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A TECHNIQUE FOR STUDYING THE BOUNDEDNESS AND 
EXTENDABILITY OF CERTAIN TYPES OF OPERATORS 

P. G. ROONEY 

1. Introduction. For 1 ^ p < CXD, /X real, let LptP denote the collection of 
functions/, Lebesgue measurable on (0, oo ), and such that || / ||MiP < oo , where 

Also, if X and F are Banach spaces, denote by [X, F] the collection of bounded 
linear operators from X to F; [X, X] denote by [X]. Let j / % denote the 
collection of operators S £ [1^,2], which are defined in terms of a kernel k> 
associated with S, by an equation of the form 

(1.2) (Sf)(x) = x-^)lij-xx~^'i£k{xt)f{t) df , 

and letJ?7^ denote the collection of operators T G [A*,2], which are defined in 
terms of a kernel /, associated with T, by an equation of the form 

(1.3) (Tf)(x) = ̂ "~1)/2£^~1)'i£ Kx/t)f(t)dt. 

In a recent paper [6], we considered particular operators of the form R2~
1Ri, 

where either both Ri and R2 belonged to 5^M for some /x, or both R\ and R2 
belonged to Ĵ ~M for some /x. By associating with a certain function, analytic in 
a strip, an operator in [LM>ÎJ for a range of values of /x and £>, we were able to 
extend i?2

-1i^i to other LMiî, spaces as an element of [LM,P]. The technique used 
there seems of some general interest, and our first objective in this paper is to 
prove a general result as to when an operator in [XM)J can be defined by the 
method used in [6]. This is accomplished in Theorem 1. 

Our second objective is to show when R<rlR\ can be extended, and we achieve 
this in Theorem 2. 

In [6] we applied our results to relate the ranges of Ri and R2, and our final 
objective is to place the technique used there in a general setting. This is done 
in Theorem 3. 

In section 2 below we prove a number of preliminary lemmas. In section 3 
we show how to associate an operator of [LM>P] with a function analytic in a 
strip, the results being summed up in Theorem 1. Section 4 is devoted to deter
mining necessary and sufficient conditions that transformations be in 5^M or 
c^, , while in section 5 we give conditions that R2~*Ri exist and be extendable. 
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BOUNDEDNESS AND E X T E N D A B I L I T Y 1091 

In section 6 we show how the extendability of R2 can be used to extend i?i, 
and relate their ranges, while in section 7 we give two examples of the use of 
this process. 

2. Preliminaries. In this section we shall prove two lemmas giving some 
properties of the spaces L^tP, define the Mellin transformation, and state a 
lemma giving its principal properties. First we need a definition. 

Definition 2.1. If 1 ^ p < 00, / £ LM;P, we define CM)P by 

(C,J)(t) =e»"»f(e>). 

LEMMA 2.1. C^^ is an isometric isomorphism of LM>P onto Lp( — 00 , GO ). 

Proof. See [6, Lemma 2.1]. 

Definition 2.2. Denote by C0 the collection of functions, continuous on (0, 00) 
and vanishing outside some interval (a, b), where 0 < a < b < co. 

LEMMA 2.2. Co is dense in L^^. Indeed if f Ç LM1>P1 C\ £M2,?2 a ^ e > 0, then 
g exists in Co so that \\f — g\\ni,pi < e, i = 1, 2. 

Pr00/. See [6, Lemmas 2.2 and 2.3]. 

Definition 2.3. 7 w / G £„,„, 1 ^ £ S 2, Ze* 

(^f)0n/p)+it) = (CMlRf )*(/), 

where F is the Fourier transform of F, defined by 

/»oo 

/ty) = eituF(u)du 
«J-œ 

w/ze?z F Ç: Li( — co, co) P\ Lp( — co, co), amZ 63/ continuity on Lp( — coy 00) 
w/zen 1 < £> ^ 2 . _ ^ zê 'ZZ fre caZZed Z/̂ e Mellin transformation. 

LEMMA 2.3. 7/ 1 g £ g 2, ^ G [7M)P, L ^ - o o , GO)]. If p = 2, J? is 
unitary if L2( — co , 00 ) ftas measure dt/2-w. 

Proof. See [6, Lemma 4.1]. 

3. A class of operators. We first define a class of analytic functions, and 
then show that with each member of this class we can associate an operator in 
[LptP] for a range of values of JLC and p. 

Definition 3.1. We say m G se if there are extended real numbers a(m) and 
fi(m), with a(m) < fi{m), so that 

(a) m(s) is analytic in the strip aim) < Re s < fi (m), 
(b) in every closed sub-strip, ax S Re s S <r2,wherea(m) < ai ^ a2 < P(m), 

m (s) is bounded, 
(c) for a(m) < a < (3(m), \mf (a + it)\ = OCM-1), as \t\ -> 00. 
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L E M M A 3.1. If m ^ <$/, then for each a, aim) < <r < j3(m), and for each p, 
1 < p < oo, m (a + it) is an Lp{ — GO, oo ) multiplier. If the operator, in 
[Lp( — oo , oo )] /or 1 < £ < oo , generated by m (a + i£) is denoted by TMj(TJ then 
fori <p ^ 2, F G L „ ( - o o , oo), 

(3.1) (Tm,aFY{t) = m(a + it)P(t). 

If 1 < p ^ 2 , a ( w ) < (7 < j3(m), rm?0. is one-to-one on Lp( — coy oo ) unless 
m = 0. If m-1 Ç j / , then for max (a(m), a(m~1)) < a < min (jft(m), /3(m - 1 ) ) , 
I < p < co, TMj(T is a one-to-one mapping of Lp( — oo , oo ) 0 ^ 0 ifoe//, and 

(3.2) ( n , , , ) - 1 = rT O - i . . . 

Proof. T h e first s t a t emen t follows from [7, Chapte r 4, Theorem 3] as does 
(3.1) when £ = 2, and thus for F G Lp(-oo, oo ) H L2(-oo, oo). Bu t this 
last space is dense in Lp( — oo} oo), and from [8, Theorem 74] both sides of 
(3.1) represent bounded operators from Lp(~oo, oo) to Lp>( — oo, oo) since 
1 < £ ^ 2 , and ra((j + i£) is bounded. T h u s by cont inui ty , (3.1) is t rue for 
1 < £ ^ 2. 

T h e next s t a t emen t follows from (3.1), for since m(s) is analyt ic , 
m(cr + it) ^ 0 a.e., and thus if r w > ( r F = 0 a.e., F = 0 a.e. and F = 0 a.e. 

F rom (3.1), if max (a(m), aim'1)) < a < min (/3(w), /3(m - 1 ) ) , then for 
F G L 2 ( - o o , oo), (Tn-itVTnt0Fy(t) = (TntVTn-itaFr(t) = F{t) a.e., and 
hence rm-i )< rrm>(T = Tm><xTm-ij(r = I o n L 2 ( — oo , oo ). Bu t then by the denseness 
of L 2 ( ~ o o , oo ) P\ Lp( — co , oo ) in Lp( — oo , oo ) and the cont inui ty of all three 
operators appearing in this last equat ion, it mus t hold for 1 < p < co, and 
the remainder of the lemma follows. 

L E M M A 3.2. Suppose m G se, 1 < p < oo , aim) < \i/p < (3(m), and let 

Then Hm,M)P G [£M,J- U f £ AU.PI ^ £M2,*2I wftere 1 < £ f < oo, a(m) < 
Vi/Pi < 0 (m) , then HmtllltP1f = Hm f a.e. 

Proof. T h a t Hm>ii!P G [ A , J follows from Lemmas 2.1 and 3.1. For the 
remainder, suppose first t h a t / G Co, and let 

F 0 0 = r xs~1f(x)dx. 
«Jo 

Clearly F is entire. Now 

bu t clearly C»ltP1f G L 2 ( —oo, oo), and hence by L e m m a 3.1, so i s CM l i P 1Fm ) W i P 1 / , 
and from (3.1), 

{CiXl,plHmiiluplfYit) = m((m/pi) +it)(Clll,Plfy(t). 
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But C/zijn/is clearly also in Li( —oo, oo), and hence 

/»oo /»co 

(Cn,Pjy(t)=\ eltu(Cn,nf)(u)du= e(^M+Mf(e")du 
• / -oo «/-oo 

J»oo 

x ( M 1 / M + « - l ) / ( 3 c M x = F ( (^/^ + £). 
0 

Hence, from [8, Theorem 48], 

1 f ^ 
(CntP1HmtMllPif)(u) = lim — « lMlw(W/>i) + it)F(fai/pi) + it)dt, 

the limit being in the topology of L2( —oo, oo). But then there is a sequence 
{Rj\, with Rj -^ co as j —» oo , so that 

1 ffîi 

(CMi.^m,Mi.*i/)(tt) = Hm — e lutm({m/pi) +it)F((fx1/p1) + it)dt 

a.e. on ( — oo , oo ), or 

(Hn,pJ)(x) = l i m ^ - f ' *- û , 1 * l ) -"«(0 . i / / ' i ) + *0/ ?(W/>i) + **)* 
,27 

*0*l/Pl)+*i2i i n(ni/pi)+iRj 

= lim — I x~sm(s)F(s)ds, 
j-*x> ̂ Kl J(m/Pi)-iRj 

a.e. on (0, oo ). 
Similarly 

1 f ^ _• 
(C^^H^^M = l i m - - g wtm(QA2/p*) + it)F((ix2/p2) + i / ) ^ 

= l i m - - e mtm((ui2/p2) + it)F((»2/p2) + # ) * , 
^00 ^ « / - f l y 

the limits being in the topology of L2( — oo , oo ). But then there is a subsequence 
{Sj} of {Rj) so that 

1 P s > _ • 
(C,2,P2H,2,P2f)(u) = l i m - - g mtm((fx2/p2) + it)F((fx2/p2) + it)dt 

j^oo ATT J-Sj 

almost everywhere on ( — oo , oo ), or 

tfW)(*) = l i m ^ - f ' x - f c / P 2 ) - " m ( W ^ 2 ) + it)F((i»/pt) + it)dt 

= lim-—: I x~sm(s)F(s)dsf 
j ^ œ Zirl J((i2/P2)-iSj 

a.e. on (0, oo ). 
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Hence, since {Sj} is a subsequence of {Rj}, we have for almost all x Ç (0, co ), 

( o . o ) {J^m,fii,pij)\x) ~~ \-Elm,n2,P2j)\x) 

-i i n(vi/Pi)+iSj n(n2/P2)+iSj'\ 

= lim-— < I - >x-sm(s)F(s)ds. 
j->œ Zirt y J (ni/Pi)-tSj J (fi2/p2)-iSj) 

If v>i/pi = V2/P2, the right hand side of this equation is zero, and 

(H»UPJ) = (H^^f) a.e. 

If Mi/^i ̂  ^/p2, let 7 be the rectangle with vertices (ni/pi) ± iSj and 
(M2/P2) ± ^ j - Then since 7 is contained in the strip a(m) < Re 5 < /3(m), 
w is analytic in this strip, and F is entire, we have for x > 0, 

I 

= l i m ÏÏ3 1 I x~'~!'SjraO + iS^Fia- + iSj)da-

x sm(s)F(s)ds = 0, 

from which (3.3) can be written 

(3.4) (Hm^,plf)(x) - (Hm 

J
^V-tlPl \ 

x-°+iSim(<r - iSj)F(a - iS^daï, 
Ml /PI / 

almost everywhere. 
But by the Riemann-Lebesgue lemma, F(a db iSj) —» 0 as j —> 00 ; also 

J»oo 

0 

which is clearly bounded on the interval of integration since/ 6 Co; further by 
Definition 3.1 (b), \m{d ± iSô)\ ^ K, where K is a constant, for a in the 
interval of integration; and I x - ^ ^ ' ! = x~a is clearly bounded on the interval 
of integration. Hence by the theorem of dominated convergence, the two 
integrals in (3.4) tend to zero as j —> 00, and hence 

J^-m,ni ,pij -H-m,n2 ,p2j a.e. 
Now if / Ç LfXltP1 C\ LM2fl,2, then by Lemma 2.1, there is a sequence {gn} of 

functions of C0 so that | | / — gw||/i»,Pt-—» 0 as n —> 00, i = 1, 2. But then, 
as ?z —» 00 , 

\\^m,ni,pij -"m,/ii,Pi£ft||Mi,Pi * ^ 

and hence there is a subsequence {nt} such that 

•£im,ni,pij == ̂ "jB.jii.pifni a.e. 

However, as i —-> 00 
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BOUNDEDNESS AND EXTENDABILITY 1095 

so that there is a subsequence {n/} of {tii} so that 

^m,n2,P2j = Aim •Limin2,p2&nif a . e . 

Hence, for almost all x, since gwi/ G C0, 

^m,m,pij = " m - ^ m , / t i , p i & i = Aim ±lm,\i.\,p\gni' 
i-ïœ i->oo 

= l i m J^-m,iJ.2,P2^ni' = -£lm,H2,P2ji 

as was to be proved. 

In view of the last part of Lemma 3.2, it appears that HmtfitP is independent 
of ix and p, and so we will rename it. 

Definition 3.2. If m £ s/, 1 < p < oo , «(m) < n/p < j3(ra), we define Hm by 

The chief properties of H"m are summed up in the following theorem. 

THEOREM 1. If m G ^ , then for each /z and p such that 1 < p < oo and 
a(m) < ix/p < p(m), Hm G [LMfJ. If K p ^ 2, and f £ L^p, 

(3.5) (<JfHmf)((»/p) + it) = m((n/p) + * 0 ( M 7 ) ((/*/£) + i0-

If 1 < p ^ 2 , a(w) < /x/^ < jô(w), iïm is one-to-one on LMfî„ unless m = 0. 
If m - 1 G J^, //ze?£ /or max (a(m), a(m~x)) < ju/£ < min (/3(w), /3(m~1))1 

1 < p < co, Hm is a one-to-one mapping of LMf2, 0?z/0 ifoe/f, aŵ Z 

(3.6) ( t f J " 1 = ffw-i. 

Proof. This follows immediately from Lemma 3.1. 

4. Transformations of J^M and^~M. In this section we find necessary and 
sufficient conditions that transformations 5 and T be in 5^M and ^"M respective
ly, and equivalent forms of (1.2) and (1.3), that are easier to work with. The 
results are summed up in the following lemma. 

LEMMA 4.1. (a) A transformation S G [^,2] is in S^» if and only if there is a 
function co, bounded a.e. on ( — 00, 00), so that for all f G Co 

(4.1) (^Sf) (y + it) = w(0 (JKf) (J/i - it) a.e. 

When S G J^M, (4.1) holds for all f G Ln,z- Conversely, given co, bounded a.e. on 
(-co, 00), (4.1) defines a transformation S G Ĵ %, with kernel k G L-11,2 given 
by (^k)( — JM + it) = co(/)/(J — i/) a.e. 

(b) 4̂ transformation T G [^,2] w iw J^z if aw^ only if there is a function co, 
bounded a.e. on ( — 00, 00), so that for all f G C0 

(4.2) ( e ^ 77) (|/i + it) = co (/) (Jéf) (|M + i/) a.e. 
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When T £ £T», (4.2) holds for all f £ LM;2. Conversely, given œ, bounded a.e. on 
( — 00, oo ), (4.2) defines a transformation T £ ~̂~M, with kernel I £ LM_2)2 giz>£w 
6y (*Jtl)(\n - 1 + it) = co(/)/(è ~ iO a.e. 

Proof, (a) is known when /x = 1 (see Kober [4]), and by minor changes of 
variables, the j ^ % case can be changed to the S^i case, (b) follows from (a) 
once it is noticed that T £ 3f~\ if and only if TU £ 5^i, where (Uf)(x) = 
x-y(x-i). 

5. Existence and extendability of R2~
1Ri. The theorem below gives condi

tions under which R2~
1Ri exists and can be extended. Throughout the re

mainder of the paper we will suppose cox and co2 are bounded a.e. on ( — 00,00), 
and X is a real number, and we let Si and S2 be the transformations of S^\ 
associated with coi and w2 respectively by (4.1), and let T\ and T2 be the 
transformations of 3T\ associated with coi and co2 respectively by (4.2). 

THEOREM 2. Suppose coi and w2 are bounded a.e. on ( — CO,GO) and that there is 
an m ^J</, with aim) < |X < fi{m), so that m(JX + it) = ui(t)/œ2(t) a.e. 
Then 52

_15i and T2~
lTi exist and belong to [L\>2], and S2~

1Si can be extended to 
LMtP, uniquely as an element of [LM,J, for all \x and p satisfying 1 < p < 00, 
(X — /3(m)) < fx/p < (X — a{m)), while r 2

_ 1 7 \ can be extended to L»jP, unique
ly as an element of \Ln,p\, for all /x and p satisfying 1 < p < 00 , aim) < n/p < 
13 (m). If, in addition, 1 < p ^ 2, the extended operators are one-to-one. 

If also m~l £ so?, then S2~
lSi is a one-to-one mapping of L»>p onto itself if 

1 < p < 00, 

max((X - j8(w)), (X - $(m~1))) < n/p < min ((X - a(m)), (X - aim'1))), 

while T2~
lTi is a one-to-one mapping of LM>P onto itself if I < p < 00, 

max {aim), a(m~1)) < \x/p < min ifiim), fi(m~1)). 

Proof. Since œi(t)/œ2(t) is defined a.e., œ2(t) ^ 0 a.e., and hence if S2f = 0 
a.e., then from (4.1) {^f){\\ — it) = 0 a.e., and / = 0 a.e., and thus 
S2

_1 exists. Similarly T2~
l exists. 

To show S2~
1Si exists, we must show that the range of Si is a subset of the 

range of 52 ; this is equivalent to showing that if / 6 L\,2, then there is a 
g Ç LX)2 so that S2g = S if. But since 

m{\\ + it) = coi(/)/w2(/) a.e. 

and, from Définition 3.1 m(%\ + it) is bounded, it follows that 

coi/co2 G Lœ( — 00, 00 ). 

Hence, since the Mellin transformation is a unitary mapping of L\>2 onto 
L2( —00 , co ), there is a g G £\,2 so that 

(Jtg){\\ + iO = ( c o 1 ( - 0 / c o 2 ( - / ) ) ( ^ / ) ( | X + i*) a.e. 
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But then, from (4.1), for almost all t 

( ^5 2 g) ( èX + it) = « 2 ( 0 ( ^ g ) ( * A ~ it) = ai(t)(ai(t)/ai(t))(^f)(i\ - it) 

= w1(t)(^f)(h\ - it) = ( ^ 5 i / ) ( J X + */), 

and Sïg = Sif a.e., so that S2~~lSi exists. Also 

l l S r t f , / I k * = l|g||x.2 = \\^g\U £ K\\^f\U = K\\f\\Ki, 

where K is an essential upper bound for coi/co2, and S2~
lS\ £ [L\j2]. 

Similarly, if we define h by 

iJéh)i\\ + it) = (coi(0/co2( /))(^/)( iX + it) a.e., 

then from (4.2), for almost all t 

{JfT2h)(\\ + it) = œ2(t)(^h)(±\ + it) 

= « 2 ( 0 ( « i ( 0 / « 2 ( 0 ) ( ^ / ) ( i x + *0 
= CO! (0 (Jtj ) {\\ + it) = (JtT.f) (|X + it), 

and T2h = T\f a.e., so that T2~
xTi exists. Also 

\\T^Txj\\^ = \\h\\K2 = \\Jéh\\2 S K\\Jtj\\2 = X| | / | |x.2, 

and T2'
lT1 £ [LX;2]. 

Let m(s) = m(\ — s); clearly m G ^ , a(m) = X — /3(m), and /3(ra) = 
X — aim). Hence from Theorem 1, H^ £ [XM>ÎJ if 1 < p < °o , (X — P(m)) < 
n/p < (X - a(m)). Note that (X - j8(w)) < |X < (X - a(m)), and hence if 
/ £ LX;2, then from (4.1) and (3.5), for almost all / 

(^fSJIûf)G\ + it) = c o 2 ( 0 ( ^ ^ / ) ( | X - i/) 
= u2(t)m(%\ - it)(Jt'j)i\\ - it) 

= co2(/)mQX + it)(Jéj)(\\ - it) 

= ^2{t){^{t)l^2{t)){Jéj){\\ - it) 

= coi(/)M7)(£X -it) 

= ( ^ 5 i / ) ( J X + t 0 , 

so that S2H^f — S±f a.e., 52if^ = Si on LX)2, and i7^ = 52
_15i on Lx>2. 

Hence we can extend S2
_1Si to LM>2?, if 1 < p < 00, (X — P(m)) < \x/p < 

(X — a(m))y by defining it to be H^, and then 52
-15i £ [A*,?]- This extension 

will be unique as an element of (XM,J, for it coincides with 52
_15 1 o n L/fi^p 1 1 -L>\,2t 

and this set is dense in LM>P, since it contains Co. The remaining statements 
about 52

-15i in the statement of Theorem 2 are just paraphrases of statements 
about Hm in Theorem 1. 

In a similar way Hm = T2~
lTi on LX2, and thus we can extend T2~

lTy to 
LM>;P, if 1 < p < 00, aim) < \x/p < P(m), by defining it to be Hmy and then 
T2~

lTi G [£Mf3J; this is the unique extension as an element of [L^tP]; and the 
remaining statements about T2~

lTi are paraphrases of those about Hm in 
Theorem 1. 
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6. Extension and range of Ri. In many cases P 2 can be extended from 
L\)2 to other spaces LM>P for a collection P of pairs ip, ju),asa bounded operator 
from LM>P to LVA for a range of values of (q, v), depending on ip, /x). In our 
next theorem, we show that when this is so, and the hypotheses of Theorem 2 
are satisfied, it may be possible to extend Ri, and that then there is a relation 
between the range of Ri and that of P2 . 

THEOREM 3. Suppose that coi and co2 are bounded a.e., and that there is an 
m G J / with a{m) < \\ < Pirn), so that m{\\ + it) = coi(£)/w2(/) ax. Then 

(a) if S2 can be extended to L^^for a collection P of pairs ip, /x), as an element 
of [XM>p, LVtQ],for a range of values of (q, v) depending on ip, n), then for all n and 
p so that ip, /x) e P, 1 < p < oo j (X - P(m)) < fi/p < (X - aim)), Si can 
be extended to LM)P, uniquely as an element of [LM>P, Lv>q\, and for such AX and p, 
SiiLn^) Ç 02(LM P) ; 

(b) if T2 caw &e extended to L^^for a collection P of pairs ip, /x), as an element 
of [L^^, LViQ],for a range of values of iq,v) depending on ip, n), then for all /x and 
p so that ip, /x) £ P, 1 < p < co, aim) < n/p < /5(w), 7\ caw ôe extended to 
LM)P, uniquely as an element of [X/*,*» X„>(Z], and for such xx awa7 £>, Ti(LptP) Ç 
P2(LM;P). 

Further (c) if w _ 1 G ^ , then for ip, /x) 6 P , 1 < £ < °° , 

max ((X - 0(ra)), (X - ^(m"1))) < M/£ < min ( ( X - a ( r a ) ) , (X - aim~1))), 

5i(LM)P) = 52(LMf„), and for ip, n) 6 P , 1 < p < oo, 

max (a(m), a O " 1 ) ) < /x/> < min (/3(ra), /^O" 1 ) ) , Pi(LM)P) = T2iLfi<p). 

Proof. We shall only prove (a) and that part of (c) referring to Si and S2, 
the proof of (b) and the rest of (c) being similar. 

We extend Si by denning it to be S2(S2
-1Si). Since by Theorem 2, for the 

indicated values of p and /x, S2
_1Si £ (X/z,J and by hypothesis S2 Ç [At>2,, £ *>,<?], 

then Si G [XM,P» XF> J , and it is the unique such extension, since it coincides with 
Si on LMP P\LX,2, and this set is dense in LMP since it contains Co. 

To show SiiL^^p) Ç1 S2(LM)P), we must show that if / £ LM>P, there is a 
g G LytP, so that S2g = Sif. But if we let g = S2

_ 1Si/, then S2g = S i / . 
To show (c) for Si and S2, it is enough to notice that under the hypotheses 

of (c), the general hypothesis of the theorem is true with œi and co2 inter
changed, if m is replaced by w_1, and the hypotheses of (a) are true with Si 
and S2 interchanged, if P is replaced by Q = {ip, y)\ip, M) £ P , 1 < p < °o, 
(X — fiim)) < fi/p < (X — a(m))}, and the conclusion of (c) follows. 

7. Applications. We shall give two applications of our results, the first 
when P i and P 2 are in Sf\ for a particular /x, and the second when they are 
i n ^ M . 
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BOUNDEDNESS AND EXTENDABILITY 1099 

For our first application let rj > — 1, and let Hv be the Hankel transforma
tion; that is if / G Co 

(Hvf)(x) = r (xt)*Mxt)f(t)dt, 

and for 0 ^ f < rj + 1, let (HvSf)(x) = x^(HvF)(x)y where F(t) = *-*/(*); 
that is 

(H,.sf)(x) = P (**)*"'/, (**)/(*)<&. 
Jo 

If we integrate both sides of this equation from zero to x, it has the form (1.2) 
for id = 1, with kernel 

iJ,, is studied in [8, Chapter 8, §§4 and 5], and by minor changes of variables in 
the results of those sections, it is easy to show that kn^ £ L_i,2 and 

(^*,,r)(-J + it) = «,>r(0/(i - i/) 
where 

«,,r(0 = 2«-rr(jfo - r + 1 + it))/T(iCn + f + l - it)). 
But from [2, 1.18(6)], 

(7.1) \T(x + iy)\ ~ (2ir)t\y\x-te-*w/2, 

uniformly in x for x in any finite interval, and thus 

K.rWI ~ |2/|" f as |/| —> cx>. 

Hence since 0 g f < rj + 1, co„tj- is bounded a.e., and HVtç G S^i. 
We shall take HVtç as Si in Theorems 2 and 3, and for S2 we shall take the 

Fourier cosine transformation J^~c = if_i. Since both transformations are in 
S^i, we must find a function m G ^ , with aim) < \ < £(m), so that 

m (4 + ;*) = co,,r(0/co_i>0(/) = 2-f(r(i(j - iO) 
• r(ifo - f + l + i0))/(r(i(* + *0)r(4fo + f + 1 - *0)). 

An analytic function with the right value at \ + it is 

2-f(r(j(i - s))T(i(v - r + i + ^)))/(r(^)r(i(.7 + r + f - 5))). 
tnVtç(s) is analytic in the strip f — 77 — J < Re s < 1, and if f — 7; — \ < 
o"! ^ (72 < 1, then from (5.1), uniformly in <x for ax ^ a S 0*2, \mVtç(cr + i£)| ^ 
|2/ |_ f as |̂ | —> 00. Hence since f ^ 0, mv^(s) is bounded in the strip 0-1 ^ 
Re 5 ^ s2. Also 

™i.r(s) = iw„>r(s){̂ (1(17 - f + i + s)) 
- *(*(! - 5)) + *(Jfo + f + f - *)) - *(**)}, 
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where \fr(s) = T'(s)/T(s). But from [2, 1.18(7)], 

\p(z) = log z + (2s)"1 + 0(\z\~2) as s -^ oo in |arg z\ ^ TT - <5. 

Hence as \y\ —> oo , 

(7.2) f(x + iy) = log (x + iy) + (2(x + iy))~l + 0(\x + iy\-*) 

= \ogiy - i((x - %)/y) + 0(y~2), 

and thus as \t\ —> oo 

m;,r(er + i/) = m(o- + it){(-i{/t) + 0(r2)}, 

so that m((T + it) = 0(|/|—1), as |*| —• oo for f — 77 — | < o- < 1. Thus 
w,, r G i / , with a(w,, r) = f - 77 - I, P(mr,,t) = 1, so that a(mvS) < \ < 
0(ro,,r). 

Hence by Theorem 2, sincere-1 = &~ c,&~ JI^^ can be extended to LM>2, as 
an element of [LMtP] for all pi and £ such that 1 < p < 00,0 < /x/p < 77 — f + f, 
0 ^ f < 77 + 1, and is one-to-one if 1 < p ^ 2. Clearly (w^o) - 1 G ^ / , 
«((w^.o)-1) = 0, ^((m^o)-1) = *? + !, and hence if 1 < p < 00, 

max (0, -77 - | ) < /x/£ < min (1, 77 + f) , 

J^cHr, is a bounded one-to-one mapping of LMP onto itself. 
Now by [5, Theorem 1], if 1 < p < co, max (p~\ p'~l) ^ /x < 1, 

p ^ q ^ 1/(1 — /x), then ^ c Ç [^M>P, Lff(i_M)>J. Hence from Theorem 3, 
if 1 < p < 00, max Or1 , ^ , - 1 ) ^ M < \ p SqS 1/(1 - / * ) , / * < i 7 - f + f 
and 0 ^ f < 77 + 1, Hv,ç G [^ ) P , L ç d - ^ J , or writing this in terms of H^ 

But, if 1 < £ 5̂  g < 00, max (£_1, g/_1) fg *> < 77 + §, there are numbers 
M and f with max (£-*, / / - 1 ) ^ M < 1, 2 ^ 1/(1 - M ) j / X < r ? _ f + | a nd 
0 ^ f < 77 + 1, so that v = /x + f. To see this, note first that if we define 
f (/*) = i> — /z, for max te-1, g/_1) ^ M < 1 then the range of f is (1/ — 1, 
?/ — max te-1, <z'-1)], and this intersects [0, 77 + J) , since v — 1 < 77 + J, and 
i> — max te-1, g' -1) ^ 0. Hence letting f be any point of this intersection, and 
/x = ^ — f, we have max te-1, £ / _1) ^ max te-1, g /_1) ^ M < 1, g ^ 1/(1 — M) 
since /x ^ g'-1, /x = ^ - f < ^ - f + f, 0 ^ f < * 7 + e<T? + l, and J> = 

Hence we have shown that if 1 < £ ^ g < o o , max (£_1, g' -1) ^ y < 77 + §, 

If we take 1 < p ^ 2, /* = l/^>, g = £', this result becomes Hv £ [Lp, LP '] 
if p > (77 + f)_1» which is well-known if 77 ^ — | , see [1], since then 
(v + 2 ) _ 1 < 1» but is less well-known if — 1 < 77 < — | . 

Also, from Theorem 3, HVtt(LplltP) C ^~e(Lpll>p) if 1 < £ < 00, max 
fa""1, £ / - 1) ^ M < 1, and M < *? - ? + t , and since (ra^o)"1 G ^ , Hv(LplltP) = 

#~c(LWtP) if 1 < p < 00, max (£-!, £ '-i) ^ M < 1 and M < 77 + f. 
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For our second application let 

(7.3) V,.*.tf)(x)=vX
 r( , - (*' - ty-^fm, 

1 (a) Jo 
where Re a > 0, v > 0, and £ is a complex number. It is well-known that 
IVta,s € [LMfJJ if 1 ^ p < co, fx/p < vRe f; see [6, Corollary 3.1]. From 
[6, Corollary 4.1], if §X < y Re £ , / G Lx>2, 

(-^/,.«,*/) (*X + i0 = «,.«.*(/) (>^7)(iX + i0 
where 

«,.«.€(0 = r(f - ((èX + it)/v))/T(£ + a - ((*X + iOA)). 

But from (5.1) 

|w,.a,€(0l ~ \t\-Rea as | / | -+oo, 

and hence since JX < *> Re £, co is bounded a.e., and /„,«,$ G -̂ ~x. 
We shall take 7\ = i^.ai.Si, T2 = IV2,a2,$2

 m Theorems 2 and 3. Transforma
tions of the form T2~

1T1 have been considered by Erdélyi [3]. Since both trans
formations are in ^~\, if X̂ < min (vi Re £i, v2 Re £2), we must find m £ s/ 
so that 

(7.4) ra(§X + i/) = «„!,«!,{! (0/wF2,a2.f2(0 a.e. 

Clearly an analytic function satisfying (7.4) is 

m(s) = (r({x - (*Ai))r({2 + «2 - (*A2)))/ 
(rtti + a x - (*Ai ) )r&- (V*^))), 

which is analytic for — oo < Re s < min (v\ Re £i, v2 Re (£2 + «2)). Since 
from (7.1) and (7.2), 

\m(a + if)\ ~ |/|Re(«2~«i), and 

\m'(<r + it)\ ~ |m((r + iO|{(Re(a2 - c*i)A) + 0(/~2)}, 

if Re a2 ^ Re ai, w G J / with a(m) = —00, /3(m) = min {v\ Re £1, Ï>2 Re 
(£2 + «2)). Also w _ 1 G ^ , if Re «i = Re a2, with a{m~l) = — 00, /3(m_1) = 
min (PI Re (£1 + «i), P2 Re £2). Thus from Theorems 2 and 3, and using 
[6, Lemma 3.4] it follows that if Re a2 ^ Re a\, (IV2,a2 j 2 ) _ 1 ^i,ai,h exists and 
belongs to [LMtJ if 1 < £ < 00, /x/£ < min (vi Re £1, p2 Re £2), and can be 
extended to LM>P as an element of |XMJJ if /x/£ < rnin (*>i Re £1, *>2 Re (£2 + a2)). 
It is one-to-one if 1 < p ^ 2 or /*/£ < min (v\ Re £1, ^2 Re £2) and onto if 
Re «i = Re a2 and \x/p < min (z>i Re £1, v2 Re £2). 

Further, if n/p < min (*>i Re £1, Ï>2 Re £2), Re a\ ^ Re a2, 

J- v2,a2,%2 \-^n,p) — -* v\ ,a\ ,£i V-^H.p) i 

with equality if Re a\ = Re a2. 
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