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We establish some bifurcation results for the boundary-value problem
−∆u = g(u) + λ|∇u|p + µf(x, u) in Ω, u > 0 in Ω, u = 0 on ∂Ω, where Ω is a
smooth bounded domain in R

N , λ, µ � 0, 0 < p � 2, f is non-decreasing with respect
to the second variable and g is unbounded around the origin. The asymptotic
behaviour of the solution around the bifurcation point is also established, provided
g(u) behaves like u−α around the origin, for some 0 < α < 1. Our approach relies on
finding explicit sub- and supersolutions combined with various techniques related to
the maximum principle for elliptic equations. The analysis we develop in this paper
shows the key role played by the convection term |∇u|p.

1. Introduction and the main results

In his recent monograph [25], Kielhöfer synthesizes the role of bifurcation problems
in applied mathematics:

Bifurcation theory attempts to explain various phenomena that have
been discovered and described in natural sciences over the centuries.
The buckling of the Euler rod, the appearance of Taylor vortices, and
the onset of oscillations in an electric circuit, for instance, all have a
common cause: a specific physical parameter crosses a threshold, and
that event forces the system to the organization of a new state that
differs considerably from that observed before.

In the present paper we continue the bifurcation analysis developed in our pre-
vious works [17, 18] (see also [10]) for a large class of semilinear elliptic equations
with singular nonlinearity and Dirichlet boundary condition. Such problems arise
in the study of non-Newtonian fluids, boundary-layer phenomena for viscous fluids,
chemical heterogeneous catalysts, as well as in the theory of heat conduction in
electrically conducting materials (see [7, 12, 28, 30, 37]). The main feature of this
paper is the presence of the convection term |∇u|p.

Let Ω ⊂ R
N (N � 2) be a bounded domain with a smooth boundary. We are

concerned in this paper with singular elliptic problems of the following type

−∆u = g(u) + λ|∇u|p + µf(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (1.1)
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where 0 < p � 2 and λ, µ � 0. As remarked in [9, 24, 40], the requirement that the
nonlinearity grows at most quadratically in |∇u| is natural in order to apply the
maximum principle.

Throughout this paper we suppose that f : Ω̄ × [0,∞) → [0,∞) is a Hölder
continuous function which is non-decreasing with respect to the second variable
and is positive on Ω̄ × (0,∞). We assume that g : (0,∞) → (0,∞) is a Hölder
continuous function which is non-increasing and lims↘0 g(s) = +∞.

Problems of this type arise in the study of guided modes of an electromagnetic
field in a nonlinear medium, satisfying adequate constitutive hypotheses. The fol-
lowing two examples illustrate situations of this type. (i) If f(u) = u3(1 + γu2)−1

(γ > 0), then problem (1.1) describes the variation of the dielectric constant of gas
vapours where a laser beam propagates (see [33,34]). (ii) Nonlinearities of the type
f(u) = (1 − e−γu2

)u arise in the context of laser beams in plasmas (see [35]). If
f(u) = eu/(1+εu) (ε > 0), then the corresponding equation describes the tempera-
ture dependence of the reaction rate for exothermic reactions obeying the simple
Arrhenius rate law in circumstances in which the heat flow is purely conductive
(see [4, 38]). In this context, the parameter ε is a dimensionless ambient tempera-
ture and the parameter λ is a dimensionless heat evolution rate. The corresponding
equation,

−∆u = g(u) + λ|∇u|p + µeu/(1+εu) in Ω,

represents heat balance with reactant consumption ignored, where u is a dimen-
sionless temperature excess. The Dirichlet boundary condition u = 0 on ∂Ω is an
isothermal condition and, in this case, it describes the exchange of heat at the
surface of the reactant by Newtonian cooling.

Our general setting includes some simple prototype models from boundary-layer
theory of viscous fluids (see [39]). If λ = 0 and µ = 0, then system (1.1) is called the
Lane–Emden–Fowler equation (see [15,16,20,26,31,36]). Problems of this type, as
well as the associated evolution equations, describe naturally certain physical phe-
nomena. For example, super-diffusivity equations of this type have been proposed
by de Gennes [14] as a model for long-range Van der Waals interactions in thin
films spreading on solid surfaces. This equation also appears in the study of cellular
automata and interacting particle systems with self-organized criticality (see [8]),
as well as to describe the flow over an impermeable plate (see [5, 6]).

Our aim in this paper is to describe the influence of the gradient term in prob-
lem (1.1).

Many papers have been devoted to the case λ = 0, where problem (1.1) becomes

−∆u = g(u) + µf(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (1.2)

If µ = 0, then (1.2) has a unique solution (see [13, 27]). When µ > 0, the study
of (1.2) emphasizes the role played by the nonlinear term f(x, u). For instance, if
one of the following assumptions are fulfilled, then problem (1.2) has solutions only
if µ > 0 is small enough (see [11]).

(f1) There exists c > 0 such that f(x, s) � cs for all (x, s) ∈ Ω̄ × [0,∞).
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(f2) The mapping (0,∞) � s �→ f(x, s)/s is non-decreasing for all x ∈ Ω̄,

In turn, when f satisfies the following assumptions, then problem (1.2) has at least
one solution for all µ > 0 (see [10,11,17,32] and the references therein).

(f3) The mapping (0,∞) � s �→ f(x, s)/s is non-increasing for all x ∈ Ω̄.

(f4) lims→∞ f(x, s)/s = 0 uniformly for x ∈ Ω̄.

The same assumptions will be used in the study of (1.1).
If λ > 0, the following problem was treated in Zhang and Yu [41],

−∆u =
1
uα

+ λ|∇u|p + σ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

⎫⎪⎪⎬
⎪⎪⎭ (1.3)

where λ, σ � 0, α > 0 and p ∈ (0, 2]. By using the change of variable v = eλu − 1
in the case p = 2, it is proved in [41] that problem (1.3) has classical solutions if
λσ < λ1, where λ1 is the first eigenvalue of −∆ in H1

0 (Ω). This will be used to
deduce the existence and nonexistence in the case 0 < p < 2.

If f(x, u) depends on u, the above change of variable does not preserve the sublin-
earity condition (f3), (f4) and the monotony of the nonlinear term g in problem (1.1).
In turn, if f(x, u) does not depend on u and p = 2, this method successfully applies
to our study and we will be able to give a complete characterization of (1.1) (see
theorem 1.4 below).

Due to the singular term g(u) in (Pλ), we cannot expect to have solutions in
C2(Ω̄). As it was pointed out in [41], if α > 1, then the solution of (1.3) is not in
C1(Ω̄). We are seeking in this paper classical solutions of (Pλ), that is, solutions
u ∈ C2(Ω) ∩ C(Ω̄) that verify (1.1).

By the monotony of g, there exists

a = lim
s→∞

g(s) ∈ [0,∞).

The first result concerns the case λ = 1 and 1 < p � 2. In the statement of
the following result we do not need assumptions (f1)–(f4); we just require that f
is a Hölder continuous function that is non-decreasing with respect to the second
variable and is positive on Ω̄ × (0,∞).

Theorem 1.1. Assume λ = 1 and 1 < p � 2.

(i) If p = 2 and a � λ1, then (1.1) has no solutions.

(ii) If p = 2 and a < λ1 or 1 < p < 2, then there exists µ∗ > 0 such that (1.1)
has at least one classical solution for µ < µ∗ and no solutions exist if µ > µ∗.

If λ = 1 and 0 < p � 1, then the study of existence is closely related to the
asymptotic behaviour of the nonlinear term f(x, u). In this case, we prove the
following result.

Theorem 1.2. Assume λ = 1 and 0 < p � 1.
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(i) If f satisfies (f1) or (f2), then there exists µ∗ > 0 such that (1.1) has at least
one classical solution for µ < µ∗ and no solutions exist if µ > µ∗.

(ii) If 0 < p < 1 and f satisfies (f3), (f4), then (1.1) has at least one solution for
all µ � 0.

Next we are concerned with the case µ = 1. Our result is the following.

Theorem 1.3. Assume µ = 1 and f satisfies assumptions (f3) and (f4). Then the
following properties hold true.

(i) If 0 < p < 1, then (1.1) has at least one classical solution for all λ � 0.

(ii) If 1 � p � 2, then there exists λ∗ ∈ (0,∞] such that (1.1) has at least one
classical solution for λ < λ∗ and no solution exists if λ > λ∗. Moreover, if
1 < p � 2, then λ∗ is finite.

Related to the above result, we raise the following open problem: if p = 1 and
µ = 1, is λ∗ a finite number?

Theorem 1.3 shows the importance of the convection term λ|∇u|p in (1.1). Indeed,
according to [17, theorem 1.3] and for any µ > 0, the boundary-value problem

−∆u = u−α + λ|∇u|p + µuβ in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

⎫⎪⎬
⎪⎭ (1.4)

has a unique solution, provided λ = 0 and α, β ∈ (0, 1). The above theorem shows
that if λ is not necessarily 0, then the following situations may occur. (i) Prob-
lem (1.4) has solutions if p ∈ (0, 1) and for all λ � 0. (ii) If p ∈ (1, 2), then there
exists λ∗ > 0 such that problem (1.4) has a solution for any λ < λ∗ and no solution
exists if λ > λ∗.

To see the dependence between λ and µ in (1.1), we consider the special case
f ≡ 1 and p = 2. In this case, we can say more about the problem (1.1). More
precisely, we have the following result.

Theorem 1.4. Assume that p = 2 and f ≡ 1. Then the following properties hold.

(i) Problem (1.1) has a solution if and only if λ(a + µ) < λ1.

(ii) Assume µ > 0 is fixed, g is decreasing and let λ∗ = λ1/(a+µ). Then (1.1) has
a unique solution uλ for every λ < λ∗ and the sequence (uλ)λ<λ∗ is increasing
with respect to λ.

Moreover, if lim sups↘0 sαg(s) < +∞ for some α ∈ (0, 1), then the sequence
of solutions (uλ)0<λ<λ∗ has the following properties.

(ii1) For all 0 < λ < λ∗, there exist two positive constants c1, c2 depending
on λ such that c1 dist(x, ∂Ω) � uλ � c2 dist(x, ∂Ω) in Ω.

(ii2) uλ ∈ C1,1−α(Ω̄) ∩ C2(Ω).

(ii3) uλ → +∞ as λ ↗ λ∗, uniformly on compact subsets of Ω.
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Figure 1. Bifurcation diagrams: (a) case 1; (b) case 2; (c) case 3 (λ∗ = λ1/(a + µ)).

The assumption lim sups↘0 sαg(s) < +∞, for some α ∈ (0, 1), has been used
in [17] and it implies the following Keller–Osserman-type growth condition around
the origin: ∫ 1

0

(∫ t

0
g(s) ds

)−1/2

dt < +∞. (1.5)

As proved by Bénilan et al . in [3], condition (1.5) is equivalent to the property of
compact support, that is, for any h ∈ L1(RN ) with compact support, there exists a
unique u ∈ W 1,1(RN ) with compact support such that ∆u ∈ L1(RN ) and

−∆u = g(u) + h a.e. in R
N .

The situations described in theorem 1.4 are depicted in the bifurcation diagrams
of figure 1. Case 1 (respectively, case 2) corresponds to (i) and a = 0 (respectively,
a > 0), while case 3 is related to (ii), λ > 0 and µ = fixed.

As regards the uniqueness of the solutions to problem (1.1), we may say that this
does not seem to be a feature easy to achieve. Only when f(x, u) is constant in u
can we use classical methods in order to prove the uniqueness. It is worth pointing
out here that the uniqueness of the solution is a delicate issue even for the simpler
problem (1.2). We have shown in [17] that when f fulfils (f3), (f4) and g satisfies
the same growth condition as in theorem 1.4, then, if (1.2) has a solution, it follows
that this solution is unique. On the other hand, if f satisfies (f2), the uniqueness
generally does not occur. In that sense, we refer the interested reader to Haitao [22].
In the case f(x, u) = uq, g(u) = u−γ , 0 < γ < 1/N and 1 < q < (N + 2)/(N − 2),
we learn from [22] that problem (1.2) has at least two classical solutions provided µ
belongs to a certain range.

Our approach relies on finding appropriate sub- and supersolutions of (1.1). This
allows us to enlarge the study of bifurcation to a class of problems more general
to those studied in [41]. However, neither the method used in Zhang and Yu [41]
nor our method gives a precise answer if λ∗ is finite or not in the case p = 1 and
µ = 1.

In the next section we state some auxiliary results that will be used in the proofs
of the above theorems. This will be done in §§ 3–6.
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2. Auxiliary results

Let ϕ1 be the normalized positive eigenfunction corresponding to the first eigenvalue
λ1 of the problem

−∆u = λu in Ω,

u = 0 on ∂Ω.

As it is well known, λ1 > 0, ϕ1 ∈ C2(Ω̄) and

C1 dist(x, ∂Ω) � ϕ1 � C2 dist(x, ∂Ω) in Ω, (2.1)

for some positive constants C1, C2 > 0. From the characterization of λ1 and ϕ1, we
state the following elementary result. For the convenience of the reader, we give a
complete proof.

Lemma 2.1. Let F : Ω̄ × (0,∞) → R be a continuous function such that F (x, s) �
λ1s + b for some b > 0 and for all (x, s) ∈ Ω̄ × (0,∞). Then the problem

−∆u = F (x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

⎫⎪⎬
⎪⎭ (2.2)

has no solutions.

Proof. By contradiction, suppose that (2.2) admits a solution. This will provide a
supersolution of the problem

−∆u = λ1u + b in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (2.3)

Since 0 is a subsolution, by the sub- and supersolution method and classical reg-
ularity theory, it follows that (2.2) has a solution u ∈ C2(Ω̄). Multiplying by ϕ1
in (2.3) and then integrating over Ω, we get

−
∫

Ω

ϕ1∆u = λ1

∫
Ω

ϕ1u + b

∫
Ω

ϕ1,

that is,

λ1

∫
Ω

ϕ1u = λ1

∫
Ω

ϕ1u + b

∫
Ω

ϕ1,

which implies that
∫

Ω
ϕ1 = 0. This is clearly a contradiction, since ϕ1 > 0 in Ω.

Hence (2.2) has no solutions.

The growth of ϕ1 is prescribed in the following result.

Lemma 2.2 (see [27]). We have ∫
Ω

ϕ−s
1 dx < +∞

if and only if s < 1.
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Basic in the study of the existence is the following lemma.

Lemma 2.3 (see [32]). Let F : Ω̄ × (0,∞) → R be a Hölder continuous function on
each compact subset of Ω̄ × (0,∞) that satisfies the following conditions.

(F1) lim sups→+∞(s−1 maxx∈Ω̄ F (x, s)) < λ1.

(F2) For each t > 0, there exists a constant D(t) > 0 such that

F (x, r) − F (x, s) � −D(t)(r − s) for x ∈ Ω̄ and r � s � t.

(F3) There exist a η0 > 0 and an open subset Ω0 ⊂ Ω such that

min
x∈Ω̄

F (x, s) � 0 for s ∈ (0, η0)

and

lim
s↘0

F (x, s)
s

= +∞ uniformly for x ∈ Ω0.

Then the problem
−∆u = F (x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

⎫⎪⎬
⎪⎭ (2.4)

has at least one solution.

According to lemma 2.3, there exists ζ ∈ C2(Ω)∩C(Ω̄), a solution of the problem

−∆ζ = g(ζ) in Ω,

ζ > 0 in Ω,

ζ = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (2.5)

Clearly, ζ is a subsolution of (1.1) for all λ � 0. It is worth pointing out here that
the sub–supersolution method still works for problem (1.1). With the same proof
as in Zhang and Yu [41, lemma 2.8], which goes back to the pioneering work of
Amann [2], we state the following result.

Lemma 2.4. Let λ, µ � 0. If (1.1) has a supersolution ū ∈ C2(Ω)∩C(Ω̄) such that
ζ � ū in Ω, then (1.1) has at least a solution.

Another difficulty in the treatment of (1.1) is the lack of the usual maximum
principle. The following result, which is due to Shi and Yao [32], gives a comparison
principle that applies to singular elliptic equations.

Lemma 2.5 (see [32]). Let F : Ω̄ × [0,∞) → R be a continuous function such that
the mapping (0,∞) � s → F (x, s)/s is strictly decreasing at each x ∈ Ω. Assume
v, w ∈ C2(Ω) ∩ C(Ω̄) and:

(a) ∆w + F (x, w) � 0 � ∆v + F (x, v) in Ω;

(b) v, w > 0 in Ω and v � w on ∂Ω;
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(c) ∆v ∈ L1(Ω).

Then v � w in Ω.

Lemma 2.6 (see [1]). If p > 1, then there exists a real number σ̄ > 0 such that the
problem

−∆u = |∇u|p + σ in Ω,

u = 0 on ∂Ω

}
(2.6)

has no solutions for σ > σ̄.

3. Proof of theorem 1.1

We start with the following more general result.

Lemma 3.1. Let F : Ω̄ × (0,∞) → [0,∞) and G : (0,∞) → (0,∞) be two Hölder
continuous functions that verify the following conditions.

(A1) F (x, s) > 0, for all (x, s) ∈ Ω̄ × (0,∞).

(A2) The mapping [0,∞) � s �→ F (x, s) is non-decreasing for all x ∈ Ω̄.

(A3) G is non-increasing and lims↘0 G(s) = +∞.

Assume that τ > 0 is a positive real number. Then the following holds.

(i) If τ lims→∞ G(s) � λ1, then the problem

−∆u = G(u) + τ |∇u|2 + µF (x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

⎫⎪⎬
⎪⎭ (3.1)

has no solutions.

(ii) If τ lims→∞ G(s) < λ1, then there exists µ̄ > 0 such that problem (3.1) has at
least one solution for all 0 � µ < µ̄.

Proof. (i) With the change of variable v = eτu − 1, problem (3.1) takes the form

−∆v = Ψµ(x, u) in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (3.2)

where

Ψµ(x, s) = τ(s + 1)G
(

1
τ

ln(s + 1)
)

+ µτ(s + 1)F
(

x,
1
τ

ln(s + 1)
)

for all (x, s) ∈ Ω̄ × (0,∞).
Taking into account the fact that G is non-increasing and τ lims→∞ G(s) � λ1,

we get
Ψµ(x, s) � λ1(s + 1) in Ω̄ × (0,∞) for all µ � 0.
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By lemma 2.1, we conclude that (3.2) has no solutions. Hence (3.1) has no solutions.
(ii) Since

lim
s→+∞

τ(s + 1)G((1/τ) ln(s + 1)) + 1
s

< λ1

and

lim
s↘0

τ(s + 1)G((1/τ) ln(s + 1)) + 1
s

= +∞,

we deduce that the mapping (0,∞) � s �→ τ(s + 1)G((1/τ) ln(s + 1)) + 1 fulfils the
hypotheses in lemma 2.3. According to this one, there exists v̄ ∈ C2(Ω) ∩ C(Ω̄), a
solution of the problem

−∆v = τ(v + 1)G
(

1
τ

ln(v + 1)
)

+ 1 in Ω,

v > 0 in Ω,

v = 0 in ∂Ω.

Define
µ̄ :=

1
τ(‖v̄‖∞ + 1)

· 1
maxx∈Ω̄ F (x, (1/τ) ln(‖v̄‖∞ + 1))

.

It follows that v̄ is a supersolution of (3.2) for all 0 � µ < µ̄.
Next we provide a subsolution v

¯
of (3.2) such that v

¯
� v̄ in Ω. To this end,

we apply lemma 2.3 to get that there exists v
¯

∈ C2(Ω) ∩ C(Ω̄), a solution of the
problem

−∆v = τG

(
1
τ

ln(v + 1)
)

in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

Clearly, v
¯

is a subsolution of (3.2) for all 0 � µ < µ̄. Let us prove now that v
¯

� v̄
in Ω. Assuming the contrary, it follows that maxx∈Ω̄{v

¯
− v̄} > 0 is achieved in Ω.

At that point, say, x0, we have

0 � −∆(v
¯

− v̄)(x0)

� τ

[
G

(
1
τ

ln(v
¯
(x0) + 1)

)
− G

(
1
τ

ln(v̄(x0) + 1)
)]

− 1

< 0,

which is a contradiction. Thus v
¯

� v̄ in Ω. We have proved that (v
¯
, v̄) is an ordered

pair of sub-super solutions of (3.2), provided 0 � µ < µ̄. It follows that (3.1) has
at least one classical solution for all 0 � µ < µ̄ and the proof of lemma 3.1 is now
complete.

Proof of theorem 1.1 completed. According to lemma 3.1 (i), we deduce that (1.1)
has no solutions if p = 2 and a � λ1. Furthermore, if p = 2 and a < λ1, in view of

https://doi.org/10.1017/S0308210500003760 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003760


70 M. Ghergu and V. Rădulescu

lemma 3.1 (ii), we deduce that (1.1) has at least one classical solution if µ is small
enough. Assume now that 1 < p < 2 and let us fix C > 0 such that

aCp/2−1 + Cp−1 < λ1. (3.3)

Define
ψ : [0,∞) → [0,∞), ψ(s) =

sp

s2 + C
.

A careful examination reveals the fact that ψ attains its maximum at

s̄ =
(

Cp

2 − p

)1/2

.

Hence

ψ(s) � ψ(s̄) =
pp/2(2 − p)(2−p)/2

2C1−p/2 for all s � 0.

By the classical Young inequality, we deduce that

pp/2(2 − p)(2−p)/2 � 2,

which yields ψ(s) � Cp/2−1 for all s � 0. Thus we have proved

sp � Cp/2−1s2 + Cp/2 for all s � 0. (3.4)

Consider the problem

−∆u = g(u) + Cp/2 + Cp/2−1|∇u|2 + µf(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (3.5)

By virtue of (3.4), any solution of (3.5) is a supersolution of (1.1).
Using (3.3), we get

lim
s→∞

Cp/2−1(g(u) + Cp/2) < λ1.

The above relation enables us to apply lemma 3.1 (ii) with G(s) = g(s) + Cp/2 and
τ = Cp/2−1. It follows that there exists µ̄ > 0 such that (3.5) has at least a solution
u. Using a similar argument to that used in the proof of lemma 3.1, we obtain ζ � u
in Ω, where ζ is defined in (2.5). By lemma 2.4, we get that (1.1) has at least one
solution if 0 � µ < µ̄.

We have proved that (1.1) has at least one classical solution for both cases p = 2
and a < λ1 or 1 < p < 2, provided µ is non-negative and small enough. Next we
define

A = {µ � 0; problem (1.1) has at least one solution}.

The above arguments implies that A is non-empty. Let µ∗ = supA. We first show
that [0, µ∗) ⊆ A. For this purpose, let µ1 ∈ A and 0 � µ2 < µ1. If uµ1 is a solution
of (1.1) with µ = µ1, then uµ1 is a supersolution of (1.1) with µ = µ2. It is easy to
prove that ζ � uµ1 in Ω and, by virtue of lemma 2.4, we conclude that problem (1.1)
with µ = µ2 has at least one solution.
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Thus we have proved [0, µ∗) ⊆ A. Next we show µ∗ < +∞.
Since lims↘0 g(s) = +∞, we can choose s0 > 0 such that g(s) > σ̄ for all s � s0,

where σ̄ is defined by lemma 2.6. Let

µ0 =
σ̄

minx∈Ω̄ f(x, s0)
.

Using the monotonicity of f with respect to the second argument, the above rela-
tions yield

g(s) + µf(x, s) � σ̄ for all (x, s) ∈ Ω̄ × (0,∞) and µ > µ0.

If (1.1) has a solution for µ > µ0, this would be a supersolution of the problem

−∆u = |∇u|p + σ̄ in Ω,

u = 0 on ∂Ω.

}
(3.6)

Since 0 is a subsolution, we deduce that (3.6) has at least one solution. According
to lemma 2.6, this is a contradiction. Hence µ∗ � µ0 < +∞. This concludes the
proof of theorem 1.1.

4. Proof of theorem 1.2

(i) We fix p ∈ (0, 1] and define

q = q(p) =

{
p + 1 if 0 < p < 1,
3
2 if p = 1.

Consider the problem

−∆u = g(u) + 1 + |∇u|q + µf(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (4.1)

Since sp � sq+1 for all s � 0, we deduce that any solution of (4.1) is a supersolution
of (1.1). Furthermore, taking into account the fact that 1 < q < 2, we can apply
theorem 1.1 (ii) in order to get that (4.1) has at least one solution if µ is small
enough. Thus, by lemma 2.4, we deduce that (1.1) has at least one classical solution.
Following the method used in the proof of theorem 1.1, we set

A = {µ � 0; problem (1.1) has at least one solution}

and let µ∗ = supA. With the same arguments, we prove that [0, µ∗) ⊆ A. It remains
only to show that µ∗ < +∞.

Let us assume first that f satisfies (f1). Since lims↘0 g(s) = +∞, we can choose
µ0 > 2λ1/c such that 1

2µ0cs + g(s) � 1 for all s > 0. Then

g(s) + µf(x, s) � λ1s + 1 for all (x, s) ∈ Ω̄ × (0,∞) and µ � µ0.

By virtue of lemma 2.1, we obtain that (1.1) has no classical solutions if µ � µ0, so
µ∗ is finite.

https://doi.org/10.1017/S0308210500003760 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003760


72 M. Ghergu and V. Rădulescu

Assume now that f satisfies (f2). Since lims↘0 g(s) = +∞, there exists s0 > 0
such that

g(s) � λ1(s + 1) for all 0 < s < s0. (4.2)

On the other hand, assumption (f2) and the fact that Ω is bounded implies that
the mapping

(0,∞) � s �→ minx∈Ω̄ f(x, s)
s + 1

is non-decreasing, so we can choose µ̃ > 0 with the property

µ̃ · minx∈Ω̄ f(x, s)
s + 1

� λ1 for all s � s0. (4.3)

Now (4.2) combined with (4.3) yields

g(s) + µf(x, s) � λ1(s + 1) for all (x, s) ∈ Ω̄ × (0,∞) and µ � µ̃.

Using lemma 2.1, we deduce that (1.1) has no solutions if µ > µ̃, that is, µ∗ is finite.
The first part of theorem 1.2 is therefore established.

(ii) The strategy is to find a supersolution ūµ ∈ C2(Ω) ∩ C(Ω̄) of (1.1) such that
ζ � ūµ in Ω. To this end, let h ∈ C2(0, η] ∩ C[0, η] be such that

h′′(t) = −g(h(t)) for all 0 < t < η,

h(0) = 0,

h > 0 in (0, η].

⎫⎪⎬
⎪⎭ (4.4)

The existence of h follows by classical arguments of ordinary differential equations.
Since h is concave, there exists h′(0+) ∈ (0, +∞]. By taking η > 0 small enough,
we can assume that h′ > 0 in (0, η], so h is increasing on [0, η].

Lemma 4.1.

(i) h ∈ C1[0, η] if and only if
∫ 1
0 g(s) ds < +∞.

(ii) If 0 < p � 2, then there exist c1, c2 > 0 such that

(h′)p(t) � c1g(h(t)) + c2 for all 0 < t < η.

Proof. (i) Multiplying by h′ in (4.4) and then integrating on [t, η], 0 < t < η, we
get

(h′)2(t) − (h′)2(η) = 2
∫ η

t

g(h(s))h′(s) ds = 2
∫ h(η)

h(t)
g(τ) dτ. (4.5)

This gives
(h′)2(t) = 2G(h(t)) + (h′)2(η) for all 0 < t < η, (4.6)

where

G(t) =
∫ h(η)

t

g(s) ds.

From (4.6), we deduce that h′(0+) is finite if and only if G(0+) is finite, so (i)
follows.
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(ii) Let p ∈ (0, 2]. Taking into account the fact that g is non-increasing, equal-
ity (4.6) leads to

(h′)2(t) � 2h(η)g(h(t)) + (h′)2(η) for all 0 < t < η. (4.7)

Since sp � s2 + 1 for all s � 0, from (4.7), we have

(h′)p(t) � c1g(h(t)) + c2 for all 0 < t < η, (4.8)

where c1 = 2h(η) and c2 = (h′)2(η)+1. This completes the proof of our lemma.

Proof of theorem 1.2 completed. Let p ∈ (0, 1) and µ � 0 be fixed. We also fix
c > 0 such that c‖ϕ1‖∞ < η. By Hopf’s maximum principle, there exist δ > 0 small
enough and θ1 > 0 such that

|∇ϕ1| > θ1 in Ωδ, (4.9)

where
Ωδ := {x ∈ Ω; dist(x, ∂Ω) � δ}.

Moreover, since lims↘0 g(h(s)) = +∞, we can pick δ with the property

(cθ1)2g(h(cϕ1)) − 3µf(x, h(cϕ1)) > 0 in Ωδ. (4.10)

Let θ2 := infΩ\Ωδ
ϕ1 > 0. We choose M > 1 with

M(cθ1)2 > 3, (4.11)
Mcλ1θ2h

′(c‖ϕ1‖∞) > 3g(h(cθ2)). (4.12)

Since p < 1, we can also assume that

(Mc)1−pλ1θ2(h′)1−p(c‖ϕ1‖∞) � 3‖∇ϕ1‖p
∞. (4.13)

On the other hand, by lemma 4.1 (ii), we can choose M > 1 such that

3(h′(cϕ1))p � M1−p(cθ1)2−pg(h(cϕ1)) in Ωδ. (4.14)

Assumption (f4) yields

lim
s→∞

3µf(x, sh(c‖ϕ1‖∞))
sh(c‖ϕ1‖∞)

= 0 uniformly for x ∈ Ω̄.

So we can choose M > 1 large enough such that

3µf(x, Mh(c‖ϕ1‖∞))
Mh(c‖ϕ1‖∞)

<
cλ1θ2h

′(c‖ϕ1‖∞)
h(c‖ϕ1‖∞)

for all x ∈ Ω̄.

This leads us to

3µf(x, Mh(c‖ϕ1‖∞)) < Mcλ1θ2h
′(c‖ϕ1‖∞) for all x ∈ Ω̄. (4.15)

For M satisfying (4.11)–(4.15), we prove that ūµ = Mh(cϕ1) is a supersolution
of (1.1). We have

−∆ūλ = Mc2g(h(cϕ1))|∇ϕ1|2 + Mcλ1ϕ1h
′(cϕ1) in Ω. (4.16)
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First we prove that

Mc2g(h(cϕ1))|∇ϕ1|2 � g(ūµ) + |∇ūµ|p + µf(x, ūµ) in Ωδ. (4.17)

From (4.9) and (4.11), we get

1
3Mc2g(h(cϕ1))|∇ϕ1|2 � g(h(cϕ1)) � g(Mh(cϕ1)) = g(ūµ) in Ωδ. (4.18)

By (4.9) and (4.14), we also have

1
3Mc2g(h(cϕ1))|∇ϕ1|2 � (Mc)p(h′)p(cϕ1)|∇ϕ1|p = |∇ūµ|p in Ωδ. (4.19)

Assumption (f3) and (4.10) produce

1
3Mc2g(h(cϕ1))|∇ϕ1|2 � µMf(x, h(cϕ1)) � µf(x, Mh(cϕ1)) in Ωδ. (4.20)

Now, by (4.18), (4.19) and (4.20), we conclude that (4.17) is fulfilled.
Next we prove

Mcλ1ϕ1h
′(cϕ1) � g(ūµ) + |∇ūµ|p + µf(x, ūµ) in Ω \ Ωδ. (4.21)

From (4.12) we obtain

1
3Mcλ1ϕ1h

′(cϕ1) � g(h(cϕ1)) � g(Mh(cϕ1)) = g(ūµ) in Ω \ Ωδ. (4.22)

From (4.13) we get

1
3Mcλ1ϕ1h

′(cϕ1) � (Mc)p(h′)p(cϕ1)|∇ϕ1|p = |∇ūµ|p in Ω \ Ωδ. (4.23)

By (4.15) we deduce that

1
3Mcλ1ϕ1h

′(cϕ1) � µf(x, Mh(cϕ1)) = µf(x, ūµ) in Ω \ Ωδ. (4.24)

Obviously, inequality (4.21) follows now by (4.22), (4.23) and (4.24).
Combining (4.16) with (4.17) and (4.21), we find that ūµ is a supersolution

of (1.1). Moreover, ζ � ūµ in Ω. Applying lemma 2.4, we deduce that (1.1) has
at least one solution for all µ � 0. This finishes the proof of theorem 1.2.

5. Proof of theorem 1.3

The proof case relies on the same arguments used in the proof of theorem 1.2. In
fact, the main point is to find a supersolution ūλ ∈ C2(Ω) ∩ (Ω̄) of (1.1), while ζ
defined in (2.5) is a subsolution. Since g is non-increasing, the inequality ζ � ūλ in Ω
can be proved easily and the existence of solutions to (1.1) follows by lemma 2.4.

Define c, δ and θ1, θ2 as in the proof of theorem 1.2. Let M satisfy (4.11)
and (4.12). Since g(h(s)) → +∞ as s ↘ 0, we can choose δ > 0 such that

(cθ1)2g(h(cϕ1)) − 3f(x, h(cϕ1)) > 0 in Ωδ. (5.1)

Assumption (f4) produces

lim
s→∞

f(x, sh(c‖ϕ1‖∞))
sh(c‖ϕ1‖∞)

= 0 uniformly for x ∈ Ω̄.
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Thus we can take M > 3 large enough such that

f(x, Mh(c‖ϕ1‖∞))
Mh(c‖ϕ1‖∞)

<
cλ1θ2h

′(c‖ϕ1‖∞)
3h(c‖ϕ1‖∞)

for all x ∈ Ω̄.

The above relation yields

3f(x, Mh(c‖ϕ1‖∞)) < Mcλ1θ2h
′(c‖ϕ1‖∞) for all x ∈ Ω̄. (5.2)

Using lemma 4.1 (ii), we can take λ > 0 small enough such that the following
inequalities hold:

3λMp−1(h′)p(cϕ1) � g(h(cϕ1))(cθ1)2−p in Ωδ, (5.3)

λ1θ2h
′(c‖ϕ1‖∞) > 3λ(Mc)p−1(h′)p(cθ2)‖∇ϕ1‖p

∞. (5.4)

For M and λ satisfying (4.11), (4.12) and (5.1)–(5.4), we claim that ūλ = Mh(cϕ1)
is a supersolution of (1.1). First we have

−∆ūλ = Mc2g(h(cϕ1))|∇ϕ1|2 + Mcλ1ϕ1h
′(cϕ1) in Ω. (5.5)

Arguing as in the proof of theorem 1.2, from (4.9), (4.11), (5.1), (5.3) and assump-
tion (f3), we obtain

Mc2g(h(cϕ1))|∇ϕ1|2 � g(ūλ) + λ|∇ūλ|p + f(x, ūλ) in Ωδ. (5.6)

On the other hand, equations (4.12), (5.2) and (5.4) give

Mcλ1ϕ1h
′(cϕ1) � g(ūλ) + λ|∇ūλ|p + f(x, ūλ) in Ω \ Ωδ. (5.7)

Using (5.5) and (5.6), (5.7), we find that ūλ is a supersolution of (1.1), so our claim
follows.

As we have already argued at the beginning of this case, we easily get that ζ � ūλ

in Ω and, by lemma 2.4, we deduce that problem (1.1) has at least one solution if
λ > 0 is sufficiently small.

Set

A = {λ � 0; problem (1.1) has at least one classical solution}.

From the above arguments, A is non-empty. Let λ∗ = supA. First we claim that if
λ ∈ A, then [0, λ) ⊆ A. For this purpose, let λ1 ∈ A and 0 � λ2 < λ1. If uλ1 is a
solution of (1.1) with λ = λ1, then uλ1 is a supersolution for (1.1) with λ = λ2, while
ζ defined in (2.5) is a subsolution. Using lemma 2.4 once more, we have that (1.1)
with λ = λ2 has at least one classical solution. This proves the claim. Since λ ∈ A
was arbitrary chosen, we conclude that [0, λ∗) ⊂ A.

Let us assume now that p ∈ (1, 2]. We prove that λ∗ < +∞. Set

m := inf
(x,s)∈Ω̄×(0,∞)

(g(s) + f(x, s)).

Since lims↘0g(s) = +∞ and the mapping (0,∞) � s �→ minx∈Ω̄f(x, s) is positive
and non-decreasing, we deduce that m is a positive real number. Let λ > 0 be such
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that (1.1) has a solution uλ. If v = λ1/(p−1)uλ, then v verifies

−∆v � |∇v|p + λ1/(p−1)m in Ω,

v > 0 in Ω,

v = 0 on ∂Ω.

⎫⎪⎬
⎪⎭ (5.8)

It follows that v is a supersolution of (2.6) for σ = λ1/(p−1)m. Since 0 is a subso-
lution, we obtain that (2.6) has at least one classical solution for σ defined above.
According to lemma 2.6, we have σ � σ̄, and so λ � (σ̄/m)p−1. This means that λ∗

is finite.
Assume now that p ∈ (0, 1) and let us prove that λ∗ = +∞. Recall that ζ defined

in (2.5) is a subsolution. To get a supersolution, we proceed in the same manner.
Fix λ > 0. Since p < 1, we can find M > 1 large enough such that (4.11), (4.12)
and (5.2)–(5.4) hold. From now on, we follow the same steps as above.

The proof of theorem 1.3 is now complete.

6. Proof of theorem 1.4

(i) If λ = 0, the existence of the solution follows using lemma 2.3. Next we assume
that λ > 0 and fix µ � 0. With the change of variable v = eλu − 1, problem (1.1)
becomes

−∆v = Φλ(v) in Ω,

v > 0 in Ω,

v = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (6.1)

where

Φλ(s) = λ(s + 1)g
(

1
λ

ln(s + 1)
)

+ λµ(s + 1)

for all s ∈ (0,∞). Obviously, Φλ is not monotone, but we still have that the mapping
(0,∞) � s �→ Φλ(s)/s is decreasing for all λ > 0 and

lim
s→+∞

Φλ(s)
s

= λ(a + µ) and lim
s↘0

Φλ(s)
s

= +∞

uniformly for λ > 0.
We first remark that Φλ satisfies the hypotheses in lemma 2.3, provided that

λ(a + µ) < λ1. Hence (6.1) has at least one solution.
On the other hand, since g � a on (0,∞), we get

Φλ(s) � λ(a + µ)(s + 1) for all λ, s ∈ (0,∞). (6.2)

Using lemma 2.1, we deduce that (6.1) has no solutions if λ(a+µ) � λ1. The proof
of the first part in theorem 1.4 is therefore complete.

(ii) We split the proof into several steps.

Step 1 (existence of solutions). This follows directly from (i).

Step 2 (uniqueness of the solution). Fix λ � 0. Let u1 and u2 be two classical
solutions of (1.1) with λ < λ∗. We show that u1 � u2 in Ω. Supposing the contrary,
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we deduce that maxΩ̄{u1 − u2} > 0 is achieved in a point x0 ∈ Ω. This yields
∇(u1 − u2)(x0) = 0 and

0 � −∆(u1 − u2)(x0) = g(u1(x0)) − g(u2(x0)) < 0,

a contradiction. We conclude that u1 � u2 in Ω; similarly, u2 � u1. Therefore,
u1 = u2 in Ω and the uniqueness is proved.

Step 3 (dependence on λ). Fix 0 � λ1 < λ2 < λ∗ and let uλ1 , uλ2 be the unique
solutions of (1.1) with λ = λ1 and λ = λ2, respectively. If {x ∈ Ω; uλ1 > uλ2} is
non-empty, then maxΩ̄{uλ1 − uλ2} > 0 is achieved in Ω. At that point, say, x̄, we
have ∇(uλ1 − uλ2)(x̄) = 0 and

0 � −∆(uλ1 − uλ2)(x̄) = g(uλ1(x̄)) − g(uλ2(x̄)) + (λ1 − λ2)|∇uλ1 |p(x̄) < 0,

which is a contradiction.
Hence uλ1 � uλ2 in Ω̄. The maximum principle also gives uλ1 < uλ2 in Ω.

Step 4 (regularity). We fix 0 < λ < λ∗, µ > 0 and assume that

lim sup
s↘0

sαg(s) < +∞.

This means that g(s) � cs−α in a small positive neighbourhood of the origin. To
prove the regularity, we will use again the change of variable v = eλu − 1. Thus, if
uλ is the unique solution of (1.1), then vλ = eλuλ −1 is the unique solution of (6.1).
Since

lim
s↘0

eλs − 1
s

= λ,

we conclude that (ii1) and (ii2) of theorem 1.4 are established if we prove the
following.

(a) c̃1 dist(x, ∂Ω) � vλ(x) � c̃2 dist(x, ∂Ω) in Ω for some positive constants
c̃1, c̃2 > 0.

(b) vλ ∈ C1,1−α(Ω̄).

Proof of (a). By the monotonicity of g and the fact that g(s) � cs−α near the
origin, we deduce the existence of A, B, C > 0 such that

Φλ(s) � As + Bs−α + C for all 0 < λ < λ∗ and s > 0. (6.3)

Let us fix m > 0 such that mλ1‖ϕ1‖∞ < λµ. Combining this with (6.2), we deduce

−∆(vλ − mϕ1) = Φλ(vλ) − mλ1ϕ1 � λµ − mλ1ϕ1 � 0 (6.4)

in Ω. Since vλ − mϕ1 = 0 on ∂Ω, we conclude that

vλ � mϕ1 in Ω. (6.5)

Now, equations (6.5) and (2.1) imply vλ � c̃1 dist(x, ∂Ω) in Ω for some positive
constant c̃1 > 0. The first inequality in the statement of (a) is therefore established.
For the second one, we apply an idea found in Gui and Lin [21]. Using (6.5) and
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the estimate (6.3), by virtue of lemma 2.2, we deduce Φλ(vλ) ∈ L1(Ω), that is,
∆vλ ∈ L1(Ω).

Using the smoothness of ∂Ω, we can find δ ∈ (0, 1) such that, for all

x0 ∈ Ωδ := {x ∈ Ω; dist(x, ∂Ω) � δ},

there exists y ∈ R
N \ Ω̄ with dist(y, ∂Ω) = δ and dist(x0, ∂Ω) = |x0 − y| − δ.

Let K > 1 be such that diam(Ω) < (K − 1)δ and let ξ be the unique solution of
the Dirichlet problem

−∆ξ = Φλ(ξ) in BK(0) \ B1(0),
ξ > 0 in BK(0) \ B1(0),
ξ = 0 on ∂(BK(0) \ B1(0)),

⎫⎪⎬
⎪⎭ (6.6)

where Br(0) denotes the open ball in R
N of radius r and centred at the origin. By

uniqueness, ξ is radially symmetric. Hence ξ(x) = ξ̃(|x|) and

ξ̃′′ +
N − 1

r
ξ̃′ + Φλ(ξ̃) = 0 in (1, K),

ξ̃ > 0 in (1, K),

ξ̃(1) = ξ̃(K) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.7)

Integrating in (6.7), we have

ξ̃′(t) = ξ̃′(a)aN−1t1−N − t1−N

∫ t

a

rN−1Φλ(ξ̃(r)) dr

= ξ̃′(b)bN−1t1−N + t1−N

∫ b

t

rN−1Φλ(ξ̃(r)) dr,

where 1 < a < t < b < K. With the same arguments as above, we have Φλ(ξ̃) ∈
L1(1, K), which implies that both ξ̃′(1) and ξ̃′(K) are finite. Hence ξ̃ ∈ C2(1, K) ∩
C1[1, K]. Furthermore,

ξ(x) � C̃ min{K − |x|, |x| − 1} for any x ∈ BK(0) \ B1(0). (6.8)

Let us fix x0 ∈ Ωδ. Then we can find y0 ∈ R
N \ Ω̄ with dist(y0, ∂Ω) = δ and

dist(x0, ∂Ω) = |x0 − y| − δ. Thus Ω ⊂ BKδ(y0) \ Bδ(y0). Define

v̄(x) = ξ

(
x − y0

δ

)

for all x ∈ Ω̄. We show that v̄ is a supersolution of (6.1). Indeed, for all x ∈ Ω, we
have

∆v̄ + Φλ(v̄) =
1
δ2

(
ξ̃′′ +

N − 1
r

ξ̃′
)

+ Φλ(ξ̃)

� 1
δ2

(
ξ̃′′ +

N − 1
r

ξ̃′ + Φλ(ξ̃)
)

= 0,
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where r = |x − y0|/δ. We have obtained that

∆v̄ + Φλ(v̄) � 0 � ∆vλ + Φλ(vλ) in Ω,

v̄, vλ > 0 in Ω,

v̄ = vλ on ∂Ω,

∆vλ ∈ L1(Ω).

By lemma 2.5, we get vλ � v̄ in Ω. Combining this with (6.8), we obtain

vλ(x0) � v̄(x0) � C̃ min
{

K − |x0 − y0|
δ

,
|x0 − y0|

δ
− 1

}
� C̃

δ
dist(x0, ∂Ω).

Hence vλ � (C̃/δ) dist(x, ∂Ω) in Ωδ and the second inequality in the statement
of (a) follows.

Proof of (b). Let G be Green’s function associated with the Laplace operator in Ω.
Then, for all x ∈ Ω, we have

vλ(x) = −
∫

Ω

G(x, y)Φλ(vλ(y)) dy

and

∇vλ(x) = −
∫

Ω

Gx(x, y)Φλ(vλ(y)) dy.

If x1, x2 ∈ Ω, using (6.3), we obtain

|∇vλ(x1) − ∇vλ(x2)| �
∫

Ω

|Gx(x1, y) − Gx(x2, y)| · (Avλ + C) dy

+ B

∫
Ω

|Gx(x1, y) − Gx(x2, y)| · v−α
λ (y) dy.

Now, taking into account that vλ ∈ C(Ω̄), by the standard regularity theory
(see [19]), we get∫

Ω

|Gx(x1, y) − Gx(x2, y)| · (Avλ + C) dy � c̃1|x1 − x2|.

On the other hand, with the same proof as in [21, theorem 1], we deduce∫
Ω

|Gx(x1, y) − Gx(x2, y)| · v−α
λ (y) � c̃2|x1 − x2|1−α.

The above inequalities imply that uλ ∈ C2(Ω) ∩ C1,1−α(Ω̄).

Step 5 (asymptotic behaviour of the solution). In order to conclude the asymp-
totic behaviour for uλ, it is enough to show that limλ↗λ∗vλ = +∞ on compact
subsets of Ω. To this end, we use some techniques developed in [29]. Due to the
special character of our problem, we will be able to show in what follows that, in
certain cases, L2-boundedness implies H1

0 -boundedness!
We argue by contradiction. Since (vλ)λ<λ∗ is a sequence of non-negative super-

harmonic functions in Ω, then, by [23, theorem 4.1.9], we can find a subsequence
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of (vλ)λ<λ∗ (still denoted by (vλ)λ<λ∗) that converges in L1
loc(Ω) to some v∗. The

monotony of vλ yields (up to a subsequence) vλ ↗ v∗ a.e. in Ω.
We first show that (vλ)λ<λ∗ is bounded in L2(Ω). Suppose the contrary. Passing

eventually at a subsequence, we have vλ = M(λ)wλ, where

M(λ) = ‖vλ‖L2(Ω) → ∞ as λ ↗ λ∗ and wλ ∈ L2(Ω), ‖wλ‖L2(Ω) = 1. (6.9)

Then (6.3) yields

1
M(λ)

Φλ(vλ) → 0 in L1
loc(Ω) as λ ↗ λ∗,

that is,
−∆wλ → 0 in L1

loc(Ω) as λ ↗ λ∗. (6.10)

By Green’s first identity, we have∫
Ω

∇wλ · ∇φ dx = −
∫

Ω

φ∆wλ dx = −
∫

supp φ

φ∆wλ dx for all φ ∈ C∞
0 (Ω).

(6.11)
Using (6.10), we obtain∣∣∣∣
∫

supp φ

φ∆wλ dx

∣∣∣∣ �
∫

supp φ

|φ||∆wλ| dx � ‖φ‖∞

∫
supp φ

|∆wλ| dx → 0 as λ ↗ λ∗.

(6.12)

Now, equations (6.11) and (6.12) yield∫
Ω

∇wλ · ∇φ dx → 0 as λ ↗ λ∗ for all φ ∈ C∞
0 (Ω). (6.13)

Recall that (wλ)λ<λ∗ is bounded in L2(Ω). We claim that (wλ)λ<λ∗ is bounded
in H1

0 (Ω). Indeed, using (6.3) and Hölder’s inequality, we have∫
Ω

|∇wλ|2 = −
∫

Ω

wλ∆wλ

= − 1
M(λ)

∫
Ω

wλ∆uλ

=
1

M(λ)

∫
Ω

wλΦλ(vλ)

� A

M(λ)

∫
Ω

wλvλ +
B

M(λ)

∫
Ω

wλv−α
λ +

C

M(λ)

∫
Ω

wλ

= A

∫
Ω

w2
λ +

B

M(λ)1+α

∫
Ω

w1−α
λ +

C

M(λ)

∫
Ω

wλ

� A +
B

M(λ)1+α
|Ω|(1+α)/2 +

C

M(λ)
|Ω|1/2.

From the above estimates, we can easily conclude that (wλ)λ<λ∗ is bounded in
H1

0 (Ω). Thus there exists w ∈ H1
0 (Ω) such that

wλ ⇀ w weakly in H1
0 (Ω) (6.14)
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and

wλ → w strongly in L2(Ω). (6.15)

Combining (6.9) and (6.15), we get ‖w‖L2(Ω) = 1. On the other hand, from (6.13)
and (6.14), we obtain∫

Ω

∇w · ∇φ dx = 0 for all φ ∈ C∞
0 (Ω).

Since w ∈ H1
0 (Ω), using the above relation and the definition of H1

0 (Ω), we get
w = 0, which contradicts the fact that ‖w‖L2(Ω) = 1. Hence (vλ)λ<λ∗ is bounded in
L2(Ω). As before for wλ, we can obtain that (vλ)λ<λ∗ is bounded in H1

0 (Ω). Then,
up to a subsequence, we have

vλ ⇀ v∗ weakly in H1
0 (Ω) as λ ↗ λ∗,

vλ → v∗ strongly in L2(Ω) as λ ↗ λ∗,

vλ → v∗ a.e. in Ω as λ ↗ λ∗.

⎫⎪⎬
⎪⎭ (6.16)

Now we can proceed to get a contradiction. Multiplying by ϕ1 in (6.1) and then
integrating over Ω, we have

−
∫

Ω

∆vλϕ1 dx =
∫

Ω

Φλ(vλ)ϕ1 dx for all 0 < λ < λ∗. (6.17)

Using (6.2), we get

λ1

∫
Ω

vλϕ1 � λ(a + µ)
∫

Ω

(vλ + 1)ϕ1 dx for all 0 < λ < λ∗. (6.18)

By (6.16), we can use Lebesgue’s dominated convergence theorem in order to pass
to the limit with λ ↗ λ∗ in (6.18). We obtain

λ1

∫
Ω

v∗ϕ1 dx � λ1

∫
Ω

(v∗ + 1)ϕ1 dx, (6.19)

which is a contradiction since ϕ1 > 0 in Ω. This contradiction shows that

lim
λ↗λ∗

vλ = +∞

uniformly on compact subsets of Ω, which implies that limλ↗λ∗ uλ = +∞ uniformly
on compact subsets of Ω. The proof of theorem 1.4 is now complete.
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