Corrigendum

Phragmèn-Lindelöf theorems in slabs for some systems of non-hyperbolic second-order quasi-linear equations

Kirk Lancaster

Department of Mathematics and Statistics, Wichita State University, Wichita, KS 67260-0033, USA

Published Proceedings of the Royal Society of Edinburgh, 133A, 1155-1173, 2003
In the proof of theorem 2.6, the demonstrations that u_{k} is a supersolution (e.g. (3.11)) and v_{k} is a subsolution are incorrect; the dependence of G_{k} and J_{k} on parameters which are not constant in Ω_{1} was overlooked. If assumption 2.5 is replaced by the following language and certain minor modifications to the proof are made, then the argument given in the paper becomes correct.
AsSumption 2.5*. Given $N_{0}, N_{1}, N_{2}>0$, there exist non-negative constants $\alpha_{i j}$, $1 \leqslant i, j \leqslant m$, with $\alpha_{i i}=0$, and $\beta_{0}>0$ such that for each $k=1, \ldots, m$ and $n_{1}, \ldots, n_{m} \in\left[0, N_{0}\right]$, there exist G_{k} and J_{k} (depending on n_{1}, \ldots, n_{m}) in $C^{2}\left(I_{M}\right) \cap$ $C^{0}\left(\bar{I}_{M}\right)$ satisfying

$$
\begin{array}{r}
G_{k}^{\prime \prime}(y)+E_{k}\left(\omega, y, \boldsymbol{z}+\boldsymbol{t}, q+G_{k}^{\prime}(y)\right)-E_{k}(\omega, y, \boldsymbol{z}, q) \leqslant 0 \\
J_{k}^{\prime \prime}(y)+E_{k}\left(\omega, y, \boldsymbol{z}+\boldsymbol{t}, q+J_{k}^{\prime}(y)\right)-E_{k}(\omega, y, \boldsymbol{z}, q) \geqslant 0 \\
-\sum_{j=1}^{m} \alpha_{j, k} n_{j} \leqslant J_{k}(y) \leqslant 0 \leqslant G_{k}(y) \leqslant \sum_{j=1}^{m} \alpha_{j, k} n_{j}
\end{array}
$$

and

$$
\left|G_{k}^{\prime}(y)\right| \leqslant \beta_{0}, \quad\left|J_{k}^{\prime}(y)\right| \leqslant \beta_{0}
$$

for each $y \in(-M, M)$ whenever $q \in \mathbb{R}$ with $|q| \leqslant N_{2}, \boldsymbol{z}=\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{R}^{m}$ with $\left|z_{j}\right| \leqslant N_{1}$ for $j=1, \ldots, m$, and $\boldsymbol{t}=\left(t_{1}, \ldots, t_{k-1}, 0, t_{k+1}, \ldots, t_{m}\right) \in \mathbb{R}^{m}$ with $\left|t_{j}\right| \leqslant n_{j}$ for $j=1, \ldots, m$. Further, the $m \times m$ matrix $C=\left(\alpha_{i j}\right)$ has the property that

$$
\left.\lim _{p \rightarrow \infty} C^{p}=0 \quad \text { (the zero matrix }\right)
$$

The sentence which includes inequality (3.6) should be replaced by the following.
We claim that if $\left(\boldsymbol{x}_{0}, y\right) \in \bar{\Omega}, \boldsymbol{x}_{0} \in W$ and

$$
d_{j}\left(x_{0}, H\right)=\max \left\{\left|f_{j}(\boldsymbol{x}, y)-F_{j}(y)\right|:(\boldsymbol{x}, y) \in \bar{\Omega},\left|\boldsymbol{x}-\boldsymbol{x}_{0}\right| \leqslant A(H) \mathrm{e}^{\chi(H)}\right\}
$$

© 2004 The Royal Society of Edinburgh
then

$$
\begin{equation*}
\left|f_{k}\left(\boldsymbol{x}_{0}, y\right)-F_{k}(y)\right| \leqslant \sum_{j=1}^{m} \alpha_{j, k} d_{j}\left(x_{0}, H\right)+4 \epsilon \tag{3.6}
\end{equation*}
$$

After equation (3.7), set $n_{j}\left(\boldsymbol{x}_{0}, H\right)=\max _{(\boldsymbol{x}, y) \in \bar{\Omega}_{1}}\left|f_{j}(\boldsymbol{x}, y)-F_{j}(y)\right|, 1 \leqslant j \leqslant m$, and $N_{2}=\max _{y \in \bar{I}}\left|U_{k}(y)\right|$. Let $G_{k}(y)$ and $J_{k}(y)$ be as given in assumption 2.5^{*} with parameters N_{0}, N_{1}, N_{2} and $\left(n_{1}, \ldots, n_{k-1}, 0, n_{k+1}, \ldots, n_{m}\right)$. Then define u_{k} and v_{k} as in the original article. We observe that inequality (3.14) will be modified in a similar manner to that of (3.6). The remainder of the proof remains unchanged. It is unclear if there is any important difference between the original statement of assumption 2.5 and the modified statement given here; we observe that theorem 2.8 and the argument preceding it on pp. 1160 and 1161 correspond equally well to the language of assumption 2.5^{*} or assumption 2.5.

The conclusions of example 4.1 are correct; however, some of the justification provided is incorrect. In the second complete paragraph on p. 1172, the last sentence should be replaced by the following.

Since $M^{2}<\frac{1}{\sqrt{3}}$, we may select $\delta_{*}>0$ such that $\left(2+\frac{1}{8} \delta_{*}\right) \frac{1}{2}\left(3+\frac{1}{3} \delta_{*}\right) M^{4}<1$. Further, assumption 2.4 is satisfied, since for each $\alpha \in(0,1)$, the choices $\delta \in$ $\left(0, \min \left\{2 \alpha, \delta_{*}\right\}\right), L_{1}(y)=4-\frac{1}{3} \delta, L_{2}(y)=3-\frac{1}{2} \delta, U_{1}(y)=4+\frac{1}{4} \delta$, and $U_{2}(y)=3+$ $\frac{1}{3} \delta$ satisfy the required conditions.

In the next paragraph, we need to define

$$
G_{1}(y)=\frac{1}{2}\left(M^{2}-y^{2}\right)\left(4+\frac{1}{4} \delta\right) n_{2}, \quad G_{2}(y)=\frac{1}{2}\left(M^{2}-y^{2}\right)\left(3+\frac{1}{3} \delta\right) n_{1}
$$

and

$$
J_{1}(y)=\frac{1}{2}\left(y^{2}-M^{2}\right)\left(4+\frac{1}{4} \delta\right) n_{2}, \quad J_{2}(y)=\frac{1}{2}\left(y^{2}-M^{2}\right)\left(3+\frac{1}{3} \delta\right) n_{1}
$$

with $n_{1}=n_{1}\left(\boldsymbol{x}_{0}, H\right)$ and $n_{2}=n_{2}\left(\boldsymbol{x}_{0}, H\right)$ as above. Then in assumption 2.5^{*} we have $\alpha_{21}=\left(2+\frac{1}{8} \delta_{*}\right) M^{2}$ and $\alpha_{12}=\frac{1}{2}\left(3+\frac{1}{3} \delta_{*}\right) M^{2}$. The remainder of example 4.1 is correct.

Acknowledgments

The author thanks Zhiren Jin for pointing out the error in assumption 2.5.
(Issued 7 December 2004)

THE ROYAL SOCIETY OF EDINBURGH PROCEEDINGS SECTION A MATHEMATICS

VOLUME 134
 (pages 1-1240)
 2004

Published by the RSE Scotland Foundation
22-24 George Street, Edinburgh EH2 2PQ, Scotland, UK

INDEX TO VOLUME 134

Alvarez, F. and Mandallena, J.-P. Multi-parameter homogenization by
localization and blow-up
Ames, K. A., Payne, L. E. and Schaefer, P. W. Energy and pointwise bounds in some non-standard parabolic systems

1
Andersen, K. F. Boundedness of the Cesáro averaging operators on Dirichlet spaces

609
Ángel Cid, J. and Pouso, R. L. Ordinary differential equations and systems with time-dependent discontinuity sets

617
Arkowitz, M. and Strom, J. The sectional category of a map 639
Badiale, M. and Pomponio, A. Bifurcation results for semilinear elliptic problems in \mathbb{R}^{N}
Bagland, V. Well-posedness for the spatially homogeneous Landau-Fermi-Dirac equations for hard potentials

415
Baiti, P. Non-classical global solutions for a class of scalar conservation laws 225
Ballico, E. Topologically trivial holomorphic vector bundles on infinite-dimensional projective varieties
Bedjaoui, N. and LeFloch, P. G. Diffusive-dispersive travelling waves and kinetic relations. V. Singular diffusion and nonlinear dispersion815

Beidar, K. I. and Lin, Y.-F. On surjective linear maps preserving commutativity
Benachour, S., Koch, H. and Laurençot, P. Very singular solutions to a nonlinear parabolic equation with absorption. II. Uniqueness
Bergweiler, W. Fixed points of composite meromorphic functions and normal families
Binding, P. A. and Curgus, B. A counterexample in Sturm-Liouville completeness theory241

Bocea, M. and Fonseca, I. A Young measure approach to a nonlinear
membrane model involving the bending moment 845

Burton, G. R. and Preciso, L. Existence and isoperimetric characterization of
steady spherical vortex rings in a uniform flow in \mathbb{R}^{N} 449

Cakoni, F., Colton, D. and Monk, P. The electromagnetic inverse-scattering problem for partly coated Lipschitz domains661

Casado-Diáz, J. and Luna-Laynez, M. Homogenization of the anisotropic heterogeneous linearized elasticity system in thin reticulated structures
Castro-Gonzáles, N. and Koliha, J. J. New additive results for the g-Drazin inverse
Chaudhuri, N. and Sandeep, K. On a heat problem involving perturbed Hardy-Sobolev operator

683
Cheng, Q.-M. Curvatures of complete hypersurfaces in space forms 55
Clapp, M., del Pino, M. and Musso, M. Multiple solutions for a non-homogeneous elliptic equation at the critical exponent
Cobos, F. See Fernández-Cabrera, L. M., Cobos, F., Hernández, F. L. and SÁnchez, V. M.
Colton, D. See Cakoni, F., Colton, D. and Monk, P.
Costa, D. G., Ramos, M. and Tehrani, H. Non-zero solutions for a Schrödinger equation with indefinite linear and nonlinear terms
Coulombel, J.-F. and Secchi, P. On transition to instability for compressible vortex sheets

Crasta, G. Estimates of the energy solutions to elliptic Dirichlet problems on
convex domains
Curgus, B. See Binding, P. A. and Curgus, B.
Dacorogna, B. and Ribeiro, A. M. Existence of solutions for some implicit partial differential equations and applications to variational integrals involving quasi-affine functions907

D'Aprile, T. and Mugnai, D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations
del Pino, M. See Clapp, M., del Pino, M. and Musso, M.
Du, Y. and Guo, Z. Symmetry for elliptic equations in a half-space without strong maximum principle259

Efendiev, M. A., Miranville, A. and Zelik, S. Global and exponential attractors for nonlinear reaction-diffusion systems in unbounded domains271

Elfanni, A. and Fuchs, M. A link between the shape of the austenite-martensite interface and the behaviour of the surface energy

1099
Faierman, M. An elliptic boundary problem involving semi-definite weight 109
Fernández-Cabrera, L. M., Cobos, F., Hernández, F. L. and SÁNCHEZ, V. M. Indices defined by interpolation scales and applications 695
Flores, J. Some remarks on thin operators 317
Fonseca, I. See Bocea, M. and Fonseca, I.
Fuchs, M. See Elfanni, A. and Fuchs, M.
Furter, J. E. and Sitta, A. M. A note on the non-degenerate umbilics and the path formulation for bifurcation problems

1115
Giacomoni, J., Lucia, M. and Ramaswamy, M. Some elliptic semilinear indefinite problems on \mathbb{R}^{N}333

Gladiali, F. and Grossi, M. Strict convexity of level sets of solutions of some nonlinear elliptic equations

363
Gogatishvili, A., Neves, J. S. and Opic, B. Optimality of embeddings of Bessel-potential-type spaces into Lorentz-Karamata spaces
Goncalves, S. M. and Sullivan, R. P. Baer-Levi semigroups of linear transformations
Grossi, M. See Gladiali, F. and Grossi, M.
Guo, Z. See Du, Y. and Guo, Z.
Guo, Z. Structure of positive boundary blow-up solutions
Guo, Z.-M. See Zhou, Z., Yu, J. S. and Guo, Z.-M.
Hai, D. D. and Shivaji, R. An existence result on positive solutions for a class of semilinear elliptic systems
Hernández, F. L. See Fernández-Cabrera, L. M., Cobos, F., Hernández, F. L. and Sánchez, V. M.
Hsu, T.-S. Multiple solutions for semilinear elliptic equations in unbounded cylinder domains

719
Hu, G. L^{p} and endpoint estimates for multi-linear singular integral operators 501
Hwang, S. Kinetic decomposition for the generalized BBM-Burgers equations with dissipative term
Izumiya, S., Pei, D. and Romero Fuster, M. C. Umbilicity of spacelike submanifolds of Minkowski space375

Jerrard, R. L. and Jung, N. Strict convergence and minimal liftings in $B V$ 1163

Jiang, S. and Zlotnik, A. A. Global well-posedness of the Cauchy problem for the equations of a one-dimensional viscous heat-conducting gas with Lebesgue initial data

Jung, N. See Jerrard, R. L. and Jung, N.
Kalies, W. D. and Vander Vorst, R. C. A. M. Closed characteristics of second-order Lagrangians
Kaminski, D. and Paris, R. On the use of Hadamard expansions in hyperasymptotic evaluations: differential equations of hypergeometric type 159
Koch, H. See Benachour, S., Koch, H. and Laurençot, P.
Koliha, J. J. See Castro-Gonzáles, N. and Koliha, J. J.
Korman, P. Uniqueness and exact multiplicity solutions for a class of fourth-order semilinear problems
Krupa, M. and Melbourne, I. Asymptotic stability of heteroclinic cycles in systems with symmetry. II
Lancaster, K. Corrigendum 1239
Laurençot, P. See Benachour, S., Koch, H. and Laurençot, P.
LeFloch, P. G. See Bedjaoui, N. and LeFloch, P. G.
LeFloch, P. G. and Shearer, M. Non-classical Riemann solvers with nucleation
Li, G., Yan, S. and Yang, J.-F. Solutions with positive boundary layer and positive peak for an elliptic Dirichlet problem
Li, M. Y. See Mei, M., So, J. W.-H., Li, M. Y. and Shen, S. S. P.
Lin, Y.-F. See Beidar, K. I. and Lin, Y.-F.
LiU, Z. And Wang, Z. Q. Existence of a positive solution of an elliptic equation in \mathbb{R}^{N}
López, J. L. and Temme, N. M. Convergent asymptotic expansions of Charlier, Laguerre and Jacobi polynomials
Lucia, M. See Giacomoni, J., Lucia, M. and Ramaswamy, M.
Luna-Laynez, M. See Casado-Dí́z, J. and Luna-Laynez, M.
Mandallena, J.-P. See Alvarez, F. and Mandallena, J.-P.
MASSA, E. On a variational characterization of the Fučík spectrum of the Laplacian and a superlinear Sturm-Liouville equation
Mei, M., So, J. W.-H., Li, M. Y. and Shen, S. S. P. Asymptotic stability of travelling waves for the Nicholson's blowflies equation with diffusion
Melbourne, I. See Krupa, M. and Melbourne, I.
Miranville, A. See Efendiev, M. A., Miranville, A. and Zelik, S.
Monk, P. See Cakoni, F., Colton, D. and Monk, P.
Mora-Corral, C. Uniqueness of the algebraic multiplicity
Mugnai, D. See D'Aprile, T. and Mugnai, D.
Musso, M. See Clapp, M., del Pino, M. and Musso, M.
Neves, J. S. See Gogatishvili, A., Neves, J. S. and Opic, B.
Oliveira, F. Approximation of the DNLS equation by the cubic nonlinear Schrödinger equation
Opic, B. See Gogatishvili, A., Neves, J. S. and Opic, B.
Paris, R. See Kaminski, D. and Paris, R.
Payne, L. E. See Ames, K. A., Payne, L. E. and Schaefer, P. W.
Pego, R. L. and Sun, S.-M. On transverse linear instability of solitary water waves with large surface tension
Pei, D. See Izumiya, S., Pei, D. and Romero Fuster, M. C.
Pomponio, A. See Badiale, M. and Pomponio, A.
Popescu, L. C. and Rodriguez-Bernal, A. On a singularly perturbed wave equation with dynamic boundary conditions

Pouso, R. L. See Ángel Cid, J. and Pouso, R. L.
Preciso, L. See Burton, G. R. and Preciso, L.
Qi, Y., Wang, Z. and Wang, M. Existence and non-existence of global solutions of diffusion systems with nonlinear boundary conditions
Qian, D. and Torres, P. J. Bouncing solutions of an equation with attractive singularity
Ramaswamy, M. See Giacomoni, J., Lucia, M. and Ramaswamy, M.
Ramos, M. See Costa, D. G., Ramos, M. and Tehrani, H.
Ribeiro, A. M. See Dacorogna, B. and Ribeiro, A. M.
Riehl, S. M. Connection formulae for spectral functions associated with singular Dirac equations
Rodriguez-Bernal, A. See Popescu, L. C. and Rodriguez-Bernal, A.
Romero Fuster, M. C. See Izumiya, S., Pei, D. and Romero Fuster, M. C.
Ruan, S. and Xiao, D. Stability of steady states and existence of travelling waves in a vector-disease model
Sánchez, V. M. See Fernández-Cabrera, L. M., Cobos, F., Hernández, F. L. and Sánchez, V. M.
Sandeep, K. See Chaudhuri, N. and Sandeep, K.
Santos, P. M. \mathcal{A}-quasi-convexity with variable coefficients
Schaefer, P. W. See Ames, K. A., Payne, L. E. and Schaefer, P. W.
Secchi, P. See Coulombel, J.-F. and Secchi, P.
Shearer, M. See LeFloch, P. G. and Shearer, M.
Shen, S. S. P. See Mei, M., So, J. W.-H., Li, M. Y. and Shen, S. S. P.
Shivaji, R. See Hai, D. D. and Shivaji, R.
Sitta, A. M. See Furter, J. E. and Sitta, A. M.
So, J. W.-H. See Mei, M., So, J. W.-H., Li, M. Y. and Shen, S. S. P.
Strom, J. See Arkowitz, M. and Strom, J.
Sullivan, R. P. See Goncalves, S. M. and Sullivan, R. P.
Sun, S.-M. See Pego, R. L. and Sun, S.-M.
Tehrani, H. See Costa, D. G., Ramos, M. and Tehrani, H.
Temme, N. M. See López, J. L. and Temme, N. M.
Torres, P. J. See Qian, D. and Torres, P. J.
Vander Vorst, R. C. A. M. See Kalies, W. D. and Vander Vorst, R. C. A. M.
Walker, C. Asymptotic behaviour of liquid-liquid dispersions
Wang, M. See Qi, Y., Wang, Z. and Wang, M.
Wang, Z. See Qi, Y., Wang, Z. and Wang, M.
Wang, Z. Q. See Liu, Z. and Wang, Z. Q.
Xiao, D. See Ruan, S. and Xiao, D.
Xu, X. Local regularity theorems for the stationary thermistor problem
Yan, S. See Li, G., Yan, S. and Yang, J.-F.
Yang, J.-F. See Li, G., Yan, S. and Yang, J.-F.
Yu, J. S. See Zhou, Z., Yu, J. S. and Guo, Z.-M.
Zelik, S. See Efendiev, M. A., Miranville, A. and Zelik, S.
Zhang, K. Quasi-convex functions on subspaces and boundaries of quasi-convex sets
Zhou, Z., Yu, J. S. and Guo, Z.-M. Periodic solutions of higher-dimensional discrete systems
Zlotnik, A. A. See Jiang, S. and Zlotnik, A. A.

