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AB

TRACT. A perturbation method is used to analyse the stability of a thin till layer

overlain by a deep ice layer. Iee is modelled as a linearly viscous fluid, while the till visc-
osity has power-law dependence on stress and effective pressure. A linearized set of equa-
tions yields descriptions of the coupling of the ice flow with the sediment flow and reveals
parameter ranges where the till-perturbation amplitude can grow. This sheet-flow

instability is an e

sential part of any theory of drumlin formation and shows that viscous

models of till have the ability to explain typical deforming-bed features. This is of great
significance for large-scale ice-sheet modelling.

NOTATION

Variable Meaning

a,b Till-flow model indices

k Wave number

P Iee pressure

Pe Effective pressure

,’:‘l- Pel) — (.\'D“

q Till Nux

t T'ime

(1, w) Velocity

) (z, 2) wy(z,z) — DhoU

(T, Z) Position

Ay Rate factor for till

BN BL Fourier coefficients

D Till thickness

b= DF Fourier coefficients for D

D () +(0?)?*)

B Velocity function for till deformation

it Flux function for till deformation

M Migration velocity

PR Fourier coeflicients for p

00500 Derivatives of F,

R, Ry, Rp Derivatives of F,

T Tangential, normal traction at sediment
surface

U Reference (simple shear) velocity field

o = (py — pi)g Interfacial p, static gradient

B=(1-¢)

(ps — pw)y Internal p, static gradient

v o+ 3

E Expansion parameter

n Ice viscosity

0] Sediment porosity

w Phase

L. INTRODUCTION

Drumlins are mounds of sediments produced by the action
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of ice sheets and glaciers. They range in size from a few
metres to tens of metres high and range in length from tens
of metres to kilometres. Typically, drumlins have blunt up-
stream and occasionally downstream faces. The problem of
explaining drumlin formation, which has troubled glacial
geologists for over a century, was re-invigorated in the
1980s when it was realized that sediment deformation could
explain many of the structures found within drumlins
(Boulton, 1987) and it was hypothesized that, if subglacial
sediment were essentially deforming as a viscous fluid, then
drumlin formation might be a problem explicable using
fluid-dynamical principles (Boulton and Hindmarsh, 1987).
This has important consequences, because the same physics
which explain drumlin formation can also explain ice-
stream lubrication by deforming sediment, as observed
beneath Ice Stream B (Blankenship and others, 1966). The
ability to explain drumlin formation can thus be seen as a
key test for any theory of subglacial sediment transport
and, if subglacial sediment deformation is an important
sediment transport route, the study of drumlins provides in-
formation about the large-scale flow of sediment, informa-
tion which cannot be measured in the laboratory for
practical reasons (Hindmarsh, 1997).

Recently, the blunt faces of drumlins have been ex-
plained as shocks (Hindmarsh, 1996, in press a) and a non-
linear kinematical theory of drumlin formation has been
developed. However, while a certain proportion of drum-
lins are obviously moulded from pre-existent relief, there is
a sufficient proportion of drumlins composed of the same
material as surrounding till (subglacial sediment) fields to
suggest that drumlin formation may be an instability in a
viscous [low of a till sheet. This idea has long been debated
amongst glacial geologists. In this paper, we examine the
stability of a till sheet at wavelengths longer than the depth
of the deforming till but shorter than the ice-sheet thickness;
this is a typical drumlin wavelength.

In general, the flow of two shearing layers of different
viscosities but the same density is stable. In this case, the
viscosity of the till layers is aftected by the normal traction
applied by the ice. Moreover, till discharge does not increase
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monotonically with till thickness (for a given stress) but de-
creases, owing to increased effective pressures (Hindmarsh,
in press a). On its own, this does not lead to unstable thick-
ening of the till layer but the interaction of this property
with the ice flow might. This is investigated in the present
paper. It is found that under certain conditions, but not all
conditions, that unstable thickening does occur; sheet flow is
not stable. A feature which emerges is that, in general, till
bed forms migrate. This is not something which has been
extensively discussed in the literature and indeed it is hard
to see how it might be inferred from formerly glaciated
areas. Rock-cored drumlins might at first sight appear to
militate against this idea but, since so many drumlins are
not rock-cored, one has to regard rock-cored drumlins as
atypical in genesis and therefore in dynamics. It is hard to
1magine a viscous theory which does not in general predict
migration.

The ice-flow model is a variant of the perturbation
approach developed by Nye (1969, 1970) and Kamb (1970),
called here the NK solution, and, since the ice is in a state
of simple shear at large distances from the bed, also bears
some relation to the analysis by Morland (1976a, b); it is
not, however, a gravity-driven flow. Rather than slipping
over a perfectly smooth, fixed bed, it is fixed to a thin
detorming fluid, the till, whose stress fields can be computed
using lubrication-theory approximations (known in glaciol-
ogy as the thin-till approximation (Alley, 1989) ). The evolu-
tion of the till profile can then be computed and it is found
that in certain parameter ranges the surface reliel’ grows,
although of course the till volume remains constant. This is
the principal result of the paper; ice {lowing over a thin till
sheet can promote unstable amplification of relief. This is a
necessary component of a theory of drumlinization if it is

believed that not all drumlins are created by moulding of

pre-existent relief.

This analysis is based upon the viscous flow laws for till
where strain rate is proportional (o the shear stress to some
low power and inversely proportional to the effective pres-
sure to some low power (Boulton and Hindmarsh, 1987). The

relevant paper was written in the context of six decades of

mechanical research which showed that on the small scale
sediment was plastic. At Breidamerkurjokull, the ice over-
riding deforming sediment does not build up and then slip;
en masse, it does not behave plastically. Aviscous law, while
undoubtedly failing to represent failure, represents the sim-
plest model compatible with large-scale observations. In the
same way as observations of dislocations in ice (an event
akin to plastic failure) are never held to militate against the
validity of viscous descriptions of'ice, there appears to me to
be no contradiction between laboratory experiments which
demonstrate plastic behaviour and the posing of a viscous
law which applies on a larger scale (Bahr and Rundle,
1996; Hindmarsh, 1997). Recent studies, for example, by
Kamb (1991) and Iverson and others (1995), which question
the existence of local viscous behaviour, do not explicitly ad-
dress the question of what an appropriate large-scale law
might be. On the other hand, to be of any use, a large-scale
viscous law must be shown to be able to reproduce observed
behaviour. This paper shows that the viscous flow of till,
when coupled with ice flow, can create an instability which
appears to be necessary in the formation of drumlins (Hind-
marsh, in press a). Actually, it also shows that power-law in-
dices as high as 10 (which some might call plastic behaviour)
can create drumlins.
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2. STOKES EQUATIONS AND BOUNDARY
CONDITIONS FOR SHEAR OVER A MOBILE BED

The solution domain is an ice-sheet half-space overlying a
detorming till layer of finite thickness. The ice and the till
are supposed to be [ully coupled, so that velocities are con-
tinuous across the interface. A shear stress is applied to the
ice at a large distance from the bed, which sets up a simple
shear in the ice and causes the till to deform. In the base
case, the ull surface is flat, meaning that a simple shear ex-
ists in the ice and that the till deforms with uniform velocity
at its upper surtace. Small periodic variations in the till sur-
face profile are then introduced, which cause the simple
shear in the ice flow to be modified, according to a variant
of the NK perturbation of the Stokes equations. Flow in the
till is still computed according to lubrication theory princi-
ples, implying that the wavelength of the disturbances be
greater than the deforming layer thickness. The perturba-
tion to the ice flow implies perturbations to the tangential
and normal tractions applied to the till, causing the till flow
to be perturbed, and it is the distribution of these which
determines whether the till relief grows or decays.

Consider the ice to be occupying a half-space periodic in
the horizontal direction in the domain x = [0, 27r/k] and
z > 0, where k is a wave number. We can generate a zeroth-
order solution by assuming that the bed is flat and that the
till is thus of uniform thickness 2 = Dy, with the top of the
till at z = (). Let us suppose that a traction Tjf is applied to a
horizontal surface on the ice at a distance very far from the
bed. This sets up a simple shear in the ice and in the till and
also creates a horizontal velocity in the ice at the bed z = 0.
We find that the zeroth-order velocity is

wy = Uy, +28,U, 8,U =Ty [n, Uy, = Fu(Ty, peos Do)
(1)

where peis the interfacial effective pressure and F), is a
function to be discussed later. This shear implies a flux of till
given by

q = Fy(Ty , peos Do) (2)

In this analysis, the effective pressure is a [ree parameter,
which in reality is determined by the subglacial hydraulic
system. In this study, horizontal scales are assumed to be
sufficiently small that pressure gradients are hydrostatic;
there are no horizontal water-pressure gradients. The phy-
sics of this has been discussed by Hindmarsh (1996, in press).

Following Nve (1969, 1970) and Kamb (1970), we perturb
the zeroth-order solution of ice flow by introducing some
undulations into the bed. There is a difference here com-
pared with the NK solution, because we have a base solution
with simple shear (and thus no possible problems with the
Stokes paradox (Fowler, 1981)), the situation is in some ways
analogous to the gravity-driven flows computed by Morland
(19764, b). Moreover, we follow Nye (1970) by working in a
perturbed coordinate system where z is measured from
above the bed. This transform is covered in more detail in
the Appendix.
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The perturbation expansion of field values in the ice in
this transformed coordinate system is

u="U,+ :U(z+Dy) + cuy (. 2) + O(£%), (3a)
w=ew(z,2) +0(e?), p=em(z,2)+0(?), (3b)
D = Dy +eDy(z) + O(<?) (3¢c)

with basal boundary perturbation expressions
TII — T“n ile ETln. Tt - jﬂﬂt 2 ETIt (_l)
and it is shown in the Appendix that we obtain the following
first-order field equations
NV = 8,py + 02D, 0.U,
Vi, = d.pr,
dpuy + d.wy = 8.U3, D,

with boundary relations

T = n( ;21 +%) £= 2’?(;[1 B a:Ua*‘D‘) TP

where the normal traction convention is compressive-posi-
tive. Il we define a new function

ay(xr,z) = wy(x,z) — D10.U, (5)
we can retrieve the more familiar set of NK field equations
V20, = d.p1. (6a)
"rfv?wl =d.py. {6h)
A,y + d.wy =0 (6¢)
but now with houndary relations
(r)‘lnu (')'EU]

T =5 + . Ta
; U( 8z = Oz (7a)

i (I)T;’,]
T] = =il = Tieay +m = 2” _(.)T + Py (71))

The first-order basal velocity is computed using a lincar-
ization of the basal velocity relationship (1), so we can write

u(x,z=0) = RT' + R,T" + Rp Dy, (8)
Ry = 0F,/0r, R, =0F,/dp., Rp = 0F,/8D (9)

where the derivatives are evaluated around the zeroth-order
state. We also need to satisly the first-order kinematical con-
dition

aD] i []],(').,-Dl =1Un (10)

where @ Dy (hy construction zero in the NK formulation) is
given by the linearized till-conservation equation

oD, = — Q,(')_,.Tl' — Qné: TV - Qpd. Dy, (10
Qr = dEe/aT Qu = 8511/01)«-- Qll = BFq/dD (12)

Some readers may feel these perturbations look strange as
they appear to lack the expected products of zeroth- and
first-order terms. In fact, all the zeroth-order terms are in
the coctlicients Ry, n, Q. p. A quick way of verifying the
validity of the method is to remember that a linearization
is simply a Taylor expansion; the Taylor coefficients here are
simply R ps Quap.

The velocities and [Tuxes are computed following Alley
(1989) and Hindmarsh (in press a). Till lux can arise cither
from internal deformation within the till or from till sliding
over the base. When considering internal deformation, the
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strain rate in the till is given by a double power-law rheology
(Boulton and Hindmarsh, 1987)
du B Agr? B Ayt
0z pe(2)’ (pen+ (D — Dy)+ B(D— Dy — 2))°
(13)
where Ay is a rate factor and a and b are parameters, Then,
defining

Pe = Pen — )y (14)

whence after integrating with respect (o z over the interval
—.D“ S 2 S D— D[J we find

At 7. 15 g 1t
L . TR L T ) 15
u=F=g5_1 ((P +aD) " —(p. +7D) (15)
and the flux is given by
A(IT"
g=Hi=

T R-DE-27

(e + aDP ™~ (3 + D) (i + 2D))  (16)
where
Q=a+0b-1)=~+8(b-2). (17)

In these formulae
a=(py —pi)g B=(1=0)(ps—pw)g. Y=+

where g is the acceleration due to gravity, py. pi and pg are
the densities of ice, water and sediment grains, and ¢ is the
porosity of the sediment. We use the values 9.81ms
1.0 Mgm % 0917 Mgm *, 27 Mgm * and 02, respectively,
in this paper. These formulae are derived in exactly the
same way as the equivalent relationships in Alley (1989)
but account for statically induced vertical interfacial effec-
tive pressure gradients arising from the density difference
between water and ice (Hindmarsh, 1996). Under static
assumptions, an increase in elevation causes an increase in
effective pressure because water pressure decreases more
rapidly than does ice pressure as one ascends, Alley’s formu-
lac may be retrieved by setting o = 0.

We now turn our attention to till-bed sliding. If we use
the viscous-type sliding law proposed by Hindmarsh (1996),
we find that

Agr® ATtD
w(D) = — i Gi—— T (18)
(b +7D) (pe +7D)

Sliding and deformation do not occur together in this study.

We note that the more complicated derivatives are given by

_Ou i ol — "
By, = EE— Ac]g((f)c"}"\/[)) (p(' + aD) )- (]-Jd)
B P o —b
Rp = 55= Aq F( (e +7D) " — alp, + aD) ),(195))
dq Ay
] T e e 19¢
= " -1 =2) > 18]
(b—1)(pe + QD) — (p. + D) 3 (b—2)
(pe +9D)" (e +aD)"!
{2, = ﬂ_ Ayt ap. + vy D o
d aD Hf)'ﬂ(b = 1) (ﬁ( 4 TD)"; {]}r 4 uD)h—I
(19d)

A significant point is that we have assumed that the
shear stress is constant within the till. At wavelengths com-
parable with the deforming till thickness, this approxima-
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tion breaks down, and gradients in the till thickness and the
applied normal stress cause additional flow effects. Our
analysis, therefore, is only valid for wavelengths between
the thickness of the till layer and the thickness of the ice
layer. This is the relevant length scale as most drumlins are
of this size.

3. SOLUTION
Let us suppose that the bed profile is given by
Dy (t) = Dy'(t)sinkx + D, '(t) cos kx (20)

where D{({), D '# (t) are scalar functions of £. The solution
to the field I:.qualluns (6) is

wy = exp(— )({C" pTy (%—I-z)}cosk;r.. (21a)
o B o)),
% = wepl )({Cf*+_z}m ko
{C +%z}cosk.r). (21b)
p1 = exp(—kz)(P® coskz + P? sin kx) (21c)

where the coeflicients C®. P, C'7, P? are determined by
the basal boundary conditions. At the base, z = (, we com-
pute the tangential traction and its gradient as follows

Tt = n(.1 + dpwy) = 2nk(C” coskr — C*sin kz),

(22a)

. T{ = — 29k* (C?sinkx + C cos kx) (22b)
and the normal traction and its gradient as

T7' = p1 + 200, (23a)

= (29kC* + P®)coskz + (2nkC # 4 P'f) sin k.,
A, T7 = —k((2nkC° + P*)sinkz — (2nkC”+ P")cos k)
(23b)
while the interfacial velocities are given by
P P £
Wy = (C{I + m}) cos k:r + (C —|— E) ﬁin k.'L'. {24&)
fiy = Csinkx — C% cos k. (24b)
Substitution of Equations (20), (22a), (22b), (23a), 23h),
(24a) and (24b) into Equation (8) and also into Equation
(10), where we have eliminated d; D by using Equation (11)
and subscquent multiplication of each of these equations by
sin kx and separately by cos kx followed by integration over
the horizontal domain yields the following system of four

equations for C'%, C8_pe PP

1+ 2knR, —2knR, 0 —R, e

2kn R, 1 + 2knR; b 0 G*

1 — 22l 2°nQn  1/2kn  kQ, iEE.
-2k0Q, 1-2knQ —kQun 1/2kn] | P”

RyD?
3
—higlhy (25)

k(UL — Q,i)D[‘
—k(Us — Qa) D}

Solutions are discussed below.
Superposability is easy to demonstrate by expanding ar-
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bitrary (differentiable) bed shapes in a Fourier series. The
ahbove equation holds for each bed frequency, and solutions
for the stress and velocity fields may be obtained for each
wave number which depend only on the bed geometry at
that wave number. This also applies to the linearized till
thickness evolution equation discussed below, meaning that
evolution equations may be obtained separately for each
mode.
The linearized till conservation equation is

afDl = _QtafvT{ - Qna.rTF - Q(larDl°

Using relations (22b) and (23b), we can show that the phase
and anti-phase mode-evolution equations are

D = 2KnQuC” + kQu(20kC® + P) + QukDY,
D} = 2k*nQiC* — kQn (2nkC” + P7) — QukDY.
This solution represents a sine wave growing or shrinking in
amplitude and translating. The rate of growth of the bed
perturbation LDH is

| D5 || D] = (2kn@iC + k(2knC” + P*)Qu) DY, (27)

and we can use the idea of the growth-rate constant

D5 (2kn@C* + k(2knC? + PP)Q,) D a28)
5] Dy |

(26a)
(26b)

This analysis shows that an incipient drumlin will move.
The phase w is given by

D.}
= st
w = arctan D?

and the migration veloeity M of a sine wave with wave num-
ber k is given by -w/k. Tt can readily be shown that

1
& = (D“D ~ D D”)
(D5)*
and in this case the velocity M of a sinusoidal till wave with
wave number k is given by

Qu—24Qm(C* Dy — D))
N2
(Df)
((2nkC? + P?)Df + (2knC + P*)D;)
5 3
(Df)

We call this the migration velocity. Where there is no
ice—till coupling, the migration velocity is equal to the kine-
matic wave velocity @q. It can be shown that M =
Qq + (dq/df)(0%f/92D), where fis a field variable other

than D, such as T;. This result generalizes to an arbitrary
number of field variables. Thus, we do not expect the migra-

M=

(29)

+ Qx

tion velocity to be equal to the kinematic wave velocity
when @ or @, are non-zero — where there are gradients
in the field variables, the elevation of a kinematic wave is
not constant. Owing to the relationship between the migra-
tion velocity and the kinematic wave velocity, it is hard to
conceive a viscous theory which does not have migrating
drumlins.

4, EXAMPLES AND APPLICATIONS

Without loss of generality, since we are considering cases of
individual Fourier modes, we set D7 = 0, which consider-
ably simplifies the solutions given below. It is straightfor-
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ward to show that the force exerted by tangential traction
must sum to zero at this order, and the additional drag, which
is a second-order quantity (Fowler, 1981), is obtained from
the normal traction

(30)

We find that the solutions to the matrix Equation (25) for all
the @) zero, implying a bed of fixed geometry, are

ce (.'Rd

cel Dy —2R,k*nlh,

P | 7 1+ 2knR, | 4n*K3UL R, + 2kn(kUy, — Ry)
P’ PR UL R,

(31)

Ifall the R are zero (no slip) then C, C'? are zero and we
find that P, P? = 0 since Uy, is zero for a fixed bed. Noth-
ing happens at this order of the approximation. If the basal
conditions are very slippery (IR, very large) but the other R
remain zero then we retrieve the NK solution C° =0,
jE= QWkQM,D{‘. It is not obvious that we should get this
but nonetheless we do.

Note that non-zero anti-phase components C'7, P7 only
occur when there is a dependence of the basal velocity on
the effective pressure. Moreover, when the bed is not mobile,
the basic Equation set (25) and expressions (24a) and (24h)
ensure that there is no anti-phase structure in the normal
velocity at the interface nor in the normal traction.

The full set of equations, with non-zero Q. Q,.Qp do
possess solutions in rationals of polynomials involving no
radicals, which are nonetheless oo complicated to peruse.
Numerical solutions involving direct inversion of Equation
(25) are readily obtainable. Our main question concerns the
possible existence of unstable Fourier modes which cause
bed relief to grow. We now show that they must be associated
with the existence of anti-phase structure. In consequence,
since anti-phase structure is excited by the dependence of
the deforming-bed viscosity on the effective pressure and
through this, on the applied normal traction, we sce that it

Hindmarsh: Stability of a viscous till sheet coupled with ice flow

is the dependence of deforming sediment rheology on effec-
tive pressure which causes unstable growth of relief.

First, we note that the rate of change following the wave
is given by dD/dt| = & D+ M3, D. Since, at the maxi-
mum, d,D = 0, the rate of change of the maximum point
following the maximum is simply @, D. Consider now the
bed-evolution equation

D1 = —Qid. Ty — Qud: T} — Qu. Dy .

The elevation maximum occurs at & = 7/2k. At this point,
relationship (22b) shows that (in the absence of anti-phase
structure) that the first term on the righthand size is zero,
as is the third term. In general, a zero R, implies a zero
2y, but even if that were not the case, a more detailed ex-
amination shows that for (), < 0, the usual case, the sedi-
ment relief will decline. The feature which causes the
sediment relief to evolve is a non-zero R,,.

There are a large number of factors which influence the
evolution of the bed profile; the zeroth-order stresses 7 and
Pens the sediment deformation and sliding rate factors, and
the various indices. Since it is evident that there is a direct
dependence of the perturbation on the basal velocity Uy,
instead of varying the rate factors as a parameter, we vary
the velocity U}, as a parameter and choose the rate factor to
give the required velocity.

Approximately 240 000 calculations considering internal
deformation have been carried out, comprising the direct
product of the following seven-dimensional parameter
space: [y € [0.1,100]m, Uy, € [1,1000]ma ' the wave-
length 27/k € [10, 1000], pey € [2 x 10°,10°] Pa, 7 € [2x
10%,10°] Pa, (a,c) € [1,10] and (b,d) € [1.02,10]. Such a
large exploration of parameter space would not have been
possible using numerical solutions of the full equations.
‘The main aim has been to identify the regions of parameter
space which encourage amplification of relief. Figure 1
shows the proportion of positive growth rates for each para-
meter value. All cases for a particular parameter value are
considered; for example, if the effective pressure is 0.002,
into this bin goes every case where this is true.

Thus, the proportion of positive growth rates increases

081

Proportion with +ve growth
= o o
wn o ~

T T T

2
'Y
T

=1
U, /m.yr

V 1

10 100 1000

Parameter value

Fig. 1. Proportion of cases where the growth rate is positive, plotted using each parameter as the independent variable. Note that a
starls just where p, finishes. Parameler units are indicated on the main plot.
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with basal velocity, declines with perturbation wavelength,
and shows a non-monotone relationship with till thickness,
reaching a maximum at till thicknesses around 50 m. This
need not be true for any particular parameter value. The
proportion decreases with effective pressure and shear
stress, increases with shear-stress index and has a non-
monotone relationship on the effective pressure index.

Individual cases are not so clear cut. Figure 2a shows
how growth rate depends on the till thickness and the basal
velocity for the indicated values. For low values of till thick-
ness and basal velocity, growth rates are negative, and there
is a monotone increasing dependence on basal velocity but a
non-monotone dependence on till thickness, but with
growth rates remaining positive. For a rather more non-lin-
ear flow law, Figure 2b shows a simpler dependence on till
thickness and a different pattern of negative growth rates.
Figure 2c has basal velocity and wavelength as independent
variables. High wavelength means negative growth rates for
low velocities. Figure 2d shows that high effective pressures
can suppress drumlin formation for small tll thicknesses
and that there is a non-monotone dependence of growth rate
upon effective pressure,

In general, these cases suggest that high velocity and
greater till thickness encourage drumlin formation. The
result that is encouraged at small wavelengths is dependent
on the assumption that the thin till approximation holds
good. Drumlins presently found in very thin till sequences
may therefore be erosional remnants, if cases exist where
longitudinal stress gradients within the till suppress drum-
lin formation. One curious feature is that positive growth-
rate constants are very much larger in magnitude than are
negative ones and are high enough to suggest that drumlins
can form very fast indeed. Calculations involving till sliding
only and covering the same parameter range found no cases

a b=203 a=1

L7 I = V]

(d D /dtyD )a™
{=]

o B

(d D Jd 1D a

(
b

g

where the growth rate was positive. This suggests that
drumlins which have formed from till slipping over its bed
may also be erosional remnants or may arise from moulding
of existent relief.

A fundamental constraint on any linearization techni-
que is that it makes no prediction of what happens when
the perturbation becomes large. The small parameter in
the NK perturbation is the bed slope and the perturbation
becomes invalid when the slope reaches unity. However,
when the wavelength is 100 m and the perturbation ampli-
tude 10 m, the error in the Stokes equations is still only 10%,
meaning that qualitative predictions may remain correct
provided that the original till thickness was sufficiently large
that a 10 m amplitude wave remains small.

By the time slopes reach order unity, we anticipate shock
formation to have occurred, which is not a process that can
occur in the present linearized theory. A further factor
likely to be of significance is the appearance of higher har-
monics when the perturbation of a linear fluid is considered
to higher order (Gudmundsson, 1997a) and (perhaps sepa-
rately) when a fluid with a Glen rheology is considered
(Gudmundsson, 1997b). These analyses show that higher-
order and non-linear effects start to play a significant role
well before the aspect ratio reaches order unity. These fac-
tors could cause relief to be amplified at different wave-
lengths from that of the perturbation.

5. CONCLUSIONS

This paper has been concerned with establishing a funda-
mental property of ice shearing over sediments deforming
according to a double power-law rheology; does it act so as
to amplify relief? The answer is that, under certain condi-

b b=10, a=10

((d D /d 1yD jia”"
s |
82 o 5

~1
{dD/dt)/D‘,)la
S = Now

(

Ep

D /m 0.1 0.01

pw/m:‘Pa

Fig. 2. Plots of growth-rate constant Dg/ D¢ as a function of indicated independent vartables, and for various cases of the indices
a and b. In cases where they are not, the independent variables, Dy = 10m, Uy, = 100 m a ! L = 100m, p. = 10 Pa, and
7 = 1’ Pa. Growth rates are shaded where positive and white where negalive.
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tions, infinitesimal perturbations grow. How large they
grow and, whether they will continue to grow once shocks
start to form, is not answered by this analysis. T'his analysis
1s taken as indicating that drumlins could be formed from a
till-sheet flow instability, and is consistent with a body of
evidence (Boulton, 1987; Hart,1997) that drumlins are some-
times composed ol deformation till and are not necessarily
formed by the moulding of pre-existent relief.

The drumlin instability therefore represents another as-
pect of larger-scale behaviour which can be modelled using
viscous laws, Framed as they are at the larger scale, there is
no rcason why they should represent smaller-scale beha-
viour and it is a misconception to suppose that they must.
Furthermore, the viscous-type law must, on the present
state of knowledge, be more appropriate for large-scale ice-
sheet modelling than the plastic law.
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APPENDIX

NYE TRANSFORMATION UNDER UNIFORM
SHEAR

Consider a region periodic in the horizontal direction in the
domain i = [0, 27r/k] and z > 0. Define horizontal and ver-
tical velocities @, @ and pressure p. The Stokes cquations

. 02'}‘+@ ~ dp
Nozz " 82) = 83

N(Ow o\ _ dp
Nozz T 92 ) ~ 83

@ i ow _0
A

where nis the viscosity of ice approximated as a lincar tluid.
On the base z = D(x), we have boundary conditions

Vil n

1+ (8:D)
o Ow a2 - ~du
((E = m) (1 = ((),D) ) =+ -1()_,-.{)5) 5

o (1 = (‘d-.D)E)
1+ (9,D) \ 9% '

oL N . =
i (e),s N }').f-) (8:D)

For convenience, we have adopted the compressive-positive

T“:ﬁ'i‘

convention for the normal traction 7.
YL can generate a zeroth-order solution by assuming

that the bed is flat
D = f)”

and that a traction 7]} is applied to a horizontal surface on
the ice at a distance very far from the bed. This sets up a
simple shear in the ice and also creates a horizontal velocity
in the ice at the bed z = 0. We [ind

ity = Uy, + 0.U3,0.U =T} /n.

Following Nye (1969, 1970) and Kamb (1970), we perturb the
zeroth-order solution by introducing some undulations into
the bed. There is a difference, because we have a base
solution with simple shear. The perturbation expansion is

=i
|
=
-
5]
&
[
+
i)
=
&
+
Q

We now use the Nye transform to account for zeroth-order
shear

=T 2= g—el)

i =, i =10, p=5

and write down another set of perturbation equations where
the zeroth-order solution is
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u= Uy + 8.U(z+eDy) + ewr(z, 2) + O(£%),
w=cw(x,2) +0(e), p=ep(z.2)+O0(),
D=eD(x)+ O(Ez)._
Tr=10 Lo T =T - eT)
It is straightforward to show that
(#.E= ) —ulEs=0)=
ed.UD; + et (#,% = ¢) — ewa(z,2 =) + O(£%)
which implies that one can write with error O(g) that
(G2 =10 =uiln; = () — &UD;
and one may also write to the same accuracy
w(#,2=¢) = wi(r,2=0), p(F,2=() =p1(z,2=().
('This is what Nye (1970) did but we need to be more careful

with our notation owing to the presence of shear in the zeroth-
order solution.)

We can readily obtain the differential transforms

8 & . .8
ﬁ— E—E()D]O.LE,
F_F__(FD0 oD 8, LD
a2 O »r 8z Or 0z20¢) =~ Ox 022

and it is then easy to show that we obtain the following per-
turbation equations

T]VQ'EH = a,-pl i ():(jafDl
T;VQ'wl = o4
oy + Oy = .U Dy,

with boundary relations

ouy  dun
| S 2 ois,
h ‘”(az L B;r)'

a.
T/'= —0u = Taay, +P1=20 (% = f'3.~UQ-D1) +
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