∣∣∣
s=0

Dσ (esξ ) = d
ds

∣∣∣
s=0

Dσ (ξ ) = 0.
Furthermore, an application of the chain rule shows that

(ν ⊗ (B · ∇)ξ ) : M(ξ ) = ν · (B · ∇)(F(ξ )),

and we will from now on use this slightly shorter formulation for the third right-hand side integral of
(5.19).

By using (5.19) and plugging in the computations for the three right-hand side integrals as well as
the weak formulation of anisotropic mean curvature flow in (2.19), we obtain

∣∣∣∣∣
∫ T ′

0

∫
∂∗A(t)

1

μ(ν)
VB · νdHd−1dt

∫ T ′

0

∫
∂∗A(t)

div(F(ξ ))B · νdHd−1dt

+
∫ T ′

0

∫
∂∗A(t)

∂t (|ξ |ψ(|ξ |) Dσ (ξ )) · νdHd−1dt

∣∣∣∣∣
≤

∣∣∣∣∣ −
∫ T ′

0

∫
∂∗A(t)

∇B : (σ (ν)Id − ν ⊗ Dσ (ν)) dHd−1dt

+
∫ T ′

0

∫
∂∗A(t)

div(F(ξ ))B · νdHd−1dt

−
∫ T ′

0

∫
∂∗A(t)

ν · (B · ∇) (F(ξ )) dHd−1dt

−
∫ T ′

0

∫
∂∗A(t)

(ξ ⊗ (ν − ξ )) :
(
(∇B)M(ξ )T

)
dHd−1dt

∣∣∣∣∣
+ C

∫ T ′

0

E
[
χ (t)

∣∣ξ (t)
]
dt. (5.20)

It is now advisable to expand the first right-hand side integral and to add zero in order to isolate two
more errors controlled by the time-integrated relative entropy:

−
∫ T ′

0

∫
∂∗A(t)

∇B : (σ (ν)Id − ν ⊗ Dσ (ν)) dHd−1dt

= −
∫ T ′

0

∫
∂∗A(t)

σ (ν)divB dHd−1dt

+
∫ T ′

0

∫
∂∗A(t)

ν · (F(ν) · ∇) B dHd−1dt

= −
∫ T ′

0

∫
∂∗A(t)

(σ (ν) − F(ξ ) · ν) divB dHd−1dt

+
∫ T ′

0

∫
∂∗A(t)

(ν − ξ) · ((F(ν) − F(ξ )) · ∇) B dHd−1dt

https://doi.org/10.1017/S0956792524000226 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000226


European Journal of Applied Mathematics 57

−
∫ T ′

0

∫
∂∗A(t)

F(ξ ) · νdivB dHd−1dt

+
∫ T ′

0

∫
∂∗A(t)

ν · (F(ξ ) · ∇) B dHd−1dt

+
∫ T ′

0

∫
∂∗A(t)

ξ · ((F(ν) − F(ξ )) · ∇) B dHd−1dt. (5.21)

The first two integrals are controlled by
∫ T ′

0
E
[
χ (t)

∣∣ξ (t)
]
dt; in the case of the second integral this

follows from the local Lipschitz continuity of F.
We approach the last integral in (5.21) by an application of Taylor’s theorem and show that it cancels

with the second to last integral in (5.20). Indeed, one computes that

ξ · ((F(ν) − F(ξ )) · ∇)B − (ξ ⊗ (ν − ξ )) :
(
(∇B)M(ξ )T

)
= ξ · ((M(ξ )(ν − ξ )) · ∇) B − ξ · (∇B)M(ξ )T(ν − ξ )

+ ξ ·
(∫ 1

0

(1 − r) ((ν − ξ ) · ∇)M(rν + (1 − r)ξ )(ν − ξ )dr · ∇
)

B

= ξ · (∇B)
(
M(ξ ) − M(ξ )T

)
(ν − ξ )

+ ξ ·
(∫ 1

0

(1 − r) ((ν − ξ ) · ∇)M(rν + (1 − r)ξ )(ν − ξ )dr · ∇
)

B

=
(
ψ(|ξ |)

|ξ | +ψ ′(|ξ |)
)
ξ · (∇B) (Dσ (ξ ) ⊗ ξ − ξ ⊗ Dσ (ξ )) (ν − ξ )

+ ξ ·
(∫ 1

0

(1 − r) ((ν − ξ ) · ∇)M(rν + (1 − r)ξ )(ν − ξ )dr · ∇
)

B

=
(
ψ(|ξ |)

|ξ | +ψ ′(|ξ |)
)
(ξ · (∇B)Dσ (ξ )) ξ · (ν − ξ )

−
(
ψ(|ξ |)

|ξ | +ψ ′(|ξ |)
)
(Dσ (ξ ) · (ν − ξ )) ξ · (ξ · ∇)B

+ ξ ·
(∫ 1

0

(1 − r) ((ν − ξ ) · ∇)M(rν + (1 − r)ξ )(ν − ξ )dr · ∇
)

B, (5.22)

where now each summand is controlled by σ (ν) − |ξ |ψ(|ξ |)Dσ (ξ ) · ν by Lemma 5.4 (iii) and (vi). Here
we use that σ ∈ C3

(
R

d \ {0}).
Plugging in (5.21) and (5.22) into (5.20) yields

∣∣∣∣∣
∫ T ′

0

∫
∂∗A(t)

1

μ(ν)
VB · νdHd−1dt

∫ T ′

0

∫
∂∗A(t)

div(F(ξ ))B · νdHd−1dt

+
∫ T ′

0

∫
∂∗A(t)

∂t (|ξ |ψ(|ξ |) Dσ (ξ )) · νdHd−1dt

∣∣∣∣∣
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=
∣∣∣∣∣ −

∫ T ′

0

∫
∂∗A(t)

F(ξ ) · νdivB dHd−1dt

+
∫ T ′

0

∫
∂∗A(t)

ν · (F(ξ ) · ∇) B dHd−1dt

+
∫ T ′

0

∫
∂∗A(t)

div(F(ξ ))B · νdHd−1dt

−
∫ T ′

0

∫
∂∗A(t)

ν · (B · ∇) (F(ξ )) dHd−1dt

∣∣∣∣∣
+ C

∫ T ′

0

E
[
χ (t)

∣∣ξ (t)
]
dt. (5.23)

The four remaining surface integrals can be written as one integral involving the divergence of a
matrix field since

div (B ⊗ F(ξ ) − F(ξ ) ⊗ B)= div(F(ξ ))B + (F(ξ ) · ∇)B − div(B)F(ξ ) − (B · ∇)(F(ξ )).

As a result of an integration by parts and the symmetry relation div(div(a ⊗ b)) = div(div(b ⊗ a)), one
can then see that

−
∫ T ′

0

∫
∂∗A(t)

F(ξ ) · ν divB dHd−1dt

+
∫ T ′

0

∫
∂∗A(t)

ν · (F(ξ ) · ∇) B dHd−1dt

+
∫ T ′

0

∫
∂∗A(t)

div(F(ξ ))B · νdHd−1dt

−
∫ T ′

0

∫
∂∗A(t)

ν · (B · ∇) (F(ξ )) dHd−1dt

=
∫ T ′

0

∫
∂∗A(t)

ν · div (B ⊗ F(ξ ) − F(ξ ) ⊗ B) dHd−1dt

=
∫ T ′

0

∫
A(t)

div (div (B ⊗ F(ξ ) − F(ξ ) ⊗ B)) dxdt

= 0. (5.24)

Plugging in (5.24) into (5.23) yields (5.18).
In a last step, plugging in (5.16), (5.17) and (5.18) into (5.15) yields

E
[
χ (T ′)

∣∣ξ (T ′)
] ≤ E

[
χ (0)

∣∣ξ (0)
] + C

∫ T ′

0

E
[
χ (t)

∣∣ξ (t)
]
dt

− 1

4 maxSd−1 μ

∫ T ′

0

∫
∂∗A(t)

|V − B · ξ |2dHd−1dt.

This concludes the proof of Lemma 5.7.
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6. Conclusion

In this paper, we began by constructing solutions of the anisotropic Allen–Cahn equation using relatively
elementary arguments, relying on convexity for instance, for a naturally associated minimizing move-
ments scheme. With this, we showed that these solutions are precompact in an appropriate functional
space and, as the interface width vanishes, converge to a solution of anisotropic mean curvature flow.
In contrast to previous methods, our approach relies on control of a relative entropy, which quantifies
the distance between the sharp interface and smooth interface coming from the approximation. Having
access to the relative entropy naturally allows for further understanding of the BV-solution concept asso-
ciated with the anisotropic curvature flow. Precisely, we proved that solutions of the anisotropic mean
curvature flow, defined in terms of a distributional formulation of the curvature and an optimal energy
dissipation relation, actually possess a weak–strong uniqueness property: meaning that when classical,
smooth solutions exist, the weak solution with the same initial condition coincides with the smooth
solution. Future questions will involve further investigation of convergence in the multiphase setting
and obtaining quantitative convergence rates.
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