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1. Introduction. This paper is an outgrowth of studies related to the 
converse of the contraction mapping principle. A natural formulation of the 
converse statement may be stated as follows: "Let X be a complete metric 
space, and T be a mapping of X into itself such that for each x £ X, the 
sequence of iterates {J^x} converges to a unique fixed point œ £ X. Then there 
exists a complete metric in X in which T is a contraction." This is in fact true, 
even in a stronger sense, as may be seen from the following result of Bessaga (1). 

THEOREM A. Let X be an abstract set and T be a mapping of X into itself such 
that for each positive integer k, and each x f l , the equation Tkx = x implies 
x = co, the unique fixed point of T. Then for each X, 0 < X < 1, there exists a 
complete metric on X such that p(Tx, Ty) < Xp(x, y) for all x, y £ X. 

We are concerned here with further generalizations of Theorem A. Speci
fically, we ask whether there exists a metric on X in which mutually commuting 
mappings T\, r2 , . . . , Tn with common unique fixed point are simultaneoulsy 
contractions. Note that if 7\, 7^, . . . , Tn are contractions, then every element 
of the commutative semi-group generated by T\, T2, . . . , Tn is again a con
traction. In this way, we may extend the concept of a contraction to the 
concept of a contractive semi-group ©. We first obtain necessary and sufficient 
conditions for © to be contractive in terms of the existence of certain level 
functions on X. Sufficient conditions on © are also given for @ to be contractive. 
If © is generated by a finite number of mutually commuting mappings with 
common unique fixed point, our result reads (cf. 3): 

THEOREM B. Let X be an abstract set with n mutually commuting mappings 
Ti, T2y . . . , Tn defined on X into itself such that each iteration TV1. . . Tn

kn 

(where k\, . . . , kn are non-negative integers not all equal to zero) possesses a 
unique fixed point which is common to every choice of k\, . . . , kn. Then for each 
X G (0,1), there exists a complete metric ponX such that p(Ttx, Tty) < Xp (x, y) 
for 1 < i < n and for all x, y G X. 

Our method of proof is based upon a "Hahn-Banach extension" type 
argument, whereas Bessaga's proof is purely set-theoretic. 
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In §2, we introduce the basic notation and terminology needed for all later 
discussions. Section 3 introduces the concept of a contractive semi-group ©, 
and presents a necessary and sufficient condition for © to be contractive. The 
main theorem is proved in §4 where sufficient conditions are imposed on © to 
ensure that it be contractive. This result is then applied in §5 to prove Theorem 
B. Finally, we make several remarks which lead to questions for further 
investigation. 

2. Definitions and notation. Let X be a non-empty abstract set and © 
be a commutative semi-group of operators on X into itself, containing the 
identity I. © is said to be a contractive {completely contractive) semi-group on X 
if there exists a metric (complete metric) p on X such that for each S G ©, 
p(Sx, Sy) < X(5)p(x, y) for all x, y G X where 0 < \(S) < 1 for S ^ I and 
\(I) = 1. We say that © is a uniformly contractive (uniformly completely 
contractive) semi-group on X if there exists a real number X such that 
\(S) < X < 1 for all 5 G ©, S j£ I. In all later discussions we call © contrac
tive, completely contractive, or uniformly contractive for short. In order to 
avoid dealing with the trivial contractive semi-group © = {7}, we assume that 
© contains at least one element T 9e I. 

X\ C X is called an ^-invariant set if <£>Xi C Xi. Obviously X and the 
empty set 0 are ©-invariant sets. Consider the set [a] = ©{a} = {x: x = Ta 
for some T G ©}. Clearly, ©[a] Ç [a], and [a] is the smallest ©-invariant set 
containing a. Note also that arbitrary unions and intersections preserve the 
©-invariance. A subset ©i Ç © is called a left ideal if ©©i CI ©1# 

A function X is called contractive on © if 0 < X(5) < 1 for all S G 6 , 5 ^ 7, 
and X(7) = 1. The function X is called uniformly contractive on ©, if there 
exists a X such that X(5) < X < 1 for all 5 G ©, S ^ 7. A function p is called a 
level function with respect to X if: 

(i) its domain of definition F is an ©-invariant set, 
(ii) 0 < p(x) < oo for all x G F, 

(iii) p(Tx) < \(T)p(x) for all x G F, 
(iv) p(xi) = p(x2) = 0 implies Xi = x2. 

We call a function <r a length function on © if it satisfies the conditions: 

(i) 0 < <T(S) < 1 for 5 ^ I and <r(I) = 1, 
(ii) <r(ST) < <r(S)a(T), 

(iii) <r(Si) = cr(52) = 0 implies Si = 52. 

A length function on © is certainly contractive on © and may also be regarded 
as a level function on ©. 

We shall use the following terminology for subsets of an arbitrary partially 
ordered set P. By a transverse set we mean a subset of P whose elements are 
pairwise mutually incomparable. A subset J of P is called an end if x G P and 
x > y for some y G / implies x G / . An end J is called principal if it is of the 
form {x: x G P, x > ;y} for some fixed element y £ P, and it is denoted by (y). 
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The element y is called the generator of the principal end J. For other ter
minology on partially ordered sets not explained here, we refer to Birkhoff (2). 

3. Contractive semi-groups. We first propose to prove a necessary and 
sufficient condition for © to be contractive. 

THEOREM 1. © is contractive on X if and only if there exists a level function 
with respect to a contractive function X on the full set X. 

Proof. X is certainly an ©-invariant set. Since © is contractive on X, for 
each T € ©, T ^ 7, and for each x Ç X, we have 

^'^)<1fx (r
)) 

for all non-negative integers p. For each T Ç ©, T ^ 7, {p(Tnxy x)} is a 
Cauchy sequence. Denote the limit of this sequence by pT(x)> We claim that 
this limit is independent of T, i.e. pT(x) = psipc) for each pair 5, T £ ©, 
S, T ?£ I. Note that for S, T ?* I, 

|p(rw*, x) - P (5 \ , *)| < p(5wx, r \ ) 
< p(Swx, ST"*) + P ( S T \ , 7 \ ) 
< Xw(S)p(x, Tnx) + X n (7 ) P (5 \ , x) 

< X (5) j _ x ( r ) + X ( / - ) j _ x ( 5 ) • 

Since the right-hand side tends to zero as n tends to infinity, this shows that 
pT(x) = Ps(x) as desired. We may now denote the common limit by p(x), i.e. 

p(x) = lim p(Tnx, x) 
n->co 

where T 6 ©, J1 ^ I. Obviously 0 < p(x) < °o. Furthermore, 

p(7x) = lim p(T\ Tx) < X(7) lim p(Tn-\ x) = X(7)p(x). 

Finally, for each pair xlf x2, € Xy we have: 

p(xi, x2) < p(xi, 7wxi) + p(Tnxu Tnx2) + p(Tnx2, x2) 
< p(xb 7wXi) + \n(T)p(xu x2) + p(Tnx2, x2). 

In particular, by choosing T ^ 7 (hence 0 < X(7) < 1) and letting n tend to 
infinity, we obtain that p(xi) = p(x2) = 0 implies Xi = x2. 

Conversely, let p(x) be a level function with respect to a contractive function 
X. Define a metric p on X by: 

~A„ ^ _ [P(X) + p(y) îîx^y, p(x> y) = A •* 
v |_ 0 if x = y. 

from which it is easily seen that © is contractive. 

Repeating the arguments in Theorem 1 with X replacing X(7) throughout, 
we obtain: 
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THEOREM 2. © is uniformly contractive if and only if there exists a level function 
defined on the full set X with respect to a uniformly contractive function. 

COROLLARY. If © is uniformly contractive with respect to a \ G (0, 1), then it 
is also uniformly ocntractive with respect to any other p, G (0, 1). 

The above corollary shows that the definition of uniformly contractive 
semi-group is actually independent of the uniformly contractive function X. 
The following result characterizes the completely contractive semi-groups. 

THEOREM 3. © is completely contractive if and only if © is contractive and there 
exists an element œ G X such that Sco = co for some S G ©, S 9e 7. 

Proof. Let © be completely contractive. Choose S G ©, S ^ 7. There exists, 
by the contraction mapping principle, an element co G X such that Sco = co. 
Conversely, assume that © is contractive and that there exists co G X such 
that Sco = co for some S G @, S 9e 7. Construct a level function p on X and 
the corresponding metric p as defined in Theorem 1. The value p(co) of this 
level function at co must be zero, since X(S) ^ landp(co) = p(Sco) < X(S)p(co). 
Let {xn} be a Cauchy sequence in X with respect to p. If p(xn) tends to zero as 
n tends to infinity, then the sequence {xn} has the limit co, since 

p(xn, co) < p(xn) + p(co) = p(xn). 
On the other hand, if p{xn) does not tend to zero, then there exists a sub
sequence {yn) Q {xn} such that p(yn) > à > 0. By assumption, there exists an 
N > 0 such that p(yn, ym) < ô for n, m > N. This implies that yn = ym for 
all n, m ^ N, and the subsequence {yn\ has a limit, namely 3^. As a Cauchy 
sequence, the full sequence has the same limit. 

Theorem 3 shows that completely contractive semi-groups are essentially 
contractive semi-groups. For any non-completely contractive semi-group © we 
may always add the point co to X and define Tco = co for all T G © to make it 
completely contractive. 

THEOREM 4. If © is contractive on X, then there exists a length function 
defined on ©. 

Proof. Define 

a(Q\ = P(5X, Sy) 
S£S p(x,y) 

If S 5* J, then 0 < a(S) < X(5) < 1. If 5 = 7, then <T(S) = 1. For any 
S, T G © and x ^ y, we have p(STx, STy) < o(S)p(Tx, Ty) for Tx ^ T;y. 
But this inequality obviously holds even if Tx = Ty. Moreover, 

p(STx,STy) < <J(S)LT(T)P(X, y). 

Hence by dividing through by p (x, 3/), we easily conclude that <r (ST) < a (S)a (T). 
Finally, assume that 

(7(50 = cr(S2) = 0; 
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then 

p(5i x, Si y) = p(52 x, S2y) = 0 for all x, y 6 X, x ^ 3/. 

This implies the existence of o>i, co2 such that Si x = coi and S2 x = co2 for all 
x 6 X. Now for any x G I , we have 

p(5i x, S2 x) < p(5i x, Si S2 x) + p(Si S2 x, S2 x) = p(coi, coi) + p(co2, co2) = 0. 

Thus o"(Si) = a(S2) = 0 implies that Si = S2. 
We observe that if © is contractive (uniformly contractive) on X, then © 

is also contractive (uniformly contractive) on itself. The onverse is obviously 
not true. 

4. The main theorem. In this section, we prove our main result, which 
provides a set of sufficient conditions on © for it to be contractive. 

THEOREM 5. Suppose © satisfies the conditions: 
(a) for each T £ ©, T ^ I, Txi = Xi and Tx2 = x2 imply that Xi = x2, 
(b) there exists a length function a defined on ©, 
(c) for any given left ideal 3 Q ©, there exists a finite set 33 Q 3 such that 

to each T £ 3 /Aere corresponds a U £ 33 satisfying T = US for some S G © 
and<r(T) = a([/)cr(S). 
TT^w © is contractive. 

Note that conditions (a) and (b) have been proved to be necessary and are 
easily seen to be independent of each other. Before proving Theorem 5, we 
need the following two lemmas. 

LEMMA 1. Suppose that pi, p2 are two level functions defined with respect to the 
same contractive function X and let Xiy X2 be their respective domains of definition. 
If there exist positive constants cu c2 such that C\ pi(x) <£ 2 p 2 (x) for all 
x £ Xi P\ X2, then pi can be extended to Xx U X2. 

Proof. Define the function p on I i U X2 by 

!

pi(x) if x G Xi, 

--P2(x) i f x £ X 2 , x £ X i . 

Conditions (i), (ii) of the definition of a level function are obviously satisfied. 
Condition (iii) is also obvious if x £ Xi or Tx £ X\. Suppose now that x £ X2l 

x £ Xi, and Tx £ Xi\ then 

x(r)p(x) = x(r) — p2(x) > — p2(Tx) > pi(rx) = P(Tx). 
C\ C\ 

Finally, to prove that p(xi) = p(x2) = 0 implies Xi = x2, we need to prove 
only that pi(xi) = p2(x2) = 0 implies Xi = x2. Choose T £ ©, T j£ I\ then 
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Pi(Txi) < X(r)pi(xi) = Oand hence Txi = x\. Similarly Tx% = x2. By assump
tion (a), we conclude that Xi = x2. 

LEMMA 2. Suppose that © satisfies the hypotheses of Theorem 5. Then there 
exists, for each a G X, a level function on [a] with respect to the length function <r. 

Proof. Define for x G [a], 

p(x) = inf o-(r), 

where %x = {T: Ta = x}. Since x G [a] implies that 2ÏZ is non-empty, we have 
0 < p(x) < oo. Next we note that 

p(Sx) = inf CT(U) < inf a(ST) < a(S) inf <x(T) = cr(5)p(x). 

Finally, let x f [a], p(x) = 0. Consider the invariant set 3v = ©31* and 
denote by 33s the finite set corresponding to $x according to assumption (c). 

Suppose %x 7* 33x; then there exists a Z\ G 21» such that 7\ = £7i5i where 
f/i G 33 ,̂ 5i 6 ©, and Si ^ / . Since U\ G 33z £ 3a:» there exists T2 G 21a, such 
that U\ = r 2 5 2 where 5 2 G ©. Since cr(5i52) < (7(5i)a(52) < <J(5I) < 1, then 
SiS2 5e T Now x = T\a = UiSia = r 2 5 i 5 2 a = 5 i 5 2 x . For any T G ©, 
note that TS±S2x = Tx = 5 i5 2 (Tx) . Hence by assumption (a), Tx = x for 
all r e ® . 

The same conclusion can be reached in the case when %x — 33x. Indeed, 
since 33* is finite, there exists an S G 2ïz such that <r(S) = 0. For any Y G ©, 
cr(Sr) < cr(5)a(r) = 0. Thus 5 7 = 5. Therefore x = 5a = STa = Tx. If 
now p(xi) = p(x2) = 0, then Tx\ = Xi and 7x2 = x2 for all T G ©. In par
ticular, by choosing r ^ 7, we conclude from assumption (a) that Xi = x2. 

Proof of Theorem 5. Let Xi be an invariant set in X and pi be a level function 
on Xi defined with respect to the length function <r. Suppose a G Xx. We 
claim that pi can be extended to Xi W [a]. Denote by p2 the level function 
defined on [a] according to Lemma 2. Consider the set 

3 = {T: Te ©, Ta G I i n [ a ] | . 

Clearly, 3 is a left ideal. Let 33 be the finite set corresponding to S according 
to assumption (c). In addition, let 

$ ' = {U: U e 33, Pi(Ua) ^ 0} and 33" = {U: U G 33, p2(E/a) ^ 0}. 

Define 

Ci = min p2(?7a) and c2 = maxpi(£/a). 

Choose x G I i H [Û] and consider the sets SI*, 332, and 3^ as introduced in 
Lemma 2. We first note that if 33' = 0, then for each T G 21*, T = US for 
some f/ G 33, we have pi(x) = pi(Ta) = pi(USa) < <r(S)pi(Ua) = 0. Now 
Pi(x) = 0 implies that Sx = x for all 5 Ç @, since pi(5x) < X(5)pi(x) for all 
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S 9e I. Choose any S 9e I; we conlude from p2(x) = p2(Sx) < \(S)p2(x) that 
Pz(x) = 0. Hence in this case the inequality cx p\(x) < c2 p2(x) holds in a trivial 
way. A similar conclusion holds if 53" = 0. We may now assume that $8' 9e 0 
and 33" 9e 0. It is readily seen from the above that pi(x) = 0 if and only if 
pi{x) = 0. So, we may also assume that p2(x) 9e 0. Suppose SI* 9e 33*; then by 
repeating the same argument as in Lemma 2, we conclude that Tx = x for all 
T G @; in particular if T 9^ / , then P2(x) = p2(Tx) < a(T)p2(x) implies that 
P2(x) = 0. Again, the desired inequality holds trivially. Suppose now that 
31a: = 33x; then we may choose T G Sïx such that p2<x) = <r(T). Note that 
P2(#) 7̂  0 implies that p2{Ua) 9^ 0, and from the definition of p2, p2(a) = 1. 
For otherwise there exists V 9e- I such that Va = a, and thus Sa = a for all 
5 G ©. In particular, a = Ta = x £ Xi, contradicting a # Xi. Thus 

ciPi(x) = Cipi(USa) < Cia(S)pi(Ua) < p2{Ua)o{S)pi(Ua) 

< a(S)a(U)p2(a)pi(Ua) < c2a(T)p2(a) = c2a(T) = c2p2(*). 

We then apply Lemma 1 to extend pi over Xi U [a]. 
Let $ be the family of all level functions defined with respect to the length 

function cr. $ is non-empty for it contains the level function on the empty 
set 0. Let Xp be the domain of definition corresponding to p G $. We say 
that pi < p2 if (i) Xn C XP2, (ii) p1 = p2 on XP1. Clearly this defines a partial 
ordering on $. Suppose now that ^ is a totally ordered subset of <£. Define a 
level function p on Wp6* Xp by p{x) = p(x) if x G Xp for some p £ "&. Since S£ 
is totally ordered, this definition of p is unambiguous, p is clearly an upper 
bound for ^ and thus $ satisfies the hypothesis of Zorn's lemma. Therefore, 
there must exist a maximal element pM G <£>. We claim that X = XPM. For 
otherwise there exists a G X, a G XPM and we may extend pM to XPM W [a], 
contradicting the maximality of pM. Knowing the existence of a level function 
on the full set X, we conclude by Theorem 1 that © is contractive. 

We remark that if the length function a on @ is in addition uniformly 
contractive on @, then Theorem 5 together with Theorem 2 implies that © is 
uniformly contractive on X. 

5. Semi-groups generated by a finite number of elements. Let X be 
a non-empty abstract set and 7\, T2, . . . , Tn be mutually commuting mappings 
defined on X into itself. Denote by © the commutative semi-group containing 
the identity which is generated by J\ , T2, . . . , 7"n. Obviously, we may restrict 
ourselves to the case where all the 7Ys are different from the identity. In this 
case, there exists a set of necessary and sufficient conditions for © to be 
uniformly contractive. In particular, assumptions (a) and (b) of Theorem 5 
are both necessary and sufficient. In fact, we can prove that @ is uniformly 
contractive under assumption (a) and only part of assumption (b). 

Let Q be the product Nn of the additive semi-group N of natural numbers 
with its usual cardinal product partial ordering. It is not difficult to see that 
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every transverse subset of Q is finite. Obviously, Q forms a semi-group with 
respect to vector addition, and the mapping 

7 / 7 7 \ rpk rp l \ rp kn 

defines a homomorphism of Q into ©. Denote 

<P&) = E ki for all k G Q. 

With these preliminary remarks, we proceed to prove Theorem B in the 
following form : 

THEOREM 6. Suppose © satisfies the conditions: 
(a) for each T G ©, T ^ / , Txi = Xi and Tx2 = x2 imply xi = x2, 
(b) for each pair S, T G ©, S r = / implies S = T = I. 

Then © is uniformly contractive. > 

Proof. Assumption (a) of Theorem 5 is satisfied by hypothesis. For each 
S G ©, let i£(S) = {p:p e Q, Tp = S}. Choose any X G (0, 1), and define 

a(S) = inf \ ^ } . 

Clearly 0 < *(S) < X < 1 for all S ^ I, and a (I) = 1. Moreover 

a {ST) = inf X*U) < inf inf X*(p+e) = inf X*(p) inf X*** = <r(S)a(T). 
k£K(ST) p£K(S) q£K(T) p£K(S) q£K(T) 

For any S G ©, if K(S) as a subset of Q is transverse (hence finite), then 

a(S) = min X*(/fc) > 0. 

On the other hand, if K(S) is not transverse, then there exist p, q G K(S), 
p > q. Now Tp~Q(Sx) = Sx for all x f l , and Tp~q ^ / . Again by assumption 
(a), we have Sx = 0 for all x G X. Hence <r(S) = 0 implies that Sx = 6 for all 
x G X. Now suppose that <r(Si) = cr(S2) = 0; then there exist 0i, 62 such that 
Si x = 0i and S2x = 62 for all x £ X. Since 0i = Si S2 0X = S2 Si 0i = 02, we 
have Si = S2. Thus <r(S) satisfies (b) of Theorem 5. 

We next show that assumption (c) of Theorem 5 is also satisfied. Let 3 be a 
left ideal in ©. Consider the set J = {p: p G Q, Tp G 3 } , which is clearly an 
end in Q. It is easy to see that J = U p € S (p), where 

B = {p: p G / , and if g G / and q K p, then g = £} 

and ^ is a transverse set. 
Let % = {Tp: for some £ 6 £ } . Obviously 53 Ç 3 and 33 is finite. For 

r G 3 , o-(r) = 0, choose any U G S3, and observe that UT = T and 
a(T) = a(T)<r(U). On the other hand, if <r(T) 9* 0, we may choose p G # ( r ) 
such that 

a(T) = X ^ = X*(r)+*(p-r) > cr(C7)cr(5)f 
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where 5 = Tv~r G ©. Since the reverse inequality always holds, we conclude 
that a(T) = <r(U)<r(S). Now the set 33 C 3 satisfies the condition required 
by assumption (c) of Theorem 5. Applying Theorems 5 and 2, we conclude 
that © is uniformly contractive. The corollary follows immediately from 
Theorem 3. 

COROLLARY. Let X and © be given as in Theorem 6. Suppose there exists an 
element w f l , such that Sœ = œ for some S G @, 5 9e I. Then © is uniformly 
completely contractive. 

6. Remarks. We first remark that Theorem 6 cannot be extended to the 
corresponding case where © is generated by a countably infinite number of 
mappings. To see this, we consider the following example. Let X = [0, °° ) and 
Tt x = x + 1/i, i = 1, 2, 3, . . . . Clearly X and the commutative semi-group 
© generated by all the TVs satisfy the hypothesis of Theorem 6. But © is not 
uniformly contractive. Assume the contrary; then by Theorem 3 there exists 
a level function p on X such that p{Tx) < Ap(x) for all x G X and all T G ©, 
T 9e I, where 0 < X < 1. Since °o g X, we have therefore p(x) 9e 0 for all 
x G X. For any ra, we may write p(T2x) = p(T2m

mx) < \mp(x). Letting w 
tend to infinity, we obtain the desired contradiction. Nevertheless, in this case 
© is contractive on X. Indeed, p(x) = \x, for any AG (0, 1), is a level function 
on X. (Note that in this case the contractive function is clearly not uniform.) 

Let X be a metrizable space and T be a mapping of X into itself such that 
for each positive integer k and each x £ X, the equation Tkx = x implies 
x = co, the unique fixed point of T. We now ask: Does there exist a metric 
in which T is a contraction and which at the same time reproduces the original 
topology? The answer is negative even in case X is compact. Let X be any 
compact metrizable space, and T be a mapping of X into itself which possesses 
a unique inverse. In this case, we claim that there does not exist a metric on X 
which satisfies the above-mentioned requirements unless X is only a singleton 
set. Assume the contrary, i.e. there exists a metric p on X such that 
p(Tx, Ty) < Xp(x, y) for all x, y G X and p induces the given topology on X. 
Since X is compact in the original tooplogy, it is also compact in the metric 
topology induced by p. Denote by D the diameter of X with respect to p, i.e. 

D = sup p(x, y). 
x,y£X 

Choose x, y G X, such that x = y. Note that p(x, y) < \np(T~nx, T~ny) < ÀWZ>. 
Letting # tend to infinity, we arrive at the desired contradiction. 

We finally list two open questions. 
(i) What is a set of necessary and sufficient conditions for © to be con

tractive. (This is not known even in the case when © is generated by a count-
ably infinite number of mappings.) 

(ii) Let X be any compact metrizable space and T a mapping of X into 
itself satisfying the condition imposed in the previous paragraph. What 
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additional conditions are sufficient to ensure the existence of a metric that 
will induce the original topology and at the same time make the mapping T a 
contraction. (This is not known even when X = [0, 1].) 

Acknowledgment. The author wishes to thank the referee for his con
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