ON TRICOMI'S RELATION FOR THE HILBERT TRANSFORMATION

by P. G. ROONEY

(Received 20th July, 1974)

1. Introduction. Tricomi [2] has shown that if $\phi_i \in L_{p_i}(-\infty, \infty)$, i = 1, 2, where $1 < p_i < \infty, (p_1)^{-1} + (p_2)^{-1} < 1$, and if H denotes the Hilbert transformation, that is

$$(Hf)(x) = \pi^{-1}(P) \int_{-\infty}^{\infty} f(t)(t-x)^{-1} dt$$
 (1)

where the symbol (P) denotes that the integral is taken in the Cauchy principal value sense, then

$$H(\phi_1 H \phi_2 + \phi_2 H \phi_1) = (H \phi_1) (H \phi_2) - \phi_1 \phi_2.$$
⁽²⁾

When one first looks at (2), one would naturally think of using the Fourier transformation to prove it, making use of the well-known formulas for the Fourier transform of Hf and for the Fourier transform of a product. However, difficulties with a proof along this line soon become apparent, for the condition $(p_1)^{-1} + (p_2)^{-1} < 1$, which is needed for the left hand side of (2) to exist, implies that at least one p_i is larger than two, and consequently the corresponding ϕ_i may not have a Fourier transform. Indeed Tricomi's proof used the theory of H_p -spaces in the upper half-plane as outlined in [1, §5.12].

In this paper we shall show that a proof of (2) in which the Fourier transformation plays the crucial role can be given. This seems worthwhile both from considerations of simplicity, and since the proof of the principal theorem in [1, §5.12, Theorem 103], that Tricomi used is only given incompletely there.

In \$2 we shall define some notations and prove some preliminary lemmas, while in \$3 we give our proof of (2).

2. Notations and preliminary lemmas. We shall denote the Fourier transformation by \mathscr{F} ; that is if $f \in L_1(-\infty, \infty)$, then

$$(\mathscr{F}f)(x) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} e^{ixt} f(t) dt.$$
 (3)

It is well known that \mathscr{F} can be extended to $L_p(-\infty, \infty)$ for $1 \leq p \leq 2$, as a bounded operator from L_p to $L_{p'}$ where now and henceforth

$$p^{-1} + (p')^{-1} = 1;$$
 (4)

indeed on $L_2(-\infty, \infty)$ \mathscr{F} is unitary. The image of f under \mathscr{F} , the Fourier transform, will be denoted by \hat{f} .

If ϕ_1 and ϕ_2 are locally integrable on $(-\infty, \infty)$, their convolution, $\phi_1 * \phi_2$, is defined, for all x for which the integral exists, by

$$\phi_1 * \phi_2(x) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} \phi_1(x-t) \phi_2(t) \, dt.$$
(5)

One relation between the Fourier transformation and convolution is given by the following lemma.

LEMMA A. If
$$\phi_i \in L_2(-\infty, \infty)$$
, $i = 1, 2$, then

$$(\phi_1\phi_2)^{\wedge}=\hat{\phi}_1*\hat{\phi}_2.$$

Proof. The result is equivalent to [1, Theorem 65].

As noted earlier, we shall be using the formula for the Fourier transform of *Hf*. We state this as a lemma.

LEMMA B. If $f \in L_2(-\infty, \infty)$, then

$$(Hf)^{(x)} = -i \operatorname{sgn} x f(x).$$

Proof. This is proved in the course of the proofs of [1, Theorems 90 and 91].

Formula (2) involves the product of functions from different L_p spaces. Concerning such products we have the following lemma.

LEMMA C. Suppose that $\phi_i \in L_{p_i}(-\infty, \infty)$, i = 1, 2, where $(p_1)^{-1} + (p_2)^{-1} \leq 1$, and let $p^{-1} = (p_1)^{-1} + (p_2)^{-1}$. Then $\phi_1 \phi_2 \in L_p(-\infty, \infty)$, and

$$\|\phi_1\phi_2\|_p \leq \|\phi_1\|_{p_1}\|\phi_2\|_{p_2}.$$

Proof. An easy application of Holder's inequality. One final lemma will be rather basic in our argument.

LEMMA D. Suppose that $f_1 \in L_1(-\infty, \infty)$, $f_2 \in L_2(-\infty, \infty)$ and $\hat{f}_1 = \hat{f}_2$ a.e. Then $f_1 = f_2$ a.e.

Proof. From [1, Theorem 14], the integral $(2\pi)^{-1/2} \int_{-\infty}^{\infty} e^{-ixy} \hat{f}_1(y) dy$ is (C, 1) summable to f_1 a.e., and from [1, Theorem 59], the integral $(2\pi)^{-1/2} \int_{-\infty}^{\infty} e^{-ixy} \hat{f}_2(y) dy$ is (C, 1) summable to f_2 a.e. But since $\hat{f}_1 = \hat{f}_2$ a.e., the two integrals are the same, and hence $f_1 = f_2$ a.e.

3. Tricomi's Theorem. We can now prove the main result.

THEOREM. If $\phi_i \in L_{p_i}(-\infty, \infty)$, where $1 < p_i < \infty$, $(p_1)^{-1} + (p_2)^{-1} < 1$, then (2) holds.

P. G. ROONEY

Proof. Suppose first that ϕ_1 and ϕ_2 are continuous functions with compact support, and call the right hand side of (2) f_1 and the left hand side f_2 . We shall show that f_1 and f_2 satisfy the hypotheses of Lemma D.

Since $\phi_i \in L_2$, and *H* is a bounded operator from L_p to L_p for $1 [1, Theorem 101], <math>H\phi_i \in L_2$, and hence by Lemma C, $(H\phi_1)(H\phi_2)$ and $\phi_1\phi_2 \in L_1$, so that $f_1 \in L_1$. Since ϕ_1 is bounded, $\phi_1 H\phi_2$ is in L_2 , as is $\phi_2 H\phi_1$, and thus since *H* is a bounded operator from L_2 to L_2 , and since $f_2 = H(\phi_1 H\phi_2 + \phi_2 H\phi_1)$, we have $f_2 \in L_2$.

But from Lemmas A and B,

$$\begin{aligned} \hat{f}_1(x) &= (H\phi_1)^* * (H\phi_2)^* (x) - \hat{\phi}_1 * \hat{\phi}_2(x) \\ &= (2\pi)^{-1/2} \int_{-\infty}^{\infty} ((H\phi_1)^* (x-t)(H\phi_2)^* (t) - \hat{\phi}_1(x-t) \hat{\phi}_2(t)) \, dt \\ &= -(2\pi)^{-1/2} \int_{-\infty}^{\infty} \hat{\phi}_1(x-t) \hat{\phi}_2(t) (\operatorname{sgn}(x-t) \operatorname{sgn} t + 1) \, dt. \end{aligned}$$

Now if x > 0,

$$\operatorname{sgn} (x-t) \operatorname{sgn} t + 1 = \begin{cases} 0, t < 0 \\ 2, 0 < t < x \\ 0, t > x \end{cases},$$

c ~

while if x < 0,

$$\operatorname{sgn}(x-t)\operatorname{sgn} t+1 = \begin{cases} 0, \ t < x \\ 2, \ x < t < 0 \\ 0, \ t > 0 \end{cases}$$

Hence, for almost all x,

$$\hat{f}_1(x) = -(2/\pi)^{1/2} \begin{cases} \int_0^x \hat{\phi}_1(x-t)\hat{\phi}_2(t) dt, & x > 0\\ \int_x^0 \hat{\phi}_1(x-t)\hat{\phi}_2(t) dt, & x < 0 \end{cases}$$
$$= -(2/\pi)^{1/2} \operatorname{sgn} x \int_0^x \hat{\phi}_1(x-t)\hat{\phi}_2(t) dt.$$

Also, from Lemma B, for almost all x,

$$\hat{f}_2(x) = -i \operatorname{sgn} x \left(\phi_1 H \phi_2 + \phi_2 H \phi_1 \right)^{\wedge} (x).$$

But since ϕ_i and $H\phi_i \in L_2$, from Lemma A,

$$\begin{aligned} \hat{f}_2(x) &= -i \operatorname{sgn} x \left(\hat{\phi}_1 * (H\phi_2)^{\wedge} (x) + (H\phi_1)^{\wedge} * \hat{\phi}_2(x) \right) \\ &= -i \operatorname{sgn} x (2\pi)^{-1/2} \int_{-\infty}^{\infty} \left(\hat{\phi}_1(x-t) (H\phi_2)^{\wedge} (t) + (H\phi_1)^{\wedge} (x-t) \hat{\phi}_2(t) dt \right) \\ &= -(2\pi)^{-1/2} \operatorname{sgn} x \int_{-\infty}^{\infty} \hat{\phi}_1(x-t) \hat{\phi}_2(t) \left(\operatorname{sgn} t + \operatorname{sgn} (x-t) \right) dt \end{aligned}$$

But if x > 0,

$$\operatorname{sgn} t + \operatorname{sgn} (x - t) = \begin{cases} 0, \ t < 0 \\ 2, \ 0 < t < x \\ 0, \ t > x \end{cases}$$

while if x < 0

$$\operatorname{sgn} t + \operatorname{sgn} (x - t) = \begin{cases} 0, t < x \\ -2, x < t < 0 \\ 0, t > 0 \end{cases}$$

Hence

$$\hat{f}_2(x) = -(2/\pi)^{1/2} \operatorname{sgn} x \begin{cases} \int_0^x \hat{\phi}_1(x-t)\hat{\phi}_2(t) \, dt, & x > 0\\ -\int_x^0 \hat{\phi}_1(x-t)\hat{\phi}_2(t) \, dt, & x < 0 \end{cases}$$
$$= -(2/\pi)^{1/2} \operatorname{sgn} x \int_0^x \hat{\phi}_1(x-t)\hat{\phi}_2(t) \, dt = \hat{f}_1(x) \quad \text{a.e.}$$

Thus by Lemma D, $f_1 = f_2$ a.e., and (2) is true if ϕ_1 and ϕ_2 are continuous functions with compact support.

Now each side of (2) represents a bounded linear transformation from L_{p_i} , i = 1, 2, to L_p . For if the norm of the Hilbert transformation on L_r is denoted by M_r , then from Lemma C, since p > 1

$$\begin{aligned} \|H(\phi_1 H \phi_2 + \phi_2 H \phi_1)\|_p &\leq M_p \|\phi_1 H \phi_2 + \phi_2 H \phi_1\|_p \\ &\leq M_p (\|\phi_1 H \phi_2\|_p + \|\phi_2 H \phi_1\|_p) \leq M_p (\|\phi_1\|_{p_1} \|H \phi_2\|_{p_2} + \|H \phi_1\|_{p_1} \|\phi_2\|_{p_2}) \\ &\leq M_p (M_{p_1} + M_{p_2}) \|\phi_1\|_{p_1} \|\phi_2\|_{p_2} \end{aligned}$$

and

$$\begin{split} \|(H\phi_1)(H\phi_2) - \phi_1\phi_2\|_p &\leq \|(H\phi_1)(H\phi_2)\|_p + \|\phi_1\phi_2\|_p \\ &\leq \|H\phi_1\|_{p_1} \|H\phi_2\|_{p_2} + \|\phi_1\|_{p_1} \|\phi_2\|_{p_2} \\ &\leq (M_{p_1}M_{p_2} + 1) \|\phi_1\|_{p_1} \|\phi_2\|_{p_2}. \end{split}$$

Suppose then that $\phi_1 \in L_{p_1}$, while ϕ_2 is continuous with compact support. Then there is a sequence $\phi_{1,n}$ of continuous functions with compact support which converge in L_{p_1} to ϕ_1 . Denoting limits in L_p by \mathscr{L}_p , we have

$$H(\phi_1 H \phi_2 + \phi_2 H \phi_1) = \mathscr{L}_p H(\phi_{1,n} H \phi_2 + \phi_2 H \phi_{1,n})$$

= $\mathscr{L}_p((H \phi_{1,n})(H \phi_2) - (\phi_{1,n})(\phi_2)) = (H \phi_1)(H \phi_2) - (\phi_1)(\phi_2),$

so that (2) is true if $\phi_1 \in L_{p_1}$, and ϕ_2 is continuous with compact support.

P. G. ROONEY

Finally, if $\phi_i \in L_{p_i}$, i = 1, 2, where $(p_1)^{-1} + (p_2)^{-1} < 1$, then there is a sequence $\phi_{2,n}$ of continuous functions with compact support converging in L_{p_2} to ϕ_2 . Hence

$$H(\phi_1 H \phi_2 + \phi_2 H \phi_1) = \mathscr{L}_p H(\phi_1 H \phi_{2,n} + (\phi_{2,n})(H \phi_1))$$

= $\mathscr{L}_p((H \phi_1)(H \phi_{2,n}) - (\phi_1)(\phi_{2,n})) = (H \phi_1)(H \phi_2) - \phi_1 \phi_2,$

and our result is proved.

REFERENCES

E. C. Titchmarsh, Theory of Fourier integrals, Second Edition (Oxford, 1948).
 F. G. Tricomi, On the finite Hilbert transformation, Quart. J. Math. (2) 2, 1951, 199-211 (see also F. G. Tricomi, Integral equations, Interscience Publ. (New York, 1957), § 4.3).

UNIVERSITY OF TORONTO

56