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Abstract 

Despite the potential to enhance efficiency and improve quality, AI methods are not widely adopted in the 

context of product development due to the need for specialized applications. The necessary identification of 

a suitable machine learning (ML) algorithm requires expert knowledge, often lacking in companies. Therefore, 

a concept based on a multi-criteria decision analysis is applied, enabling the identification of a suitable ML 

algorithm for tasks in the early phase of product development. The application and resulting advantages of the 

concept are presented through a practical example. 
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1. Introduction 
Artificial intelligence (AI) has made great progress at a tremendous speed in recent years. For instance, 

the number of patent applications tripled compared to 2015 (Zhang et al., 2022). Due to their ability to 

reduce costs and time while continuously improving quality, AI methods are increasingly attracting the 

attention of companies (Diemer et al., 2020). 

Those advantages become especially evident in the context of product development, where the trend 

towards individual products, rising cost pressures and shorter innovation cycles presents the challenge 

of enhancing efficiency, reducing time to market, and improving quality to maintain competitiveness in 

the market (Krause, 2018). Due to its significant impact on overall development time and costs, the early 

phase of product development is particularly relevant in this context (Ehrlenspiel et al., 2014). Hence, a 

range of existing approaches, from defining requirements (Christensen et al., 2017) to assisting in the 

design process (Camburn et al., 2020), substantiate the supportive role of applying machine learning 

(ML) as subfield of AI in this context. However, recent studies show limited adoption of these ML 

algorithms within companies (Reder, 2021). 

In terms of causative factors, companies struggle to identify appropriate activities for the application of 

ML support. Moreover, it becomes evident that solutions customized to their particular requirements 

are needed. This raises the issue of identifying appropriate ML algorithms, a task that demands expert 

knowledge not readily available within the companies. (Reder, 2021) In addition, the process of 

identifying suitable ML algorithms for a particular problem is characterised by a lengthy trial-and-error 

process that involves testing different ML algorithms. As the current process relies on expert knowledge, 

it is highly subjective. (Sarang, 2023) 

Therefore, the question arises: 
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How can individuals who lack experience be aided in identifying an appropriate ML algorithm for their 

particular task in the context of product development, taking into account their specific preferences and 

constraints? 

1.1. Elaboration of the requirements 

To support ML algorithm selection, an approach should meet various requirements derived from current 

challenges of implementing ML in company processes. 

Companies are currently unaware of potential use cases for ML and the specific problems that can be 

addressed with particular ML algorithms (Reder, 2021). Consequently, the approach shall be capable to 

deduce potential ML algorithms suitable for addressing a specific task (R1). Building on this, early 

decision making shall be supported, even in cases where datasets for the task may not be available yet 

or are to be generated with regards to a specific ML algorithm (R2).  

Companies seeking to implement ML in their processes aim to address individual tasks tailored to their 

specific constraints and preferences (Reder, 2021). Hence, the approach shall accommodate the 

individual preferences of the companies in terms of the evaluation criteria (R3) and address the 

constraints that must be taken into consideration when using ML algorithms (R4). The latter becomes 

especially important when the performance measures of multiple ML algorithms are nearly equal and 

cannot serve as decision criteria. 

Many companies, especially small and medium-sized ones, lack expertise in the field of ML (Reder, 

2021). Consequently, the approach shall be applicable without the need for prior ML knowledge (R5). 

To support the decision-making process, the approach shall be transparent in terms of the evaluation 

process and provide results that can be analysed and comprehended, allowing for the possibility of 

questioning, or adjusting one's preferences (R6). 

1.2. Related work 

Existing approaches that aim to support identifying a suitable ML algorithm can be classified into four 

distinct categories. 

Quantitative criteria (1) 

Numerous publications compare a variety of ML algorithms using performance measures like precision, 

recall or the F1 score (Luttmer et al., 2023). These assessments are often conducted for specific ML 

algorithms, tailored to specific tasks or datasets. For instance, Abo et al. (2021) evaluate various 

supervised learning algorithms in the use case of Arabic sentiment analysis. A more general approach 

by Blagec et al. (2022) focuses on building a knowledge graph containing benchmark results and 

performance analysis for a range of ML algorithms.  

AutoML (2) 

The term AutoML summarizes a variety of approaches, in which the selection of an appropriate ML 

algorithm is treated as an optimization problem. The hyperparameters of supported ML algorithms are 

iteratively adjusted based on an existing dataset of the specific problem. Performance measures serve as 

evaluation criteria to identify the most suitable algorithm. Common examples are Auto-Sklearn and 

Auto-Weka. (Waring et al., 2020) 

Qualitative criteria (3) 

Several approaches define lists of criteria comprising qualitative measures for comparing multiple ML 

algorithms. Commonly those criteria lists are limited to supervised or unsupervised learning and either 

created or provided within the context of specific application areas. For instance, Lickert et al. (2021) 

provide such selection criteria for a limited set of supervised learning algorithms in the context of reverse 

logistic, while Riesener et al. (2020) offer criteria for a limited number of ML algorithms in the context 

of product development. The evaluation of the ML algorithms includes criteria such as transparency, 

tolerance for erroneous and irrelevant values, and computational efficiency. 

Knowledge representations (4) 

Further approaches focus on the creation of knowledge databases, that facilitate the finding of a suitable 

ML algorithm, along with associated insights into its advantages, disadvantages, and potential 

applications, based on a problem formulation. Gerschütz et al. (2021) introduce a semantic web-based 

approach, which includes the characterization of ML algorithms in the context of potential use cases in 
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product development. Gerschütz et al. (2023) present an ontology-based approach, that enables the 

identification of an appropriate ML algorithm using query syntax.   

2. Research goal 
The comparison of the elaborated requirements and existing approaches yields the results depicted in 

Table 1. 

Table 1. Derived requirements for the approach and their fulfilment by existing approaches  

ID Requirement (1) (2) (3) (4) 

R1 The approach shall be able to deduce a suitable ML algorithm for a predefined 

task. 

○ ○ ○ ● 

R2 The approach shall be applicable without preexisting datasets. ● ○ ● ● 

R3 The approach shall provide the opportunity to express individual preferences 

based on the importance of criteria. 

● ● ● ○ 

R4 The approach shall consider, regarding the evaluation criteria, the constraints that 

limit the application of ML algorithms. 

○ ○ ● ○ 

R5 The approach shall be applicable without prior knowledge regarding ML. ○ ● ○ ● 

R6 The approach shall be transparent regarding the evaluation process and results. ○ ○ ○ ● 

●: fulfilled ○: not fulfilled 

 

R1 and R2: While existing quantitative and qualitative lists of criteria (1, 3) offer evaluation measures 

for supervised and unsupervised ML algorithms, they do not address the extent to which a given ML 

algorithm can even address the underlying task. For instance, a task deduced to a classification problem 

cannot be addressed by a ML algorithm designed for clustering. AutoML-related approaches (2) also 

face the challenge of requiring a preexisting dataset for evaluating a suitable ML algorithm.   

R3 and R4: Quantitative criteria lists and AutoML-related approaches (1, 2) are limited to performance 

metrics. Although qualitative criteria lists (3) address constraints, there is a notable lack of consistency 

in these criteria, particularly in terms of incompleteness and their relevance to specific application 

domains. For instance, Lickert et al. (2021) define the criterion number of features, which is not covered 

in the elaborated criteria list for all ML algorithms. In contrast, knowledge-based approaches (4) do not 

explicitly state boundary conditions directly associated with the respective ML algorithms, nor do they 

facilitate the definition of individual preferences regarding the selection process.  

R5 and R6: Quantitative as well as qualitative criteria lists (1, 3) do not give guidance on how to apply 

the criteria to a given problem statement in order to select an appropriate ML algorithm. For instance, 

the criterion presented by Kotsiantis et al. (2006) regarding tolerance to highly interdependent attributes 

can be challenging for non-experts to understand, making it difficult to assess its significance. In 

addition, no evaluation method is presented regarding the evaluation process. Thereby, with respect to 

AutoML-related approaches (2), the evaluation process can be described as a black box (Sarang, 2023).  

Table 1 indicates that none of the existing approaches can fully meet the elaborated requirements and 

cannot be effectively adapted to support the selection of ML algorithms in the context of product 

development. Therefore, they are unable to provide seamless decision-making support, spanning from 

task definition to evaluation and the provision of results in an understandable format. For such highly 

complex decision-making processes, where a multitude of individual conditions and preferences need 

to be considered, evaluated and the results analysed, multi-criteria decision aiding (MCDA) methods 

have proven to be a robust solution (Brans and Smet, 2016).  

Therefore, the goal of this paper is to develop a MCDA-based concept that meets the requirements, thus 

aiding in the identification of suitable ML algorithms in the field of product development. This approach 

should consider one's specific constraints and preferences, all without requiring expert knowledge in ML. 

3. Development of the concept 
Based on the requirements outlined in Table 1, a concept can be developed, to facilitate the decision-

making process for selecting suitable ML algorithms for applications in the context of product 
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development in a systematic and objective manner. The concept can be divided into three distinct phases, 

each with the goal of narrowing down the solution space, as depicted in Figure 1. 

Phase 1: Derivation of the required ML capability. 

The starting point can be a problem formulation or an activity within the context of product development 

for which an appropriate ML algorithm is sought for application (Sonntag et al., 2023). At first, the 

objective is to identify suitable ML algorithms capable of handling the core activity underlying the 

domain-specific problem, such as whether it involves classification or clustering. This helps to narrow 

the solution space, for instance from general ML algorithms, to either supervised or unsupervised ones. 

Therefore, a reference process is established (R1, R5). 

Phase 2: Evaluating the ML algorithms. 

Once the solution space has been reduced to a specific class of ML algorithms, the remaining ones must 

be evaluated based on the user's preferences and individual constraints. This can be modelled as a 

MCDA problem, and therefore solved using an appropriate MCDA method (R2, R3, R4). 

Phase 3: Analysing the results and making the final decision. 

The evaluation of the ML algorithms may yield multiple candidates that align the company's 

preferences, among which one appears to be superior to the rest. A crucial step relies on the analysis of 

the result to understand the reason for the superiority, leading to the decision of the ML algorithm best 

aligns with one's preferences. To effectively support this process, several diagrams providing insights 

in the decision-making process are deduced to make the process as comprehensive as possible (R6). 

 
Figure 1. Concept for the decision support for the ML algorithm selection process 

To apply the methods corresponding to the phases, the underlying prerequisites must be developed. 

Therefore, in section 3.1, the development of the reference process will be addressed, and in section 3.2, 

the evaluation matrix will be established as a building block for implementing the MCDA method, 

which will be further discussed in section 3.3. This sets the stage for applying the concept to an example 

use case, discussed in section 4.  

3.1. Definition of the reference process  

ML algorithms can be categorized into three distinct classes: supervised, unsupervised and 

reinforcement learning. As indicated by Riesener et al. (2020), most tasks in product development can 

be addressed through supervised and unsupervised learning, making them the focus of the concept. 

Supervised learning algorithms establish the relationship between provided input data and their 

corresponding outputs, enabling them to perform prediction tasks (Jung, 2022). These can be 

distinguished between classification (Cl), which deals with the prediction of a category, and regression 

(R), which deals with the prediction of a numerical value (Bramer, 2020).  

Unsupervised learning algorithms handle unlabelled data, where the desired output is not known 

beforehand. Consequently, the objective is to identify patterns or similarities within the provided input 

data. (Jung, 2022) These algorithms can be further classified based on their ability to derive association 

rules (Ar), which involves identifying relationships between given variables in the form of rules, and 

clustering (Clu), which involves identifying similar data or grouping them into clusters (Bramer, 2020).  

To enable the identification of the class of algorithms capable of addressing a domain specific task 

within the context of product development, a reference process is established. 

The definition of the reference process is based on VDI 2221, which provides a comprehensive 

framework for design phases with the aim to be applicable to a wide range of companies (Bender and 
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Gericke, 2021). Due to its crucial role in the whole development process (Ehrlenspiel et al., 2014), the 

reference process focuses on the early phase of product development, resulting in the definition of four 

phases. The reference literature mentioned in VDI 2221 was consulted to further elaborate the reference 

process with sub-steps and corresponding activities. The excerpt of the resulting reference matrix in 

Table 2 illustrates an exemplary exclusive assignment based on the characteristics of the tasks and 

potentially suitable ML algorithms. For instance, by categorizing requirements into firm requirements 

and desires, the class is predefined, favouring a supervised classification algorithm.  

Table 2. Reference matrix to map the reference process 

Phase Sub step Activity Cl R Ar Clu 

Clarification 

of problem or 

task 

Elaborate requirements 

 

Information extraction from 

engineering documents 

●    

Specify requirements  

 

Identification of attributes connected to 

the requirement 

●    

Structuring requirements  Categorisation of the requirements ●    

Analyse requirements Identification of conflicting objectives    ● 

Determination 

of functions 

and their 

structure 

Determine functions Identification of functions derived from 

the requirements 

●    

Structuring functions Categorisation of the functions ●    

Function analysis Identification of interrelationships    ● 

Search for 

solution 

principles and 

their structures 

Identify solutions  Identification of vital characteristics 

and principles in existing solutions 

   ● 

Structure solution space Categorisation of principal solutions ●    

Form overall solution 

concepts  

Identification of compatibilities 

between principal solutions 

  ●  

Limit the solution space Group similar solutions    ● 

Assessment 

and selection 

of solution 

concepts 

Define assessment criteria Extract assessment criteria based on 

requirements 

●    

Analyse assessment 

criteria 

Identify contradictions and mergeable 

criteria 

   ● 

Define evaluation metrics Define measures for properties  ●   

Specify assessment values Evaluate concepts  ●   

Cl: Classification, R: Regression, Ar: Association rule, Clu: Clustering 

3.2. Elaboration of evaluation criteria 

The evaluation matrix, serving as the foundation for applying a MCDA method, has been constructed 

based on the generic steps for conducting an evaluation outlined by Bender and Gericke (2021). Hence, 

the criteria (C) are defined based on the constraints arising from ML algorithm application in the early 

phase of product development and within the company itself. The criteria aim to be mutually exclusive 

and encompass distinguishable characteristics of the ML algorithms. Therefore, aspects such as 

implementation complexity, which is directly related to factors like parameter complexity, can be 

evaluated alongside them. Due to their strong data relationship and individual adjustments, performance 

measures like accuracy or precision are not considered.  

The analysed ML algorithms for the concept are based on Schmid et al. (2021), who provide a structured 

overview of commonly used ML algorithms. Additionally, K nearest neighbours and three ML 

algorithms covering Ar are considered, based on their relevant application (Riesener et al., 2020). This 

results in a total of eight supervised and eight unsupervised ML algorithms to be included in the concept.  

The essential information required to define the features for criteria evaluation were collected through 

a systematic literature review. In total, 164 publications, including theoretical books e.g. (Jung, 2022), 

reviews and surveys e.g. (Kotsiantis et al., 2006), as well as applications of the presented ML algorithms 

e.g. (Licen et al., 2023) were examined. This leads to the evaluation matrix presented in Table 3.  
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C1: Data flexibility (max. 3) 

Depending on the design task, different types of data may be available, such as design parameters 

(continuous) or requirements (discrete). Matching data types with the ML algorithm is important to 

avoid data transformations. One can distinguish between discrete (1), continuous (2) or both (3). 

Transforming discrete values in continuous ones is a more difficult process, making it less favourable.  

C2: Data quantity (max. 4) 

The amount of available data can vary, especially in the early phase, depending on the design task. For 

instance, requirements elaboration may have abundant data compared to creative tasks. The quantity of 

data significantly influences the ML algorithm applicability. Therefore, the criterion evaluates 

supervised learning algorithms based on the required training data, favouring less. For unsupervised 

learning algorithms, the flexibility in data amount is assessed, with arbitrary sizes preferred. 

C3: Data preprocessing (max. 4) 

The quality of data in design-related tasks can vary. Different ML algorithms vary in the effort required 

to prepare the data for use. Several characteristics should be considered, such as the requirement of 

nominal values, the ability to handle noise and high-dimensional data. In this context, the number of 

combinations of these supported by the ML algorithm is assessed. 

Table 3. Evaluation matrix derived for ML algorithms (values range from 1 to 3 or 4; higher 
values indicate a better performance) 

Task Algorithm C1 C2 C3 C4 C5 C6 C7 C8 C9 

Cl/R K nearest neighbours (KNN)  2 3 1 3 3 2 3 3 2 

Cl/R Multilayer perceptron (MLP) 2 1 2 1 3 3 1 2 1 

Cl/R Convolutional neural network (CNN) 2 1 2 1 3 4 2 1 1 

Cl/R Long short-term memory (LSTM) 2 1 3 2 3 2 1 2 1 

Cl/R Decision tree (DT) 3 4 3 4 2 3 2 2 4 

Cl/R Random forest (RF) 3 4 4 3 2 4 3 3 3 

Cl/R Support vector machine (SVM) 2 4 2 2 1 3 2 4 2 

Cl/R Naïve Bayes (NB) 1 4 3 4 3 2 4 2 3 

Clu K-means (Km) 2 4 2 2 2 3 4 1 3 

Clu Hierarchical clustering (HC) 3 3 1 4 1 1 2 2 4 

Clu DBSCAN 2 4 2 3 2 3 2 3 3 

Clu Self-organizing map (SOM) 2 4 3 1 1 4 2 4 4 

Clu Fuzzy c-means (Fcm) 2 3 3 2 2 2 3 1 3 

Ar Apriori 1 3 2 3 1 2 2 3 3 

Ar ECLAT 1 3 2 3 1 3 3 3 3 

Ar FP growth (FPG) 1 3 2 2 1 3 3 2 4 

 
C4: Complexity of parameter definition (max. 4) 
The implementation of a ML algorithm can become a challenging task depending on the number and 
complexity of hyperparameters that need to be adjusted. The quantity or complexity of parameters or 
functions to be defined can range from minimal (1) to few (2), moderate (3), or extensive (4). 
C5: Scalability (max. 4) 
An important aspect to consider when evaluating ML algorithms is the computational effort, which 
determines the hardware requirements needed to compute the resulting models. An objective assessment 
of the computational complexity of an algorithm can be achieved using the O-notation. Constant 
complexity is preferred (4), while exponential complexity is to be avoided (1). 
C6: Memory requirements (max. 4) 
The required memory for a ML algorithm can lead to extra hardware expanses. The memory 
requirements can be quantified similarly to scalability, using space complexity in O-notation.  
C7: Time costs (max. 4) 
To improve efficiency through the implementation of a ML algorithm, time is a critical factor. The 
criterion is assessed based on the time required for model training and execution.   
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C8: Robustness (max. 4) 

In critical design activities, such as the requirement definition, it is crucial for the ML algorithm to 

provide reliable and consistently excellent support. Characteristics contributing to this include tolerance 

to changes in input data and the absence of significant error propagation. The value is determined based 

on the number of characteristics covered by the ML algorithm with a maximum of four. 

C9: Understandability (max. 4) 

For certain design tasks, understanding the decision-making process of a ML algorithm can be crucial. 

A distinction is made between black box models (1), models with difficult-to-comprehend (2) and easy-

to-comprehend formulas (3) and models with a visual representation of the decision process (4). 

3.3. PROMETHEE for selecting ML algorithms 

MCDA is a methodical approach used to evaluate multiple conflicting criteria in decision-making 

contexts (Belton and Stewart, 2002). In the present decision problem, MCDA can be leveraged to 

determine the most suitable ML algorithm from a finite set of potential candidates. The product design 

literature has traditionally emphasized utility analysis for this purpose. Nevertheless, utility analysis has 

well-known limitations, despite broad usage (Greco et al., 2019). This method assumes linear, 

compensatory behaviour among criteria, which may not accurately represent the complexities of real-

world decision-making. Furthermore, it can be influenced by the specific utility functions chosen, 

resulting in possible inconsistencies in outcomes (Greco et al., 2019).  

Due to these limitations, outranking methods like PROMETHEE have been developed. PROMETHEE 

offers various benefits over traditional utility analysis, primarily the capability to establish a partial 

preorder of alternatives. This permits incomparability between alternatives, allowing for a more detailed 

and comprehensive analysis of the decision problem (Brans and Smet, 2016). This capability is 

particularly useful when evaluating the relative positioning of alternatives, rather than simply 

determining the best option. PROMETHEE allows decision-makers to perform sensitivity analyses that 

determine the impact of changes in input parameters or weights on their decisions (Mareschal, 1988). 

Besides the evaluation table representing the alternative's performance under each criterion (refer to 

Table 3), PROMETHEE II requires a weighting and preference function for every criterion. The 

PROMETHEE net flow is then given by 

𝜙(𝑎) = 𝜙+(𝑎) − 𝜙−(𝑎) =
1

𝑛−1
∑  𝑘

𝑗=1 ∑  𝑥∈𝐴 [𝑃𝑗(𝑎, 𝑥) − 𝑃𝑗(𝑥, 𝑎)]𝑤𝑗  =
1

𝑛−1
∑  𝑘

𝑗=1 𝜙𝑗(𝑎)𝑤𝑗 ,  (1) 

where 𝑃𝑗(𝑎, 𝑏) is the preference function for criterion 𝑗 applied to alternatives 𝑎 and 𝑏. There are six 

preference functions commonly used in PROMETHEE, selected based on the decision maker's 

preferences (Brans and Smet, 2016).  

For outranking methods such as PROMETHEE, the criteria weights reflect criterion importance. This 

can be determined more easily by decision makers using objective evaluations. The SIMOS method 

(Figueira and Roy, 2002) is a commonly employed approach to determine criterion importance, where 

the decision maker arranges a set of cards representing the criteria based on their preferences. 

4. Application of the concept 
The developed concept will be demonstrated using the example task of information extraction from 

engineering documents (Luttmer et al., 2023). As selecting an appropriate ML algorithm based solely 

on performance measures may not be adequate, this case provides an opportunity to demonstrate the 

benefits of the concept. 

4.1. Identification of suitable ML algorithms and evaluation (Phase 1 and 2) 

In Phase 1, the class of ML algorithms capable of solving the task is determined by identifying the 

activity in the reference matrix provided in Table 2. This allows the delimitation of the solution space 

to ML algorithms capable of performing classification, which need to be further evaluated in Phase 2. 

Here, the initial step is to define the weights that represent the user's preferences for evaluation criteria. 

Hence, the SIMOS method (Figueira and Roy, 2002), introduced in Chapter 3.3, is utilized, assuming 

potential preferences based on the nature of the underlying task. For instance, it is assumed that a vast 
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amount of engineering documents respectively training data, is available, which implies that the 

preprocessing effort should be minimal. Since the identification of the requirements is a critical step, 

robustness is considered the most important criterion. The resulting weights, as well as the defined input 

parameters to assess the ML algorithms using the PROMETHEE method, are outlined in Table 4. The 

preference information, subject to potential adjustments, was selected by a decision maker to 

demonstrate the methodology. We utilized PROMETHEE-Cloud1 software to evaluate the current 

decision model, as it presents numerous sensitivity analyses. (Pohl and Geldermann, n.d.). 

Table 4. Input parameters for the evaluation with PROMETHEE 

Parameters C1 C2 C3 C4 C5 C6 C7 C8 C9 

Criteria weights 0,146 0,041 0,146 0,116 0,131 0,116 0,086 0,162 0,056 

Orientation max max max max max max max max max 

Preference function usual usual level usual usual level gaussian usual level 

Preference function parameter   q = 1   q = 1 𝜎 = 3  q = 1 

4.2. Analysis of evaluation results and final decision (Phase 3) 

The results indicate that the decision maker prefers RF followed by DT and NB. Figure 2 a) shows the 

resulting PROMETHEE flows for every alternative. The Φ+(𝑎) flow is a measure of how much other 

alternatives are dominated by alternative 𝑎 and the Φ−(𝑎) flow is a measure of how much alternative 𝑎 

is dominated by others. The higher the resulting net flow _PHI_ (a), the better the alternative according 

to the preference structure of the decision maker. The partial preorder by PROMETHEE allow for a 

more nuanced analysis of the decision problem. Figure 2 b) shows the partial preorder graph, where two 

nodes are connected, if the first alternative is preferred over the second. The partial preorder graph yields 

the same results for the most preferred alternative RF, followed by DT and NB. Moreover, NB is 

preferred over SVM, LSTM and KNN which are incomparable according to the preferences of the 

decision maker. Ultimately, the least preferred alternatives MLP and CNN are also incomparable. 

 
Figure 2. a) PROMETHEE flows for the alternatives; b) partial preorder graph 

The PROMETHEE GAIA plane (see Figure 3a) provides a visual presentation of the decision problem, 

in which criteria and weights are represented through vectors, and alternatives are represented as points 

on the plane. This plane is generated through principal component analysis of the uni criterion net flow 

matrix (Φ𝑗(𝑎))𝑗,𝑎 defined in Eq. 1 (Brans and Smet, 2016). When criteria vectors point in the same 

direction, they support alternatives located in that direction. The decision maker's preference, 

represented by the weight vector, also favours alternatives in that direction. Based on Figure 3 a), it is 

evident that RF and DT are supported by most of the criteria as well as the weight vector. Here, the 

length of the vector indicates the support of an alternative by a criterion (Brans and Smet, 2016). 

Weight stability intervals in MCDA are ranges where the criteria weights can vary without affecting the 

overall ranking of the alternatives. This provides insight into the decision's robustness when changes 

occur in the weights assigned to different criteria (Mareschal, 1988). The decision problem's weight 

stability intervals are displayed in Figure 3 b), where the current weighting is shown as a bar graph 

 
1 https://promethee.pom.uni-due.de 
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together with the intervals. The criterion data quantity has therefore no influence on the current ranking 

since a weighting between 0 and 1 will not change the ranking of the alternatives. The ranking is robust 

in terms of data flexibility and understandability. However, it is less stable for time costs compared to 

data flexibility and understandability. However, the ranking is not highly robust regarding the weights 

of the other criteria and a small alteration in the criteria weight can lead to different results. 

 
Figure 3. a) PROMETHEE GAIA plane; b) weight stability intervals 

5. Conclusion and outlook  
Identifying a suitable ML algorithm to address a given task is a crucial step in adopting ML algorithms 

for product development. Conventional procedures typically necessitate pre-existing data sets and 

depend on subjective expert knowledge, which may not be accessible for many companies.  

Therefore, a three-phase decision support concept has been developed. First, the design-related task is 

translated into a ML-related one to identify a class of ML algorithms capable of solving the task. Second, 

the multi-criteria decision support approach PROMETHEE is employed for the analysis, which criteria 

address the essential constraints for ML algorithm implementation in design-related tasks and 

companies, while also considering individual preferences. Third, the result of the evaluation is inspected 

via graphical representation and sensitivity analysis to comprehend the decision-making process. The 

examined use case shows, that commonly used ML algorithms for the discussed task got recommended, 

thus analysing the decision problem using the PROMETHEE methods yields valid results. In addition, 

the approach allows a consideration and clear distinction of the preferred ML algorithms regarding 

qualitative criteria, resulting in a systematic, comprehensive, and objective decision support.  

Future work will focus on enhancing and extending the concept. Therefore, additional ML algorithms, 

especially those related to reinforcement learning, will be analysed, and evaluated to expand the 

evaluation matrix. Further expansion will encompass the established reference process to cover the 

entire development process. In addition, the applicability of the criteria by non-experts will be 

investigated and improved through conducting case studies.  
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