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1. A number of inclusion theorems have been given in connection with methods of
summation which include the Riesz method (/?, X, K). Lorentz [4, Theorem 10] gives necessary
and sufficient conditions for a sequence to sequence regular matrix A = (anv) to be such that
A 3 (R, X, l)f. He imposes restrictions on the sequence {Xn}, so that A does not include all
Riesz methods of order 1. In Theorem 1 below, we generalize the Lorentz theorem by giving
a condition without restriction on Xn, If the matrix A is a series to sequence or series to function
regular matrix, there do not appear to be any results concerning the general inclusion

A => (R, X, K).

However, when A is the Riemann method (9?, X, /*), Russell [7], generalizing earlier results,
has given sufficient conditions for (9J, X, n) => (/?, X, K). Our Theorem 2 gives necessary and
sufficient conditions for A => (R, X, 1), where A satisfies the condition an v -> 1 (n -KX>, V fixed).
Thus Theorem 2 applies to any series to sequence regular matrix A. In Theorem 3 we give a
further representation for matrices A which include (R, X, 1), and finally make some remarks
on the problem of characterizing matrices which include Riesz methods of any positive order K.

2. We write sn for the (n+l) th partial sum of the series £am, where £ without limits
CO

denotes £ . if
o

(ji~KAK(u>) = (o~K £ (a> — Xv)"av-* s (co->oo),
Av<cu

where 0 ^ Xo < Xv < ... < Xn -+oo, and K > 0, we say that £o n = s (R, X, K). If co takes only
the values Xn+, we have summability by discontinuous Riesz means (R, X, k). For 0 < K ^ 1,
Jurkat [3, Satz 2] has shown that (R, X, K) and (R, X, K) are equivalent. We use this equiva-
lence for the case K = 1 in what follows. We shall write

so that £«„ = s(R, X, 1) is equivalent to an-*s (n-> oo). By AXn we shall mean Xn — An+1.

3. The following theorem generalizes Lorentz's theorem mentioned above.

THEOREM 1. Let A = (anv) be a sequence to sequence regular matrix. Then A => (/?, X, 1)
if and only if

CO

% + l ^ M,
v = 0

where M is a positive constant.

t For methods of summability A, B, we write A :D B if the fl-summability of a sequence or series implies its
/4-summabiIity to the same limit.
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Proof. For each fixed n,

pp

I
v = 0

0)

The right hand side of (1) converges as/? ->oo, whenever {an} converges, if and only if the well-
known Toeplitz conditions are satisfied:

p - 1

v = 0

3 lim - ; =i =av(") (v fixed),

'

Now (2) is equivalent to

A ^ '

(2)

(3)

(4)

(5)

For (2) clearly implies (5), and when (5) holds we see that £ A(anv /AAV) converges, and so

an>v/AAv^f (v-»oo). (6)

Since A is regular, we must have / = 0; for if / + 0, then anv ~ t AAV, so that

N

v = 0
(N-*co),

which contradicts the convergence of £ an_v. It now follows from (5) and (6) that, as/>-»oo,

a
" " • P

%+i (7)

Hence (5) implies (2). Condition (3) is automatically satisfied, and (4) is satisfied with

Thus, for each fixed «, letting p -> oo in (1) we obtain

v = 0 v = 0
(8)

https://doi.org/10.1017/S204061850003495X Published online by Cambridge University Press

https://doi.org/10.1017/S204061850003495X


SOME INCLUSION THEOREMS 163

whenever {<xv} is convergent and (5) holds. The right hand side of (8) tends to s whenever an

tends to s if and only if

!•». (9)

(10)

(11)

where we do not need (11) if J = 0. Hence (9) is a necessary condition for A => (R, A, 1). To
show that it is also sufficient we note that (10) is an immediate consequence of the regularity of
A. Also, when J4= 0, if we let sv = 1 (all v) and take k0 = 0, as we may without loss in generality,
then <TV = 1 (all v), so that (8) gives

- ^ I -> 0 (« -> oo, v fixed),

-nH->i (n-*<x>),

v = 0

Hence (11) holds when A is regular.
This proves the theorem.
We now give the inclusion theorem for a series to sequence matrix A.

THEOREM 2. Let A = (anv) satisfy anv -* 1 (n -»oo, v fixed). Then A 3 (/?, k, 1) if and
only if

(i) \an_y\^HnK~\ where Av =

(ii)
v = 0

where Hn is a positive number depending on n, and M is a positive constant.

Proof. By a convergence factor theorem of Jurkat [2, Satz 1], £ an,vav converges for each
fixed n, whenever Y o , = s(R, X, 1), if and only if

S + l Af A f l -

(12)

(13)

Jurkat gives the superfluous condition Aan,V/AAV = o(l) (v -* oo, « fixed), which can be de-
duced from (12) and (13) by an argument of the type used in the proof of Theorem 1. It then
follows easily from (13) that in fact

AAV

(14)
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Now, for each fixed n,

v = 0 v = O

where an = (Aian>0 — Xoani)j(Xl — Ao). Hence, provided that (12) and (13) hold and av -* s,

£ an,vav = s<xn- £ A v + 1 A ( ^ f V v - s ) , (15)
v=0 v=0 \ ^^v /

since

*n,p
, . - ^ _ n

and, in view of (14),

x \an,P+i I < x I A^n.P I +x I an,P 1 <. A

Since <xn -> 1 by the hypothesis that an_v -> 1 (« ->oo, v fixed), the right hand side of (15) tends
to s whenever <rv -> s if and only if (ii) of the theorem holds and

But this condition is automatically satisfied by the hypothesis on anv.
The proof is complete.
The next theorem gives an alternative representation for the matrices A of Theorem 2.

THEOREM 3. Let A be a series to sequence matrix with anv -* 1 (n ->oo, v fixed), and suppose
that An = An+ i/(An+1 — An) is unbounded.^ Then A => (R, X, 1) if and only if

(ii) there exists a sequence of functions {g „(»)}, defined for u ^ Ao, JMC/I

(•oo poo

«n,v = («-Av) dgB(«), with u | d g f » | ^ M,

where Hn is a positive number depending on n and M is a positive constant.

Proof Necessary and sufficient conditions for £an_v a, to converge for each fixed n,
whenever £a v is summable (i?, X, K), K ^ 0, have been given by Maddox [5, Theorem A]. In
the case K = 1, these conditions are (i) of Theorem 3, and (ii) with M replaced by Mn. For

t This involves no real loss in generality, since, if An is bounded, (R, A, K) is equivalent to convergence for
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the sufficiency part of Theorem 3 we need only show that (ii) of Theorem 2 is implied by (ii) of
Theorem 3. This follows, for we have

Hence, since Av+1(u —Av) ^ u(Av+1 — Av) for Av j£ u ^ Av+1,

We must now prove the necessity of the condition

in (ii). This is included in the following lemma, which gives necessary conditions for the
inclusion A => (R, A, K), K > 0.

LEMMA 1. Let A = (anv) be a series to sequence matrix, and suppose that]

(a) 0 < a ^ , " g A (a, A constants),
AAn_!

(b) An+1/An decreases to 1.

Necessary conditions that A => (R, A, K) (K > 0) are

(i) I an,v I ^ ^ n A ; K , wAere Av = r
(ii) fftere exis/s a sequence of functions {gn(

u)}> defined for u ^ Ao, and a number M > 0,
independent of n, such that

[ " u* | ̂ ( u ) | ^ M.

0 < K ̂  1, the restrictions (a), (b) may be removed, provided that An is unbounded.

Proof. We first recall some of the properties of the function spaces associated with Riesz
summability. For detailed definitions, reference should be made to Peyerimhoff [6]. If Cc is
the normed vector space of functions x(t), continuous for / ^ 0, which tend to limits as t ->oo,
with norm || x || =bd | x(t) | (t ^ 0), then

/(x) = <xlimx(0+ x(t)dh(t), with | dh(t) | < oo, (16)
<->oo Jo Jo

t We write A e A when (a) and (6) hold.
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where a is a constant, is a continuous linear functional in Cc and each continuous linear
functional in Cc may be represented in this way. The norm o f / i s given by

(17)

In what follows RxK(r, c) denotes the space of sequences {av} such that £ a v is summable
(R, X, K). With the norm defined by

RXK(r, c) is a Banach space [6, p. 46].
Peyerimhoff [6, p. 48] used (16) to give the general continuous linear functional /({av}) in

the space RiK(f> c):

AK(i) CmAK(t) f00

/({«v}) = a l i m - ^ + -^dh(t); \dh(t)\<oo. (18)

The Hahn-Banach extension theorem was used to establish (18), and since the norm can be
preserved under extension, we have, by (17),

(19)

If we write

g(t) = - T u~K dh(u) (t^X0),

we bring (18), (19) to the form

f({av}) = cc lim ^ + T A\u) dg(u); f" uK | dg(u) \ < oo, (20)
<-*oo ' J A 0 J ko

(21)

We obtain from (20) a necessary condition for £an,vcrv to converge for each fixed n,
whenever £a v is summable (R, X, K), by takingt fn({av}) = ^an,vav in (20), with ap = 1,
av = 0(v=t=/»). Thus

, - a + J ( « - , (22)

The necessity of condition (i) follows from Theorem A in [5]. If we combine (22) and (i) of the
lemma, we see that a = 0. Now it was proved in the sufficiency part of Theorem A of [5] that

H), (23)

t / n is a continuous linear functional in RXK (r, c) (see [6], p. 29, II).
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whenever £a v is summable (R, A, K). Thus we have a sequence of continuous linear func-
tionals {£an,vav} in RiK(r, c), which by (21) with a = 0, and (23), have norms

= I u* I dgJLu) |. (24)
v = 0

If Yflv is summable A, then

lim < oo. (25)
v = 0

By the Banach-Steinhaus theorem (Banach [1, Theorem 5, p. 80]) it follows from (24) and

(25) that I I u'\ dgn(u) 11 is bounded.

The lemma is now proved.

Theorem 3 and Lemma 1 suggest that there is a general inclusion theorem of the following
type:

Let A be a series to sequence regular matrix and suppose that A e A. Then A ~=> (R, A, K)
(K > 0) if and only if

( 0 | o B , v l ^ H n A v
K , where A v = | A A V |

(ii) A is of the form

an,v = fM (« - KT dgn(u) with \X uK | dgn(u) I ^ M.

The necessity is included in Lemma 1, and the sufficiency, in the case K = 1, in Theorem 3. I
have not been able to prove that the conditions are sufficient in any other case, although it
seems likely that they will be. If this theorem could be proved it would generalize many
inclusion theorems for Riesz means, and in particular, for An = n, would give an inclusion
theorem for Cesaro means.

4. I wish to thank the referee for a number of helpful comments, which have clarified
some of the proofs.
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