# GENERALIZATIONS OF THE CONVERSE OF THE CONTRACTION MAPPING PRINCIPLE 

JAMES S. W. WONG

1. Introduction. This paper is an outgrowth of studies related to the converse of the contraction mapping principle. A natural formulation of the converse statement may be stated as follows: "Let $X$ be a complete metric space, and $T$ be a mapping of $X$ into itself such that for each $x \in X$, the sequence of iterates $\left\{T^{n} x\right\}$ converges to a unique fixed point $\omega \in X$. Then there exists a complete metric in $X$ in which $T$ is a contraction." This is in fact true, even in a stronger sense, as may be seen from the following result of Bessaga (1).

Theorem A. Let $X$ be an abstract set and $T$ be a mapping of $X$ into itself such that for each positive integer $k$, and each $x \in X$, the equation $T^{k} x=x$ implies $x=\omega$, the unique fixed point of $T$. Then for each $\lambda, 0 \leqslant \lambda<1$, there exists a complete metric on $X$ such that $\rho(T x, T y) \leqslant \lambda \rho(x, y)$ for all $x, y \in X$.

We are concerned here with further generalizations of Theorem A. Specifically, we ask whether there exists a metric on $X$ in which mutually commuting mappings $T_{1}, T_{2}, \ldots, T_{n}$ with common unique fixed point are simultaneoulsy contractions. Note that if $T_{1}, T_{2}, \ldots, T_{n}$ are contractions, then every element of the commutative semi-group generated by $T_{1}, T_{2}, \ldots, T_{n}$ is again a contraction. In this way, we may extend the concept of a contraction to the concept of a contractive semi-group $\mathfrak{S}$. We first obtain necessary and sufficient conditions for $\mathfrak{S}$ to be contractive in terms of the existence of certain level functions on $X$. Sufficient conditions on $\mathfrak{S}$ are also given for $\mathfrak{S}$ to be contractive. If $\mathfrak{S}$ is generated by a finite number of mutually commuting mappings with common unique fixed point, our result reads (cf. 3):

Theorem B. Let $X$ be an abstract set with $n$ mutually commuting mappings $T_{1}, T_{2}, \ldots, T_{n}$ defined on $X$ into itself such that each iteration $T_{1}{ }^{k_{1}} \ldots T_{n}{ }^{k_{n}}$ (where $k_{1}, \ldots, k_{n}$ are non-negative integers not all equal to zero) possesses a unique fixed point which is common to every choice of $k_{1}, \ldots, k_{n}$. Then for each $\lambda \in(0,1)$, there exists a complete metric $\rho$ on $X$ such that $\rho\left(T_{i} x, T_{i} y\right) \leqslant \lambda \rho(x, y)$ for $1 \leqslant i \leqslant n$ and for all $x, y \in X$.

Our method of proof is based upon a "Hahn-Banach extension" type argument, whereas Bessaga's proof is purely set-theoretic.

[^0]In §2, we introduce the basic notation and terminology needed for all later discussions. Section 3 introduces the concept of a contractive semi-group $\mathfrak{S}$, and presents a necessary and sufficient condition for $\mathfrak{S}$ to be contractive. The main theorem is proved in $\S 4$ where sufficient conditions are imposed on $\mathfrak{\Im}$ to ensure that it be contractive. This result is then applied in $\S 5$ to prove Theorem B. Finally, we make several remarks which lead to questions for further investigation.
2. Definitions and notation. Let $X$ be a non-empty abstract set and $\mathbb{S}$ be a commutative semi-group of operators on $X$ into itself, containing the identity $I$. $\subseteq$ is said to be a contractive (completely contractive) semi-group on $X$ if there exists a metric (complete metric) $\rho$ on $X$ such that for each $S \in \mathbb{S}$, $\rho(S x, S y) \leqslant \lambda(S) \rho(x, y)$ for all $x, y \in X$ where $0 \leqslant \lambda(S)<1$ for $S \neq I$ and $\lambda(I)=1$. We say that $\mathbb{S}$ is a uniformly contractive (uniformly completely contractive) semi-group on $X$ if there exists a real number $\lambda$ such that $\lambda(S) \leqslant \lambda<1$ for all $S \in \mathbb{S}, S \neq I$. In all later discussions we call $\subseteq$ contractive, completely contractive, or uniformly contractive for short. In order to avoid dealing with the trivial contractive semi-group $\mathfrak{S}=\{I\}$, we assume that $\mathfrak{S}$ contains at least one element $T \neq I$.
$X_{1} \subseteq X$ is called an $\subseteq$-invariant set if $\subseteq X_{1} \subseteq X_{1}$. Obviously $X$ and the empty set $\emptyset$ are $\subseteq$-invariant sets. Consider the set $[a]=\mathfrak{S}\{a\}=\{x: x=T a$ for some $T \in \mathbb{S}\}$. Clearly, $\mathfrak{S}[a] \subseteq[a]$, and $[a]$ is the smallest $\mathfrak{S}$-invariant set containing $a$. Note also that arbitrary unions and intersections preserve the $\mathfrak{S}$-invariance. A subset $\mathfrak{S}_{1} \subseteq \mathfrak{S}$ is called a left ideal if $\mathfrak{S}_{1} \subseteq \mathfrak{S}_{1}$.

A function $\lambda$ is called contractive on $\subseteq$ if $0 \leqslant \lambda(S)<1$ for all $S \in \Subset, S \neq I$, and $\lambda(I)=1$. The function $\lambda$ is called uniformly contractive on $\mathbb{S}$, if there exists a $\lambda$ such that $\lambda(S) \leqslant \lambda<1$ for all $S \in \mathbb{S}, S \neq I$. A function $\rho$ is called a level function with respect to $\lambda$ if:
(i) its domain of definition $Y$ is an $\subseteq$-invariant set,
(ii) $0 \leqslant \rho(x)<\infty$ for all $x \in Y$,
(iii) $\rho(T x) \leqslant \lambda(T) \rho(x)$ for all $x \in Y$,
(iv) $\rho\left(x_{1}\right)=\rho\left(x_{2}\right)=0$ implies $x_{1}=x_{2}$.

We call a function $\sigma$ a length function on $\subseteq$ if it satisfies the conditions:
(i) $0 \leqslant \sigma(S)<1$ for $S \neq I$ and $\sigma(I)=1$,
(ii) $\sigma(S T) \leqslant \sigma(S)_{\sigma}(T)$,
(iii) $\sigma\left(S_{1}\right)=\sigma\left(S_{2}\right)=0$ implies $S_{1}=S_{2}$.

A length function on $\mathfrak{S}$ is certainly contractive on $\mathfrak{S}$ and may also be regarded as a level function on $\mathfrak{\subseteq}$.

We shall use the following terminology for subsets of an arbitrary partially ordered set $P$. By a transverse set we mean a subset of $P$ whose elements are pairwise mutually incomparable. A subset $J$ of $P$ is called an end if $x \in P$ and $x \geqslant y$ for some $y \in J$ implies $x \in J$. An end $J$ is called principal if it is of the form $\{x: x \in P, x \geqslant y\}$ for some fixed element $y \in P$, and it is denoted by $\langle y\rangle$.

The element $y$ is called the generator of the principal end $J$. For other terminology on partially ordered sets not explained here, we refer to Birkhoff (2).
3. Contractive semi-groups. We first propose to prove a necessary and sufficient condition for $\mathfrak{S}$ to be contractive.

Theorem 1. S is contractive on $X$ if and only if there exists a level function with respect to a contractive function $\lambda$ on the full set $X$.

Proof. $X$ is certainly an $\mathfrak{S}$-invariant set. Since $\mathfrak{\Im}$ is contractive on $X$, for each $T \in \mathfrak{S}, T \neq I$, and for each $x \in X$, we have

$$
\rho\left(T^{p} x, x\right) \leqslant \frac{\rho(T x, x)}{1-\lambda(T)}
$$

for all non-negative integers $p$. For each $T \in \mathbb{S}, T \neq I,\left\{\rho\left(T^{n} x, x\right)\right\}$ is a Cauchy sequence. Denote the limit of this sequence by $\rho_{T}(x)$. We claim that this limit is independent of $T$, i.e. $\rho_{T}(x)=\rho_{S}(x)$ for each pair $S, T \in \mathbb{S}$, $S, T \neq I$. Note that for $S, T \neq I$,

$$
\begin{aligned}
\mid \rho\left(T^{n} x, x\right) & -\rho\left(S^{n} x, x\right) \mid \leqslant \rho\left(S^{n} x, T^{n} x\right) \\
& \leqslant \rho\left(S^{n} x, S^{n} T^{n} x\right)+\rho\left(S^{n} T^{n} x, T^{n} x\right) \\
& \leqslant \lambda^{n}(S) \rho\left(x, T^{n} x\right)+\lambda^{n}(T) \rho\left(S^{n} x, x\right) \\
& \leqslant \lambda^{n}(S) \frac{\rho(x, T x)}{1-\lambda(T)}+\lambda^{n}(T) \frac{\rho(S x, x)}{1-\lambda(S)} .
\end{aligned}
$$

Since the right-hand side tends to zero as $n$ tends to infinity, this shows that $\rho_{T}(x)=\rho_{S}(x)$ as desired. We may now denote the common limit by $\rho(x)$, i.e.

$$
\rho(x)=\lim _{n \rightarrow \infty} \rho\left(T^{n} x, x\right)
$$

where $T \in \mathfrak{S}, T \neq I$. Obviously $0 \leqslant \rho(x)<\infty$. Furthermore,

$$
\rho(T x)=\lim _{n \rightarrow \infty} \rho\left(T^{n} x, T x\right) \leqslant \lambda(T) \lim _{n \rightarrow \infty} \rho\left(T^{n-1} x, x\right)=\lambda(T) \rho(x) .
$$

Finally, for each pair $x_{1}, x_{2}, \in X$, we have:

$$
\begin{aligned}
\rho\left(x_{1}, x_{2}\right) & \leqslant \rho\left(x_{1}, T^{n} x_{1}\right)+\rho\left(T^{n} x_{1}, T^{n} x_{2}\right)+\rho\left(T^{n} x_{2}, x_{2}\right) \\
& \leqslant \rho\left(x_{1}, T^{n} x_{1}\right)+\lambda^{n}(T) \rho\left(x_{1}, x_{2}\right)+\rho\left(T^{n} x_{2}, x_{2}\right) .
\end{aligned}
$$

In particular, by choosing $T \neq I$ (hence $0 \leqslant \lambda(T)<1$ ) and letting $n$ tend to infinity, we obtain that $\rho\left(x_{1}\right)=\rho\left(x_{2}\right)=0$ implies $x_{1}=x_{2}$.

Conversely, let $\rho(x)$ be a level function with respect to a contractive function $\lambda$. Define a metric $\tilde{\rho}$ on $X$ by:

$$
\tilde{\rho}(x, y)=\left[\begin{array}{cc}
\rho(x)+\rho(y) & \text { if } x \neq y, \\
0 & \text { if } x=y .
\end{array}\right.
$$

from which it is easily seen that $\mathfrak{\Im}$ is contractive.
Repeating the arguments in Theorem 1 with $\lambda$ replacing $\lambda(T)$ throughout, we obtain:

Theorem 2. S is uniformly contractive if and only if there exists a level function defined on the full set $X$ with respect to a uniformly contractive function.

Corollary. If $\subseteq$ is uniformly contractive with respect to $a \lambda \in(0,1)$, then it is also uniformly ocntractive with respect to any other $\mu \in(0,1)$.

The above corollary shows that the definition of uniformly contractive semi-group is actually independent of the uniformly contractive function $\lambda$. The following result characterizes the completely contractive semi-groups.

Theorem 3. S is completely contractive if and only if $\mathfrak{S}$ is contractive and there exists an element $\omega \in X$ such that $S \omega=\omega$ for some $S \in \mathbb{S}, S \neq I$.

Proof. Let $\mathbb{S}$ be completely contractive. Choose $S \in \mathbb{S}, S \neq I$. There exists, by the contraction mapping principle, an element $\omega \in X$ such that $S \omega=\omega$. Conversely, assume that $\mathbb{S}$ is contractive and that there exists $\omega \in X$ such that $S \omega=\omega$ for some $S \in \mathbb{S}, S \neq I$. Construct a level function $\rho$ on $X$ and the corresponding metric $\tilde{\rho}$ as defined in Theorem 1. The value $\rho(\omega)$ of this level function at $\omega$ must be zero, since $\lambda(S) \neq 1$ and $\rho(\omega)=\rho(S \omega) \leqslant \lambda(S) \rho(\omega)$. Let $\left\{x_{n}\right\}$ be a Cauchy sequence in $X$ with respect to $\tilde{\rho}$. If $\rho\left(x_{n}\right)$ tends to zero as $n$ tends to infinity, then the sequence $\left\{x_{n}\right\}$ has the limit $\omega$, since

$$
\tilde{\rho}\left(x_{n}, \omega\right) \leqslant \rho\left(x_{n}\right)+\rho(\omega)=\rho\left(x_{n}\right) .
$$

On the other hand, if $\rho\left(x_{n}\right)$ does not tend to zero, then there exists a subsequence $\left\{y_{n}\right\} \subseteq\left\{x_{n}\right\}$ such that $\rho\left(y_{n}\right) \geqslant \delta>0$. By assumption, there exists an $N \geqslant 0$ such that $\tilde{\rho}\left(y_{n}, y_{m}\right)<\delta$ for $n, m \geqslant N$. This implies that $y_{n}=y_{m}$ for all $n, m \geqslant N$, and the subsequence $\left\{y_{n}\right\}$ has a limit, namely $y_{N}$. As a Cauchy sequence, the full sequence has the same limit.

Theorem 3 shows that completely contractive semi-groups are essentially contractive semi-groups. For any non-completely contractive semi-group $\mathbb{S}$ we may always add the point $\omega$ to $X$ and define $T \omega=\omega$ for all $T \in \mathbb{S}$ to make it completely contractive.

Theorem 4. If $\mathfrak{S}$ is contractive on $X$, then there exists a length function defined on $\mathfrak{S}$.

Proof. Define

$$
\sigma(S)=\sup _{x \neq y} \frac{\rho(S x, S y)}{\rho(x, y)}
$$

If $S \neq I$, then $0 \leqslant \sigma(S) \leqslant \lambda(S)<1$. If $S=I$, then $\sigma(S)=1$. For any $S, T \in \mathbb{S}$ and $x \neq y$, we have $\rho(S T x, S T y) \leqslant \sigma(S) \rho(T x, T y)$ for $T x \neq T y$. But this inequality obviously holds even if $T x=T y$. Moreover,

$$
\rho(S T x, S T y) \leqslant \sigma(S)_{\sigma}(T) \rho(x, y) .
$$

Hence by dividing through by $\rho(x, y)$, we easily conclude that $\sigma(S T) \leqslant \sigma(S) \sigma(T)$. Finally, assume that

$$
\sigma\left(S_{1}\right)=\sigma\left(S_{2}\right)=0 ;
$$

then

$$
\rho\left(S_{1} x, S_{1} y\right)=\rho\left(S_{2} x, S_{2} y\right)=0 \quad \text { for all } x, y \in X, x \neq y .
$$

This implies the existence of $\omega_{1}, \omega_{2}$ such that $S_{1} x=\omega_{1}$ and $S_{2} x=\omega_{2}$ for all $x \in X$. Now for any $x \in X$, we have

$$
\rho\left(S_{1} x, S_{2} x\right) \leqslant \rho\left(S_{1} x, S_{1} S_{2} x\right)+\rho\left(S_{1} S_{2} x, S_{2} x\right)=\rho\left(\omega_{1}, \omega_{1}\right)+\rho\left(\omega_{2}, \omega_{2}\right)=0 .
$$

Thus $\sigma\left(S_{1}\right)=\sigma\left(S_{2}\right)=0$ implies that $S_{1}=S_{2}$.
We observe that if $\mathfrak{S}$ is contractive (uniformly contractive) on $X$, then $\mathfrak{S}$ is also contractive (uniformly contractive) on itself. The onverse is obviously not true.
4. The main theorem. In this section, we prove our main result, which provides a set of sufficient conditions on $\mathfrak{C}$ for it to be contractive.

Theorem 5. Suppose $\mathfrak{S}$ satisfies the conditions:
(a) for each $T \in \mathfrak{S}, T \neq I, T x_{1}=x_{1}$ and $T x_{2}=x_{2}$ imply that $x_{1}=x_{2}$,
(b) there exists a length function $\sigma$ defined on $\mathfrak{S}$,
(c) for any given left ideal $\mathfrak{S} \subseteq \subseteq$, there exists a finite set $\mathfrak{B} \subseteq \mathfrak{J}$ such that to each $T \in \mathfrak{F}$ there corresponds a $U \in \mathfrak{B}$ satisfying $T=U S$ for some $S \in \mathbb{S}$ and $\sigma(T)=\sigma(U) \sigma(S)$.
Then $\mathfrak{S}$ is contractive.
Note that conditions (a) and (b) have been proved to be necessary and are easily seen to be independent of each other. Before proving Theorem 5, we need the following two lemmas.

Lemma 1. Suppose that $\rho_{1}, \rho_{2}$ are two level functions defined with respect to the same contractive function $\lambda$ and let $X_{1}, X_{2}$ be their respective domains of definition. If there exist positive constants $c_{1}$, $c_{2}$ such that $c_{1} \rho_{1}(x) \leqslant c_{2} \rho_{2}(x)$ for all $x \in X_{1} \cap X_{2}$, then $\rho_{1}$ can be extended to $X_{1} \cup X_{2}$.

Proof. Define the function $\rho$ on $X_{1} \cup X_{2}$ by

$$
\rho(x)=\left\{\begin{aligned}
\rho_{1}(x) & \text { if } x \in X_{1}, \\
\frac{c_{2}}{c_{1}} \rho_{2}(x) & \text { if } x \in X_{2}, x \notin X_{1} .
\end{aligned}\right.
$$

Conditions (i), (ii) of the definition of a level function are obviously satisfied. Condition (iii) is also obvious if $x \in X_{1}$ or $T x \notin X_{1}$. Suppose now that $x \in X_{2}$, $x \notin X_{1}$, and $T x \in X_{1}$; then

$$
\lambda(T) \rho(x)=\lambda(T) \frac{c_{2}}{c_{1}} \rho_{2}(x) \geqslant \frac{c_{2}}{c_{1}} \rho_{2}(T x) \geqslant \rho_{1}(T x)=\rho(T x) .
$$

Finally, to prove that $\rho\left(x_{1}\right)=\rho\left(x_{2}\right)=0$ implies $x_{1}=x_{2}$, we need to prove only that $\rho_{1}\left(x_{1}\right)=\rho_{2}\left(x_{2}\right)=0$ implies $x_{1}=x_{2}$. Choose $T \in \mathfrak{S}, T \neq I$; then
$\rho_{1}\left(T x_{1}\right) \leqslant \lambda(T) \rho_{1}\left(x_{1}\right)=0$ and hence $T x_{1}=x_{1}$. Similarly $T x_{2}=x_{2}$. By assumption (a), we conclude that $x_{1}=x_{2}$.

Lemma 2. Suppose that $\mathfrak{S}$ satisfies the hypotheses of Theorem 5. Then there exists, for each $a \in X$, a level function on $[a]$ with respect to the length function $\sigma$.

Proof. Define for $x \in[a]$,

$$
\rho(x)=\inf _{T \in थ_{x}} \sigma(T)
$$

where $\mathfrak{A}_{x}=\{T: T a=x\}$. Since $x \in[a]$ implies that $\mathfrak{A}_{x}$ is non-empty, we have $0 \leqslant \rho(x)<\infty$. Next we note that

$$
\rho(S x)=\inf _{U \in \mathcal{A}_{S_{x}}} \sigma(U) \leqslant \inf _{T \in थ_{x}} \sigma(S T) \leqslant \sigma(S) \inf _{T \in \mathcal{U}_{x}} \sigma(T)=\sigma(S)_{\rho}(x)
$$

Finally, let $x \in[a], \rho(x)=0$. Consider the invariant set $\Im_{x}=\Im_{\mathfrak{U}_{x}}$ and denote by $\mathfrak{B}_{x}$ the finite set corresponding to $\mathfrak{Y}_{x}$ according to assumption (c).

Suppose $\mathfrak{A}_{x} \neq \mathfrak{B}_{x}$; then there exists a $T_{1} \in \mathfrak{U}_{x}$ such that $T_{1}=U_{1} S_{1}$ where $U_{1} \in \mathfrak{B}_{x}, S_{1} \in \mathfrak{S}$, and $S_{1} \neq I$. Since $U_{1} \in \mathfrak{B}_{x} \subseteq \Im_{x}$, there exists $T_{2} \in \mathfrak{H}_{2}$ such that $U_{1}=T_{2} S_{2}$ where $S_{2} \in \mathbb{S}$. Since $\sigma\left(S_{1} S_{2}\right) \leqslant \sigma\left(S_{1}\right) \sigma\left(S_{2}\right) \leqslant \sigma\left(S_{1}\right)<1$, then $S_{1} S_{2} \neq I$. Now $x=T_{1} a=U_{1} S_{1} a=T_{2} S_{1} S_{2} a=S_{1} S_{2} x$. For any $T \in \mathbb{S}$, note that $T S_{1} S_{2} x=T x=S_{1} S_{2}(T x)$. Hence by assumption (a), $T x=x$ for all $T \in \mathbb{S}$.

The same conclusion can be reached in the case when $\mathfrak{A}_{x}=\mathfrak{B}_{x}$. Indeed, since $\mathfrak{B}_{x}$ is finite, there exists an $S \in \mathfrak{H}_{x}$ such that $\sigma(S)=0$. For any $Y \in \mathbb{S}$, $\sigma(S T) \leqslant \sigma(S) \sigma(T)=0$. Thus $S T=S$. Therefore $x=S a=S T a=T x$. If now $\rho\left(x_{1}\right)=\rho\left(x_{2}\right)=0$, then $T x_{1}=x_{1}$ and $T x_{2}=x_{2}$ for all $T \in \mathbb{S}$. In particular, by choosing $T \neq I$, we conclude from assumption (a) that $x_{1}=x_{2}$.

Proof of Theorem 5. Let $X_{1}$ be an invariant set in $X$ and $\rho_{1}$ be a level function on $X_{1}$ defined with respect to the length function $\sigma$. Suppose $a \in X_{1}$. We claim that $\rho_{1}$ can be extended to $X_{1} \cup[a]$. Denote by $\rho_{2}$ the level function defined on $[a]$ according to Lemma 2. Consider the set

$$
\mathfrak{J}=\left\{T: T \in \mathfrak{S}, T a \in X_{1} \cap[a]\right\}
$$

Clearly, $\mathfrak{F}$ is a left ideal. Let $\mathfrak{B}$ be the finite set corresponding to $\mathfrak{F}$ according to assumption (c). In addition, let

$$
\mathfrak{B}^{\prime}=\left\{U: U \in \mathfrak{B}, \rho_{1}(U a) \neq 0\right\} \quad \text { and } \quad \mathfrak{B}^{\prime \prime}=\left\{U: U \in \mathfrak{B}, \rho_{2}(U a) \neq 0\right\} .
$$

Define

$$
c_{1}=\min _{U \in \mathfrak{B}^{\prime \prime}} \rho_{2}(U a) \quad \text { and } \quad c_{2}=\max _{U \in \mathfrak{B}^{\prime}} \rho_{1}(U a)
$$

Choose $x \in X_{1} \cap[a]$ and consider the sets $\mathfrak{H}_{x}, \mathfrak{B}_{x}$, and $\mathfrak{Y}_{x}$ as introduced in Lemma 2. We first note that if $\mathfrak{B}^{\prime}=\emptyset$, then for each $T \in \mathfrak{A}_{x}, T=U S$ for some $U \in \mathfrak{B}$, we have $\rho_{1}(x)=\rho_{1}(T a)=\rho_{1}(U S a) \leqslant \sigma(S) \rho_{1}(U a)=0$. Now $\rho_{1}(x)=0$ implies that $S x=x$ for all $S \in \mathbb{S}$, since $\rho_{1}(S x) \leqslant \lambda(S) \rho_{1}(x)$ for all
$S \neq I$. Choose any $S \neq I$; we conlude from $\rho_{2}(x)=\rho_{2}(S x) \leqslant \lambda(S) \rho_{2}(x)$ that $\rho_{2}(x)=0$. Hence in this case the inequality $c_{1} \rho_{1}(x) \leqslant c_{2} \rho_{2}(x)$ holds in a trivial way. A similar conclusion holds if $\mathfrak{B}^{\prime \prime}=\emptyset$. We may now assume that $\mathfrak{B}^{\prime} \neq \emptyset$ and $\mathfrak{B}^{\prime \prime} \neq \emptyset$. It is readily seen from the above that $\rho_{1}(x)=0$ if and only if $\rho_{2}(x)=0$. So, we may also assume that $\rho_{2}(x) \neq 0$. Suppose $\mathfrak{H}_{x} \neq \mathfrak{B}_{x}$; then by repeating the same argument as in Lemma 2, we conclude that $T x=x$ for all $T \in \mathbb{S}$; in particular if $T \neq I$, then $\rho_{2}(x)=\rho_{2}(T x) \leqslant \sigma(T) \rho_{2}(x)$ implies that $\rho_{2}(x)=0$. Again, the desired inequality holds trivially. Suppose now that $\mathfrak{U}_{x}=\mathfrak{B}_{x}$; then we may choose $T \in \mathfrak{U}_{x}$ such that $\rho_{2}(x)=\sigma(T)$. Note that $\rho_{2}(x) \neq 0$ implies that $\rho_{2}(U a) \neq 0$, and from the definition of $\rho_{2}, \rho_{2}(a)=1$. For otherwise there exists $V \neq I$ such that $V a=a$, and thus $S a=a$ for all $S \in \mathbb{S}$. In particular, $a=T a=x \in X_{1}$, contradicting $a \notin X_{1}$. Thus

$$
\begin{aligned}
c_{1} \rho_{1}(x) & =c_{1} \rho_{1}(U S a) \leqslant c_{1} \sigma(S) \rho_{1}(U a) \leqslant \rho_{2}(U a) \sigma(S) \rho_{1}(U a) \\
& \leqslant \sigma(S) \sigma(U) \rho_{2}(a) \rho_{1}(U a) \leqslant c_{2} \sigma(T) \rho_{2}(a)=c_{2} \sigma(T)=c_{2} \rho_{2}(x) .
\end{aligned}
$$

We then apply Lemma 1 to extend $\rho_{1}$ over $X_{1} \cup[a]$.
Let $\Phi$ be the family of all level functions defined with respect to the length function $\sigma . \Phi$ is non-empty for it contains the level function on the empty set $\emptyset$. Let $X_{\rho}$ be the domain of definition corresponding to $\rho \in \Phi$. We say that $\rho_{1} \leqslant \rho_{2}$ if (i) $X_{\rho_{1}} \subseteq X_{\rho_{2}}$, (ii) $\rho_{1}=\rho_{2}$ on $X_{\rho_{1}}$. Clearly this defines a partial ordering on $\Phi$. Suppose now that $\Psi$ is a totally ordered subset of $\Phi$. Define a level function $\tilde{\rho}$ on $\cup_{\rho \in \Psi} X_{\rho}$ by $\tilde{\rho}(x)=\rho(x)$ if $x \in X_{\rho}$ for some $\rho \in \Psi$. Since $\Psi$ is totally ordered, this definition of $\tilde{\rho}$ is unambiguous. $\tilde{\rho}$ is clearly an upper bound for $\Psi$ and thus $\Phi$ satisfies the hypothesis of Zorn's lemma. Therefore, there must exist a maximal element $\rho_{M} \in \Phi$. We claim that $X=X_{\rho_{M}}$. For otherwise there exists $a \in X, a \notin X_{\rho_{M}}$ and we may extend $\rho_{M}$ to $X_{\rho_{M}} \cup[a]$, contradicting the maximality of $\rho_{M}$. Knowing the existence of a level function on the full set $X$, we conclude by Theorem 1 that $\subseteq$ is contractive.

We remark that if the length function $\sigma$ on $\mathbb{S}$ is in addition uniformly contractive on $\mathfrak{S}$, then Theorem 5 together with Theorem 2 implies that $\mathfrak{S}$ is uniformly contractive on $X$.
5. Semi-groups generated by a finite number of elements. Let $X$ be a non-empty abstract set and $T_{1}, T_{2}, \ldots, T_{n}$ be mutually commuting mappings defined on $X$ into itself. Denote by $\mathbb{S}$ the commutative semi-group containing the identity which is generated by $T_{1}, T_{2}, \ldots, T_{n}$. Obviously, we may restrict ourselves to the case where all the $T_{i}$ 's are different from the identity. In this case, there exists a set of necessary and sufficient conditions for $\mathbb{S}$ to be uniformly contractive. In particular, assumptions (a) and (b) of Theorem 5 are both necessary and sufficient. In fact, we can prove that $\mathfrak{S}$ is uniformly contractive under assumption (a) and only part of assumption (b).

Let $Q$ be the product $N^{n}$ of the additive semi-group $N$ of natural numbers with its usual cardinal product partial ordering. It is not difficult to see that
every transverse subset of $Q$ is finite. Obviously, $Q$ forms a semi-group with respect to vector addition, and the mapping

$$
k=\left(k_{1}, \ldots, k_{n}\right) \rightarrow T^{k}=T_{1}^{k_{1}} \ldots T_{n}^{k_{n}}
$$

defines a homomorphism of $Q$ into $\subseteq$. Denote

$$
\varphi(k)=\sum_{i=1}^{n} k_{i} \quad \text { for all } k \in Q
$$

With these preliminary remarks, we proceed to prove Theorem B in the following form:

Theorem 6. Suppose $\mathfrak{S}$ satisfies the conditions:
(a) for each $T \in \mathbb{S}, T \neq I, T x_{1}=x_{1}$ and $T x_{2}=x_{2}$ imply $x_{1}=x_{2}$,
(b) for each pair $S, T \in \mathfrak{S}, S T=I$ implies $S=T=I$.

Then $\mathfrak{\Im}$ is uniformly contractive.
Proof. Assumption (a) of Theorem 5 is satisfied by hypothesis. For each $S \in \mathbb{S}$, let $K(S)=\left\{p: p \in Q, T^{p}=S\right\}$. Choose any $\lambda \in(0,1)$, and define

$$
\sigma(S)=\inf _{k \in K(S)} \lambda^{\varphi(k)}
$$

Clearly $0<\sigma(S) \leqslant \lambda<1$ for all $S \neq I$, and $\sigma(I)=1$. Moreover
$\sigma(S T)=\inf _{k \in K(S T)} \lambda^{\varphi(k)} \leqslant \inf _{p \in K(S)} \inf _{q \in K(T)} \lambda^{\varphi(p+q)}=\inf _{p \in K(S)} \lambda^{\varphi(p)} \inf _{q \in K(T)} \lambda^{\varphi(q)}=\sigma(S) \sigma(T)$.
For any $S \in \mathbb{S}$, if $K(S)$ as a subset of $Q$ is transverse (hence finite), then

$$
\sigma(S)=\min _{k \in K(S)} \lambda^{\phi(k)}>0
$$

On the other hand, if $K(S)$ is not transverse, then there exist $p, q \in K(S)$, $p>q$. Now $T^{p-q}(S x)=S x$ for all $x \in X$, and $T^{p-q} \neq I$. Again by assumption (a), we have $S x=\theta$ for all $x \in X$. Hence $\sigma(S)=0$ implies that $S x=\theta$ for all $x \in X$. Now suppose that $\sigma\left(S_{1}\right)=\sigma\left(S_{2}\right)=0$; then there exist $\theta_{1}, \theta_{2}$ such that $S_{1} x=\theta_{1}$ and $S_{2} x=\theta_{2}$ for all $x \in X$. Since $\theta_{1}=S_{1} S_{2} \theta_{1}=S_{2} S_{1} \theta_{1}=\theta_{2}$, we have $S_{1}=S_{2}$. Thus $\sigma(S)$ satisfies (b) of Theorem 5.

We next show that assumption (c) of Theorem 5 is also satisfied. Let $\mathfrak{F}$ be a left ideal in $\subseteq$. Consider the set $J=\left\{\rho: p \in Q, T^{p} \in \mathfrak{J}\right\}$, which is clearly an end in $Q$. It is easy to see that $J=\cup_{p \in B}\langle p\rangle$, where

$$
B=\{p: p \in J, \quad \text { and if } \quad q \in J \text { and } q \leqslant p, \text { then } q=p\}
$$

and $B$ is a transverse set.
Let $\mathfrak{B}=\left\{T^{p}\right.$ : for some $\left.p \in B\right\}$. Obviously $\mathfrak{B} \subseteq \mathfrak{F}$ and $\mathfrak{B}$ is finite. For $T \in \Im, \sigma(T)=0$, choose any $U \in \mathfrak{B}$, and observe that $U T=T$ and $\sigma(T)=\sigma(T) \sigma(U)$. On the other hand, if $\sigma(T) \neq 0$, we may choose $p \in K(T)$ such that

$$
\sigma(T)=\lambda^{\varphi(p)}=\lambda^{\varphi(r)+\varphi(p-r)} \geqslant \sigma(U) \sigma(S),
$$

where $S=T^{p-r} \in \mathbb{S}$. Since the reverse inequality always holds, we conclude that $\sigma(T)=\sigma(U) \sigma(S)$. Now the set $\mathfrak{B} \subseteq \mathfrak{J}$ satisfies the condition required by assumption (c) of Theorem 5. Applying Theorems 5 and 2, we conclude that $\mathbb{S}$ is uniformly contractive. The corollary follows immediately from Theorem 3.

Corollary. Let $X$ and $\mathfrak{S}$ be given as in Theorem 6. Suppose there exists an element $\omega \in X$, such that $S \omega=\omega$ for some $S \in \mathfrak{S}, S \neq I$. Then $\mathfrak{S}$ is uniformly completely contractive.
6. Remarks. We first remark that Theorem 6 cannot be extended to the corresponding case where $\subseteq$ is generated by a countably infinite number of mappings. To see this, we consider the following example. Let $X=[0, \infty)$ and $T_{i} x=x+1 / i, i=1,2,3, \ldots$ Clearly $X$ and the commutative semi-group $\mathfrak{S}$ generated by all the $T_{i}$ 's satisfy the hypothesis of Theorem 6 . But $\mathfrak{S}$ is not uniformly contractive. Assume the contrary; then by Theorem 3 there exists a level function $\rho$ on $X$ such that $\rho(T x) \leqslant \lambda \rho(x)$ for all $x \in X$ and all $T \in \mathbb{S}$, $T \neq I$, where $0 \leqslant \lambda<1$. Since $\infty \notin X$, we have therefore $\rho(x) \neq 0$ for all $x \in X$. For any $m$, we may write $\rho\left(T_{2} x\right)=\rho\left(T_{2 m}{ }^{m} x\right) \leqslant \lambda^{m} \rho(x)$. Letting $m$ tend to infinity, we obtain the desired contradiction. Nevertheless, in this case $\mathfrak{S}$ is contractive on $X$. Indeed, $\rho(x)=\lambda^{x}$, for any $\lambda \in(0,1)$, is a level function on $X$. (Note that in this case the contractive function is clearly not uniform.)

Let $X$ be a metrizable space and $T$ be a mapping of $X$ into itself such that for each positive integer $k$ and each $x \in X$, the equation $T^{k} x=x$ implies $x=\omega$, the unique fixed point of $T$. We now ask: Does there exist a metric in which $T$ is a contraction and which at the same time reproduces the original topology? The answer is negative even in case $X$ is compact. Let $X$ be any compact metrizable space, and $T$ be a mapping of $X$ into itself which possesses a unique inverse. In this case, we claim that there does not exist a metric on $X$ which satisfies the above-mentioned requirements unless $X$ is only a singleton set. Assume the contrary, i.e. there exists a metric $\rho$ on $X$ such that $\rho(T x, T y) \leqslant \lambda \rho(x, y)$ for all $x, y \in X$ and $\rho$ induces the given topology on $X$. Since $X$ is compact in the original tooplogy, it is also compact in the metric topology induced by $\rho$. Denote by $D$ the diameter of $X$ with respect to $\rho$, i.e.

$$
D=\sup _{x, y \in X} \rho(x, y) .
$$

Choose $x, y \in X$, such that $x=y$. Note that $\rho(x, y) \leqslant \lambda^{n} \rho\left(T^{-n} x, T^{-n} y\right) \leqslant \lambda^{n} D$. Letting $n$ tend to infinity, we arrive at the desired contradiction.

We finally list two open questions.
(i) What is a set of necessary and sufficient conditions for $\mathfrak{S}$ to be contractive. (This is not known even in the case when $\mathfrak{\Im}$ is generated by a countably infinite number of mappings.)
(ii) Let $X$ be any compact metrizable space and $T$ a mapping of $X$ into itself satisfying the condition imposed in the previous paragraph. What
additional conditions are sufficient to ensure the existence of a metric that will induce the original topology and at the same time make the mapping $T$ a contraction. (This is not known even when $X=[0,1]$.)

Acknowledgment. The author wishes to thank the referee for his constructive criticisms, which greatly improved the presentation of this material.

## References

1. C. Bessaga, On the converse of the Banach fixed-point principle, Coll. Math., 7 (1959), 41-43.
2. G. Birkhoff, Lattice theory (Providence, 1948).
3. J. S. W. Wong, A generalization of the converse of contraction mapping principle, Amer. Math. Soc. Notices, 11 (1964), 385.

University of Alberta, Edmonton


[^0]:    Received December 20, 1965. The results in this paper are from the author's doctoral dissertation, submitted to California Institute of Technology in May 1964. The author would like to express his sincere gratitude to Professor H. F. Bohnenblust for supervising the research.

