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We begin this paper by considering a Boolean algebra as a lattice which is relatively
pseudo-complemented (i.e., residuated with respect to intersection) and give, in this case,
certain properties of the equivalences of types A, B and F (as introduced by Molinaro [1]).
We then show how these results carry over to the case of Boolean matrices, which form a
Boolean algebra residuated also with respect to matrix multiplication. Other properties of
matrix residuals are established and we conclude with three algebraic characterisations of
invertible Boolean matrices.

1. By an ordered groupoid we mean simply a set G of elements on which is defined (a) a
closed binary multiplication, and (b) a partial ordering ^ with respect to which the multiplica-
tion is isotone (i.e., x ^ y =• zx ^ zy and xz ^ yz, Vz e G).

The ordered groupoid G is said to be residuated on the left (right) if, given a,beG, the set
of elements xeG satisfying xa ^ b (ax^b) is not empty and has a maximum element,
denoted by b~ .a (b. 'a) and called the left (right) residual ofb by a.

An ordered groupoid in which both left and right residuals exist for every pair of elements
is said to be residuated.

We refer to [1, Chapter 1] for the general properties of residuals.
Now in the general theory of residuated groupoids, an important role is played by the

equivalences of types A, B and F. These equivalences are introduced as follows [1, Chapter 1].
With each element x of the groupoid, we associate

(a) equivalences of type A, defined by
(a = b(Ax) o x. 'a = x. 'b
\a = b(xA) <=> x' .a = x' .b,

(/?) equivalences of type B, defined by
(a = b(Bx) <=> a. x = b. x
\a = b(xB) o a' .x = b' .x,

(y) equivalences of type F, defined by

[a = b (Fx) o xa = xb
[a = b(xF) o ax = bx.

These equivalences possess many interesting properties, of which we mention only the
following.

(a*) [1, p. 332, Th. 2"] Each class modulo Ax [resp. XA~\ has a maximum element, the
maximum element in the class of y being the element x .(x. y) [resp. x. -(x1 .y)~\.

(P*) [1, p. 338, Th. 26] Each class modulo Bx [resp. XB] has a minimum element, the
minimum element in the class of y being the element x(y. ~x) [resp. (y ..x)*].

(?*) [1> P- 342, Th. 2f] Each class modulo Fx [resp. XF] has a maximum element, the
maximum element in the class of y being the element xy. ~x [resp. yx' . * ] .
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Consider now a Boolean algebra B. It is well known that B is residuated with respect to
the multiplication defined by xy = xny and that residuals (called relative pseudo-comple-
ments in this case) are given by

x:y = x\jy', (1)

where y' denotes the complement of y in B, and x : y means x. y or x' .y, these residuals being
equal since the multiplication is commutative.

In this case, we have the following two results:

THEOREM 1. Ax, = Fx.

Proof. By (1) and the de Morgan laws, we have

x': (x': y) = x' u (x': y)' = x' u (x' u y')'

— x' u (x n y) — x' u y (2)

= x' u xy = xy : x.

Using (a*) and (y*), it is then easily seen from this equality that y = z(Ax.) <>y = z(Fx).

THEOREM 2. y = z(Bx) <> y' = z'O4*-)-

Proof. From the equality (2) obtained above, we have

[x': ( * ' : / ) ] ' = ( x ' u / ) ' = x n j = ( x n ^ u O

= (xny)\j(xnx') = jcn(yux') = xn(j»: i ) = x(y : x).

The result is then an immediate consequence of (a*) and (/}*).

2. Consider now the set Mn(B) of all nxn matrices X = [JC(J], i, j = 1,2, ..., n, whose
elements xtj lie in a given Boolean algebra B. It is well known that Mn(B) is a Boolean algebra
with respect to the partial ordering ^ defined by

X^ Y o xuS)>ij for all i,j,

and is residuated also with respect to the matrix multiplication defined by

XY = Z * \J(xijnyjk) = zik. (3)
j

Note that in this case multiplication is not the same as intersection; the question arises,
therefore, as to whether relationships similar to those of §1 exist between the equivalences of
types A, B and F when residuals are taken with respect to the multiplication defined in (3).
We shall show in fact that Theorems 1 and 2 above carry over with a slight modification.
Firstly, we give a few preliminary results.

Though we cannot use the formula (1) for matrix residuals with respect to the multiplica-
tion defined in (3), we do have the following formulae (first given by Luce [2]):

X.-Y = {YTx
X'.Y = (XIYT)'
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where Y' denotes the transpose of Y and X' the complement of X in Mn(B), i.e. the matrix
[x,'j] where xj; denotes the complement of xu in B.

THEOREM 3.

(a) [X. T ] T = Y'.X' = XT' .YT,

(b) [X- . y ] r = Y'.X' = XT.YT.

Proof. Using (4), we have

[x. -y]T = [(YTx'yy =
(YT)Ty = xT- .YT

[(x')T(Yyy = r . A".
The proof of (b) is similar.

THEOREM 4.

(a) Y = Z(AX) - YT = ZT(XTA),

(b) Y =
(c) Y =

! (o) and (b) are immediate consequences of Theorem 3. As for (c), we have

Y = Z{FX)-^XY = XZ

<=-{XY)T = {XZf

o YTXT = ZTXT

Let P, Q be equivalences defined on Mn{B). We shall write

P~Q o (X=Y(P) *> X' =

In this way, Theorem 2 may be written Bx ~ Ax,, and the following result is the matrix analogue
of the results stated in Theorems 1 and 2:

THEOREM 5.

(a) FxT = Ax. ~ Bx,

(b) XTF = X.A ~ XB.

Proof. Using (4), we have

xr .(xr. ~Y) = {x(xr. 'Y)Ty = {x[(YTxyyy
= {x[(YTx)Tyy = {x[xTYjy
= j{xixT(.Y'yyy = {X(Y\ ~x)y
~ \TT[xTYyy = XTY. -xT.
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(a) therefore follows from these equalities using (a*), (/?*) and (y*); {b) may be proved
similarly, or deduced from (a) using Theorem 4.

3. In this section, we give three algebraic characterisations of invertible Boolean matrices.
It is known [3] that if a Boolean matrix X has a one-sided inverse, that inverse is a two-sided
inverse, is unique and is none other than XT. Moreover, X has an inverse if and only if it
satisfies the following Wedderburn-Rutherford conditions:

x'u = U akJ = U aik. (5)
k # i k * j

DEFINITION. A matrix Xe Mn(B) which is such that

V A , B e M n ( B ) , XA = XB =» A = B ( 6 )

will be called left-cancellable.
Similarly we define right-cancellable matrices.
From condition (6), the left cancellation law, it is immediate that X is left-cancellable if

and only if the equivalence Fx reduces to equality; similarly, X is right-cancellable if and only
if XF reduces to equality.

THEOREM 6. The following conditions are equivalent in Mn (B) and are necessary and sufficient
for Xe Mn(B) to have an inverse:

(a) X is left-cancellable,

(b) X is right-cancellable.

Proof. If X has an inverse, then it is left-cancellable, for from XA = XB we have

A = IA = (XTX)A = XT(XA) = XT(XB) = (XTX)B = IB = B.

Conversely, if X is left-cancellable, then the equivalence Fx reduces to equality. By
Theorem 5, so also does the equivalence BXT. Hence in particular the unit matrix / is mini-
mum in its class modulo BXT SO that there exists a matrix Y[ = /. 'XT~\ such that XTY = I.
Hence

YTX = (XTY)T = IT = / ,

and so X has an inverse.
A similar proof shows the equivalence of the condition (b).

THEOREM 7. Xe Mn(B) has an inverse if and only if

I. 'X = I' .X = XT.

Proof. Consider the matrices /. X and / ' .X; by (4), we have

/. X = (XT)' and /" .X = (I'XT)',
so that

= | U
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and similarly

[f.Xlk = (U.

The result then follows from the Wedderburn-Rutherford conditions (5), on interchanging
dummy suffices.

The final characterisation of invertible Boolean matrices which we give is in terms of the
Artin equivalences on Mn(B); these are simply the equivalences of type A associated with the
unit matrix /.

THEOREM 8. X e Mn(B) has an inverse if and only if the equivalences of type A associated
with X are equal to the corresponding Artin equivalences.

Proof. Suppose that X has an inverse; then XT also has an inverse and by Theorem 7
we have

X = (XTf = /• .XT,

so that

A" .X = (/' .XTY .X.

But since matrix multiplication is associative, we have the formula [1, p. 327]

(F .0- .R = P- .RQ, VP,Q,ReMn(B);
hence

X' .X = / ' .XXT = 1.1 = I.

Again by the associativity of matrix multiplication, we also have

X=

~(P-.Q).X = (P\Q).Y [1, p. 328]
~X=Y(AP..Q),

so that

AP^AP.,Q, VP,QeMn(B).
Hence on the one hand

AI^AVXT = AX,

and on the other

Ax = Ax. x = A,,

so that Ax = Aj. Similarly, by taking the left-right dual, we find that XA = ,A.
Conversely, suppose that (i) Ax = At and (ii) XA = rA. The greatest element in the class

of / modulo Ax is, by (a*), the element X' .(X. 'I) = X' .X. But the greatest element in the
class of / modulo A, is V .(/. 7) = / ' . / = / ; hence, by virtue of (i), we have
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Furthermore, from (ii) and Theorem 4(a), we have also AXT = A, and so, similarly to the
above, XT' .XT — I which, by virtue of Theorem 3(a), may be written

X. X = / .

Now the greatest element in the class of X modulo Ax is X' .(X. 'X) = X' . / = X, and since,
by hypothesis, Ax = A,, it follows that X is the greatest element in its class modulo At and so
we may write X = / ' . Y for some Ye Mn{B). We thus have

/" . X Y = ( / " .Y)' . X = X . X = I .

Now let Z = XY and let us show that Z = I. Since / ' .Z = /, we have (7'Z7)' = /, so that

which gives

fO if i =
j # i kJ ' \l if i 4= k.

The first of these conditions yields U zfj- = 0, so that zti = 0 for all /, j with i + j . This result,

taken in conjunction with the second condition, gives zkk = 1 for all k. Hence we may write
z,j = 5jj for all /, j and so Z = /. Since Z = XY, it then follows that X has an inverse and the
proof is thus complete.

Note that in the above proof we showed that Z = I(,A) => Z = /. This implies that the
element / i s the only element in its class modulo jA; but it is not true in general that the Artin
equivalences in Mn{B) reduce to equality. In fact, from Theorem 5, A, is equality if and only
if F(r)T = Fr is equality, which is equivalent to / ' being cancellable, which is equivalent to / '
being invertible. By considering the Wedderburn-Rutherford conditions (5), it is clear that
this is the case only when n = 2.
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