SOME THEOREMS ON CONVEX POLYGONS

BY
E. ALTMAN

Abstract

In this paper diagonals of various orders in a (strict) convex polygon P_{n} are considered. The sums of lengths of diagonals of the same order are studied. A relationship between the number of consecutive diagonals which do not intersect a given maximal diagonal and lie on one side of it and the order of the smallest diagonal among them is established. Finally a new proof of a conjecture of P. Erdos, considered already in [1], is given.

I. Notation and nomenclature. (1) A plane convex n-sided polygon will be denoted by

$$
P_{n}=A_{1} A_{2} \cdots A_{n}
$$

(A_{i} are the vertices). Let $j \leq\left[\frac{n}{2}\right]$. A diagonal $A_{i} A_{i+j}$ (where $i+j$ is taken $\bmod n$), i.e. a diagonal cutting off j sides of the polygon, is said to be a diagonal of order j; the sides of the polygon are diagonals of the 1 -st order. Clearly, P_{n} contains diagonals of $\left[\frac{n}{2}\right]$ distinct orders.
(2) The sum of lengths of the diagonals of the j-th order will be denoted by

$$
u_{j}=\sum_{i=1}^{n} A_{i} A_{i+j} .
$$

For $n=2 N$, the corresponding sum

$$
u_{N}=\sum_{i=1}^{N} A_{i} A_{i+N}
$$

includes every diagonal of the N-th order twice.
(3) The various lengths of the diagonals of P_{n} will be denoted by

$$
d_{1}>d_{2}>\cdots
$$

A diagonal of length d_{x} is said to be of the x-th degree.
II. Theorem 1. If $0<q<p \leq\left[\frac{n}{2}\right]$, then

$$
u_{q}<u_{p} .
$$

Received by the editors March 9, 1970 and, in revised form, January 25, 1971.

Figure 1.
Proof. (1) Let $N=\left[\begin{array}{l}n \\ \frac{n}{2}\end{array}\right]$. We have to prove that
for $k=1,2, \ldots, N-1$.

$$
u_{k+1}>u_{k}
$$

(2) We first prove that $u_{N}>u_{N-1}$. Two cases will be distinguished:
(a) n is even: $n=2 N$,

Consider a convex quadrilateral (Fig. 1)

$$
A_{i} A_{i+1} A_{i+N} A_{i+N+1}
$$

In every convex quadrilateral, the sum of two opposite sides is smaller than the sum of the two diagonals. Hence:
(A)

$$
A_{i} A_{i+N}+A_{i+1} A_{i+N+1}>A_{i+N+1} A_{i}+A_{i+1} A_{i+N}
$$

The diagonals of this quadrilateral are diagonals of the N-th order in P_{n}, while the sides appearing in the inequality (A) are diagonals of the ($N-1$)-th order in P_{n}. Summation of (A) for $i=1, \ldots, n$ yields

$$
\begin{align*}
2 u_{N} & >2 u_{N-1} \\
u_{N} & >u_{N-1} \tag{A}
\end{align*}
$$

(b)

$$
n \text { is odd: } n=2 N+1 \text {. }
$$

Consider a convex quadrilateral (Fig. 2)

Here we have

$$
A_{i} A_{i+1} A_{i+N} A_{i+N+1}
$$

$$
\begin{equation*}
A_{i} A_{i+N}+A_{i+1} A_{i+N+1}>A_{i+N+1} A_{i}+A_{i+1} A_{i+N} \tag{B}
\end{equation*}
$$

Figure 2.
$A_{i+N+1} A_{i}, A_{i} A_{i+N}$ and $A_{i+1} A_{i+N+1}$ are diagonals of the N-th order in P_{n}, while $A_{i+1} A_{i+N}$ is a diagonal of the ($N-1$)-th order in P_{n}. Summation of (B) for $i=$ $1, \ldots, n$ yields
($\overline{\mathrm{B}})$

$$
\begin{aligned}
2 u_{N} & >u_{N}+u_{N-1} \\
u_{N} & >u_{N-1}
\end{aligned}
$$

(3) We make now an induction assumption that the theorem holds for k, i.e.

$$
u_{k+1}>u_{k}
$$

and prove that it holds for $k-1$, i.e.

$$
u_{k}>u_{k-1}
$$

To this end consider the convex quadrilateral (Fig. 3) $A_{i} A_{i+1} A_{i+k} A_{i+k+1}$.
We have
(C)

$$
A_{i} A_{i+k}+A_{i+1} A_{i+k+1}>A_{i} A_{i+k+1}+A_{i+1} A_{i+k}
$$

$A_{i+1} A_{i+k+1}$ and $A_{i} A_{i+k}$ are diagonals of the k-th order in $P_{n}, A_{i} A_{i+k+1}$ is a diagonal of the ($k+1$)-th order, and $A_{i+1} A_{i+k}$ a diagonal of the ($k-1$)-th order. Summation

Figure 3.
of (C) for $i=1, \ldots, n$ yields
(C)

$$
2 u_{k}>u_{k+1}+u_{k-1} .
$$

By our assumption
hence

$$
u_{k+1}>u_{k}
$$

$$
\begin{aligned}
2 u_{k} & >u_{k}+u_{k-1} \\
u_{k} & >u_{k-1}
\end{aligned}
$$

and Theorem 1 is hereby proved.
(4) Remark 1. By ($\overline{\mathrm{C}})$:
hence

$$
2 u_{k}>u_{k+1}+u_{k-1}
$$

$$
u_{k}>\frac{u_{k+1}+u_{k-1}}{2} \quad\left(1<k<\left[\frac{n}{2}\right]\right),
$$

i.e., the sequence $u_{1}, u_{2}, \ldots, u_{N}$ of the sums of the diagonals of consecutive orders increases at a slower rate than an arithmetic progression.

Remark 2. By inscribing a convex polygon in P_{n}, several relations are obtainable between the sums u_{j}, in the same way as in the preceding proof. For example, by inscribing a triangle $A_{i} A_{i+k} A_{i+k+l}\left(k+l \leq\left[\frac{n}{2}\right]\right)$ we obtain

$$
A_{i} A_{i+k}+A_{i+k} A_{i+k+l}>A_{i} A_{i+k+l}
$$

and summation of this inequality for $i=1,2, \ldots, n$ yields

$$
u_{k}+u_{l}>u_{k+l} \quad\left(k+l \leq\left[\frac{n}{2}\right]\right)
$$

Remark 3. Let $B_{1} B_{2} \cdots B_{n} B_{n+1}$ be a n-sided polygonal line, consisting of segments which are parallel and equal to the consecutive diagonals of the k-th order in P_{n}

$$
\begin{gathered}
B_{i} B_{i+1} \uparrow \uparrow A_{i} A_{i+k} \\
B_{i} B_{i+1}=A_{i} A_{i+k}
\end{gathered}
$$

It is easily seen, by using vectors, that $B_{1} B_{2} \cdots B_{n} B_{n+1}$ is a closed polygon, i.e. $B_{n+1}=B_{1}$. It is called the k-th derivative of the polygon P_{n} and is denoted by $P_{n}^{(k)}$. This polygon is convex when P_{n} is convex. The l-th derivative of the polygon $P_{n}^{(k)}$ will be denoted by $P_{n}^{(k l)}$. The commutativity $P_{n}^{(k l)}=P_{n}^{(l k)}$ can be proven by using vectors. Examples of derivatives are shown in Fig. $4_{1,2,3}$.

Figure 4_{1}

Figure 42

Figure 4_{3}
III. (1) Let $P_{n}=A_{1} A_{2} \cdots A_{n}$ be a plane convex n-sided polygon, with $A_{1} A_{n}$ as maximal diagonal (i.e. not smaller than any diagonal in P_{n}), in other words $\overline{A_{1} A_{n}}=d_{1}$ (see §I (3)).

Any diagonal $A_{k} A_{l}, 1<k<l<n$, is said to be parallel to $A_{1} A_{n}$, or briefly a parallel.

Figure 5.
Two parallels $A_{s} A_{t}$ and $A_{u} A_{v}$ are said to be consecutive if

$$
\begin{aligned}
& s<t<v \\
& s<u<v
\end{aligned}
$$

(2) Lemma $1{ }^{(1)}$. If $A_{s} A_{t}$ and $A_{u} A_{v}$, are two consecutive parallels, at least one of them is smaller than $A_{s} A_{v}$.
$\operatorname{Proof}\left({ }^{2}\right)$. Suppose l a support line of the convex hull of $A_{1}, A_{2}, \ldots, A_{n}$ (Fig. 5) which is parallel to $A_{s} A_{v}$ and contains A_{1}. There is, then, a point P, on the segment $A_{1} A_{t}$ such that line $P A_{n}$ is parallel to l.

Let $A_{1} A_{t} \cap A_{s} A_{v}=Q$ and $A_{t} A_{n} \cap A_{s} A_{v}=R$. Since $\left\|A_{s} A_{t}\right\| \geq\left\|A_{s} A_{v}\right\|$ it follows from the triangle inequality that $\left\|A_{t} Q\right\|>\|Q R\|$. From linearity we have $\left\|P A_{t}\right\|>$ $\left\|P A_{n}\right\|$ and again the triangle inequality implies that $\left\|A_{1} A_{t}\right\|>\left\|A_{1} A_{n}\right\|$. This contradicts the fact that $A_{1} A_{n}$ is a diameter of P_{n}. Clearly, there is no assertion to make about the relation of $A_{u} A_{v}$ to $A_{s} A_{v}$.

The obtained contradiction proves the lemma.
A sequence of parallels

$$
A_{s_{1}} A_{t_{1}}, A_{s_{2}} A_{t_{2}}, \ldots, A_{s_{k}} A_{t_{k}}
$$

where for $i=1, \ldots, k-1$ the parallels $A_{s_{i}} A_{t_{i}}$ and $A_{s_{i+1}} A_{t_{i+1}}$ are consecutive, will be called a chain of consecutive parallels (Fig. 6).
(3) Theorem 2. Given a chain off consecutive parallels in a strict convex polygon P_{n}. Let x be the degree of the smallest diagonal in the chain (see [§I (3)]). Then

[^0]

Figure 6.
(a) If $A_{1} A_{n}$ is the only diagonal of the 1 -st degree in P_{n}, then

$$
f \leq x-2
$$

(b) If $A_{1} A_{n}$ is not the only diagonal of the 1 -st degree in P_{n}, then

$$
f \leq x-1
$$

Thus there are no parallels of the 1 -st degree, no two consecutive parallels of the 2-nd degree, no three consecutive parallels of the 3 -rd degree, etc. In case (a), there are no parallels of the 2-nd degree, no two consecutive parallels of the 3-rd degree, etc.

Proof by induction on f.
(4) Proof for $f=1$. We have to prove that there is no parallel of the 1 -st degree, and that in case (a) there is even no parallel of the 2 -nd degree.

Let $A_{i} A_{j}$ be a parallel (Fig. 7) and let x be its degree. Consider the convex quadrilateral

Figure 7.

Figure 8.

The sum of two opposite sides is smaller than that of the diagonals, i.e.

$$
A_{1} A_{j}+A_{i} A_{n}>A_{1} A_{n}+A_{i} A_{j}=d_{1}+d_{x}
$$

so that either $A_{1} A_{j}$ or $A_{i} A_{n}$ must have a length d_{y} exceeding d_{x}. Hence $x \geq 2$. In case (a), $A_{1} A_{n}$ is the only diagonal of length d_{1}, hence
i.e.,

$$
d_{x}<d_{y}<d_{1}
$$

$$
x>y>1
$$

or $x \geq 3$. The theorem is hereby proved for $f=1$.
(5) Now assume that the theorem holds for a chain of k consecutive parallels. Let a chain C of $k+1$ parallels:

$$
A_{s_{1}} A_{t_{1}}, A_{s_{2}} A_{t_{2}}, \ldots, A_{s_{k+1}} A_{t_{k+1}}
$$

be given, and let x be the degree of the smallest diagonal in C. We inscribe in C a chain C^{\prime} of k consecutive parallels (Fig. 8) by connecting the origin of every diagonal of C (except the last), to the end of the next one. The chain C^{\prime} will thus consist of the parallels

$$
A_{s_{1}} A_{t_{2}}, A_{s_{2}} A_{t_{3}}, \ldots, A_{s_{k}} A_{t_{k+1}}
$$

which are consecutive, as is easily shown.
By Lemma 1, the diagonal $A_{s_{i}} A_{t_{i+1}}$ of C^{\prime} exceeds one of the diagonals $A_{s_{i}} A_{t_{i}}$, $A_{s_{i+1}} A_{t_{i+1}}$ of C. The length of any diagonal of C^{\prime} thus exceeds d_{x}, hence the degree of the smallest diagonal in C^{\prime} is at most $x-1$. By the assumption that the theorem holds for $f=k$, we have: In case (a): $k \leq(x-1)-2=x-3$. Hence

$$
k+1 \leq x-2
$$

In case (b):

$$
k \leq(x-1)-1=x-2
$$

Figure 9.
hence

$$
k+1 \leq x-1
$$

So the theorem holds for $f=k+1$ as well. Theorem 2 is hereby proved.
(6) Remark. Existence of a parallel $A_{k} A_{l}$ of the 2-nd degree implies that (Fig. 9):

$$
A_{1} A_{l}+A_{k} A_{n}>A_{k} A_{l}+A_{1} A_{n}=d_{1}+d_{2}
$$

This is possible only if

$$
A_{1} A_{l}=A_{k} A_{n}=d_{1} .
$$

Thus existence of a parallel of the 2-nd degree is possible only if another diagonal of length d_{1} originates from each end point of $A_{1} A_{n}$.

By the same induction as in (5), we conclude that the existence of a chain of consecutive parallels, satisfying

$$
f=x-1
$$

is possible only if another diagonal of length d_{1} originates from each end point of $A_{1} A_{n}$.
(7) Corollary to Theorem 2. If a chain $A_{i} A_{i+1} \cdots A_{i+f}$ of f consecutive sides of a plane convex n-sided polygon $P_{n}=A_{1} A_{2} \cdots A_{n}$ is not cut by a maximal diagonal $A_{k} A_{l}$ of P_{n} (Fig. 10), and the degree of the smallest side of the chain is x, then by Theorem 2 it follows that:
(a) If the maximal diagonal is the only diagonal of length d_{1}, then

$$
f \leq x-2
$$

(b) If there are other diagonals of length d_{1}, then

$$
f \leq x-1
$$

Moreover, $f=x-1$ is possible only if another diagonal of length d_{1} originates from each end point of the maximal diagonal.

Figure 10.
IV. A new solution to a problem by P. Erdos. In [1], the author proved the following conjecture by P. Erdos:

Theorem 3. In every plane strictly convex n-sided polygon P_{n} there are at least $\left[\begin{array}{l}n \\ 2\end{array}\right]$ different distances between various pairs of vertices. $\left(^{3}\right)$

Here a proof of this theorem will be given based on Corollary (7).
Proof. Two cases will be distinguished:
(a) There are no two maximal diagonals with a common end point (Fig. 11): Let $A_{l} A_{m}$ be a maximal diagonal. It must cut off at least $\left[\frac{n}{2}\right]$ sides of P_{n}; hence there is a chain of $\left[\frac{n}{2}\right]-2$ consecutive sides of P_{n}, which is not cut by $A_{l} A_{m}$.

Let x be the degree of the smallest side of this chain. There is no other maximal diagonal originating from either end point of $A_{l} A_{m}$. Hence, by Corollary (7).

$$
\begin{aligned}
x-2 & \geq\left[\frac{n}{2}\right]-2 \\
x & \geq\left[\frac{n}{2}\right] .
\end{aligned}
$$

$\left({ }^{3}\right)$ Define the distance set of the vertex set $\left\{P_{1}, \ldots, P_{n}\right\}$ of points in a real normed linear space by: $\left\{\left\|P_{i} P_{j}\right\| 1 \leq i<j \leq n\right\}$.

With the referee's proof of Lemma 2, Theorem 3 can read: The distance set of the vertex set of a plane strictly convex polygon of n sides in a strictly convex real normed linear space consists of at least $\left[\frac{n}{2}\right]$ positive numbers.

Figure 11.

The polygon has, therefore, a diagonal whose degree is not less than $\left[\frac{n}{2}\right]$.
(b) There are two maximal diagonals with a common end point (Fig. 12). Clearly, one of them (denote by $A_{l} A_{m}$) must cut off at least $\left[\frac{n}{2}\right]+1$ sides; hence there is a chain of $\left[\frac{n}{2}\right]-1$ sides of P_{n}, which is not cut by $A_{l} A_{m}$. For this chain

Figure 12.
we have, by Corollary (7),

$$
\begin{aligned}
x-1 & \geq\left[\frac{n}{2}\right]-1 \\
x & \geq\left[\frac{n}{2}\right] .
\end{aligned}
$$

Hence the polygon comprises at least $\left[\frac{n}{2}\right]$ different distances. The conjecture is hereby proved.

Acknowledgment. The author wishes to thank the referee for his elegant proof of the key Lemma 1 and for other important remarks.

Reference

1. F. Altman, On a Problem by P. Erdos, Amer. Math. Monthly, 70 (1963), 148-157.

Technion-Israel Institute of Technology, Haifa, Israel.

[^0]: $\left.{ }^{(1)}\right)^{2}{ }^{2}$ The author's original proof of Lemma 1 was based on separate case arguments $(u \xi t)$. The proof below proposed by the referee, makes these case arguments superfluous.

