A TECHNIQUE FOR STUDYING THE BOUNDEDNESS AND EXTENDABILITY OF CERTAIN TYPES OF OPERATORS

P. G. ROONEY

1. Introduction. For $1 \leqq p<\infty, \mu$ real, let $L_{\mu, p}$ denote the collection of functions f, Lebesgue measurable on $(0, \infty)$, and such that $\|f\|_{\mu, p}<\infty$, where

$$
\begin{equation*}
\|f\|_{\mu, p}=\left\{\int_{0}^{\infty} t^{\mu-1}|f(t)|^{p} d t\right\}^{1 / p} \tag{1.1}
\end{equation*}
$$

Also, if X and Y are Banach spaces, denote by $[X, Y]$ the collection of bounded linear operators from X to $Y ;[X, X]$ denote by $[X]$. Let \mathscr{S}_{μ} denote the collection of operators $S \in\left[L_{\mu, 2}\right]$, which are defined in terms of a kernel k, associated with S, by an equation of the form

$$
\begin{equation*}
(S f)(x)=x^{-(\mu-1) / 2} \frac{d}{d x} x^{-(\mu-1) / 2} \int_{0}^{\infty} k(x t) f(t) \frac{d t}{t}, \tag{1.2}
\end{equation*}
$$

and let \mathscr{T}_{μ} denote the collection of operators $T \in\left[L_{\mu, 2}\right]$, which are defined in terms of a kernel l, associated with T, by an equation of the form

$$
\begin{equation*}
(T f)(x)=x^{-(\mu-1) / 2} \frac{d}{d x} x^{(\mu-1) / 2} \int_{0}^{\infty} l(x / t) f(t) d t . \tag{1.3}
\end{equation*}
$$

In a recent paper [6], we considered particular operators of the form $R_{2}^{-1} R_{1}$, where either both R_{1} and R_{2} belonged to \mathscr{S}_{μ} for some μ, or both R_{1} and R_{2} belonged to \mathscr{T}_{μ} for some μ. By associating with a certain function, analytic in a strip, an operator in $\left[L_{\mu, p}\right]$ for a range of values of μ and p, we were able to extend $R_{2}{ }^{-1} R_{1}$ to other $L_{\mu, p}$ spaces as an element of $\left[L_{\mu, p}\right]$. The technique used there seems of some general interest, and our first objective in this paper is to prove a general result as to when an operator in $\left[L_{\mu, p}\right]$ can be defined by the method used in [6]. This is accomplished in Theorem 1.

Our second objective is to show when $R_{2}^{-1} R_{1}$ can be extended, and we achieve this in Theorem 2.

In [6] we applied our results to relate the ranges of R_{1} and R_{2}, and our final objective is to place the technique used there in a general setting. This is done in Theorem 3.

In section 2 below we prove a number of preliminary lemmas. In section 3 we show how to associate an operator of $\left[L_{\mu, p}\right]$ with a function analytic in a strip, the results being summed up in Theorem 1 . Section 4 is devoted to determining necessary and sufficient conditions that transformations be in \mathscr{S}_{μ} or \mathscr{T}_{μ}, while in section 5 we give conditions that $R_{2}{ }^{-1} R_{1}$ exist and be extendable.

[^0]In section 6 we show how the extendability of R_{2} can be used to extend R_{1}, and relate their ranges, while in section 7 we give two examples of the use of this process.
2. Preliminaries. In this section we shall prove two lemmas giving some properties of the spaces $L_{\mu, p}$, define the Mellin transformation, and state a lemma giving its principal properties. First we need a definition.

Definition 2.1. If $1 \leqq p<\infty, f \in L_{\mu, p}$, we define $C_{\mu, p}$ by

$$
\left(C_{\mu, p} f\right)(t)=e^{\mu t / p} f\left(e^{t}\right)
$$

Lemma 2.1. $C_{\mu, p}$ is an isometric isomorphism of $L_{\mu, p}$ onto $L_{p}(-\infty, \infty)$.
Proof. See [6, Lemma 2.1].
Definition 2.2. Denote by C_{0} the collection of functions, continuous on $(0, \infty)$ and vanishing outside some interval (a, b), where $0<a<b<\infty$.

Lemma 2.2. C_{0} is dense in $L_{\mu_{, p}}$. Indeed if $f \in L_{\mu_{1}, p_{1}} \cap L_{\mu_{2}, p_{2}}$ and $\epsilon>0$, then g exists in C_{0} so that $\|f-g\|_{\mu_{i}, p_{i}}<\epsilon, i=1,2$.

Proof. See [6, Lemmas 2.2 and 2.3].
Definition 2.3. For $f \in L_{\mu, p}, 1 \leqq p \leqq 2$, let

$$
(\mathscr{M} f)((\mu / p)+i t)=\left(C_{\mu, p} f\right)^{\wedge}(t),
$$

where \hat{F} is the Fourier transform of F, defined by

$$
\hat{F}(t)=\int_{-\infty}^{\infty} e^{i t u} F(u) d u
$$

when $F \in L_{1}(-\infty, \infty) \cap L_{p}(-\infty, \infty)$, and by continuity on $L_{p}(-\infty, \infty)$ when $1<p \leqq 2$. \mathscr{M} will be called the Mellin transformation.

Lemma 2.3. If $1 \leqq p \leqq 2, \mathscr{M} \in\left[L_{\mu, p}, L_{p^{\prime}}(-\infty, \infty)\right]$. If $p=2$, \mathscr{M} is unitary if $L_{2}(-\infty, \infty)$ has measure $d t / 2 \pi$.

Proof. See [6, Lemma 4.1].
3. A class of operators. We first define a class of analytic functions, and then show that with each member of this class we can associate an operator in [$L_{\mu, p}$] for a range of values of μ and p.

Definition 3.1. We say $m \in \mathscr{A}$ if there are extended real numbers $\alpha(m)$ and $\beta(m)$, with $\alpha(m)<\beta(m)$, so that
(a) $m(s)$ is analytic in the strip $\alpha(m)<\operatorname{Re} s<\beta(m)$,
(b) in every closed sub-strip, $\sigma_{1} \leqq \operatorname{Re} s \leqq \sigma_{2}$, where $\alpha(m)<\sigma_{1} \leqq \sigma_{2}<\beta(m)$, $m(s)$ is bounded,
(c) for $\alpha(m)<\sigma<\beta(m),\left|m^{\prime}(\sigma+i t)\right|=O\left(|t|^{-1}\right)$, as $|t| \rightarrow \infty$.

Lemma 3.1. If $m \in \mathscr{A}$, then for each $\sigma, \alpha(m)<\sigma<\beta(m)$, and for each p, $1<p<\infty, m(\sigma+i t)$ is an $L_{p}(-\infty, \infty)$ multiplier. If the operator, in $\left[L_{p}(-\infty, \infty)\right]$ for $1<p<\infty$, generated by $m(\sigma+i t)$ is denoted by $T_{m, \sigma}$, then for $1<p \leqq 2, F \in L_{p}(-\infty, \infty)$,

$$
\begin{equation*}
\left(T_{m, \sigma} F\right)^{\wedge}(t)=m(\sigma+i t) \hat{F}(t) \tag{3.1}
\end{equation*}
$$

If $1<p \leqq 2, \alpha(m)<\sigma<\beta(m), T_{m, \sigma}$ is one-to-one on $L_{p}(-\infty, \infty)$ unless $m \equiv 0$. If $m^{-1} \in \mathscr{A}$, then for max $\left(\alpha(m), \alpha\left(m^{-1}\right)\right)<\sigma<\min \left(\beta(m), \beta\left(m^{-1}\right)\right)$, $1<p<\infty, T_{m, \sigma}$ is a one-to-one mapping of $L_{p}(-\infty, \infty)$ onto itself, and

$$
\begin{equation*}
\left(T_{m, \sigma}\right)^{-1}=T_{m-1, \sigma} . \tag{3.2}
\end{equation*}
$$

Proof. The first statement follows from [7, Chapter 4, Theorem 3] as does (3.1) when $p=2$, and thus for $F \in L_{p}(-\infty, \infty) \cap L_{2}(-\infty, \infty)$. But this last space is dense in $L_{p}(-\infty, \infty)$, and from [8, Theorem 74] both sides of (3.1) represent bounded operators from $L_{p}(-\infty, \infty)$ to $L_{p^{\prime}}(-\infty, \infty)$ since $1<p \leqq 2$, and $m(\sigma+i t)$ is bounded. Thus by continuity, (3.1) is true for $1<p \leqq 2$.

The next statement follows from (3.1), for since $m(s)$ is analytic, $m(\sigma+i t) \neq 0$ a.e., and thus if $T_{m, \sigma} F=0$ a.e., $\hat{F}=0$ a.e. and $F=0$ a.e.

From (3.1), if $\max \left(\alpha(m), \alpha\left(m^{-1}\right)\right)<\sigma<\min \left(\beta(m), \beta\left(m^{-1}\right)\right)$, then for $F \in L_{2}(-\infty, \infty),\left(T_{m-1, \sigma} T_{m, \sigma} F\right)^{\wedge}(t)=\left(T_{m, \sigma} T_{m-1, \sigma} F\right)^{\wedge}(t)=\hat{F}(t)$ a.e., and hence $T_{m-1, \sigma} T_{m, \sigma}=T_{m, \sigma} T_{m-1, \sigma}=I$ on $L_{2}(-\infty, \infty)$. But then by the denseness of $L_{2}(-\infty, \infty) \cap L_{p}(-\infty, \infty)$ in $L_{p}(-\infty, \infty)$ and the continuity of all three operators appearing in this last equation, it must hold for $1<p<\infty$, and the remainder of the lemma follows.

Lemma 3.2. Suppose $m \in \mathscr{A}, 1<p<\infty, \alpha(m)<\mu / p<\beta(m)$, and let

$$
H_{m, \mu, p}=C_{\mu, p}{ }^{-1} T_{m, \mu / p} C_{\mu, p} .
$$

Then $H_{m, \mu, p} \in\left[L_{\mu, p}\right]$. If $f \in L_{\mu_{1}, p_{1}} \cap L_{\mu_{2}, p_{2}}$, where $1<p_{i}<\infty, \alpha(m)<$ $\mu_{i} / p_{i}<\beta(m)$, then $H_{m, \mu_{1}, p_{1}} f=H_{m, \mu_{2}, p_{2}} f$ a.e.

Proof. That $H_{m, \mu, p} \in\left[L_{\mu, p}\right]$ follows from Lemmas 2.1 and 3.1. For the remainder, suppose first that $f \in C_{0}$, and let

$$
F(s)=\int_{0}^{\infty} x^{s-1} f(x) d x
$$

Clearly F is entire. Now

$$
C_{\mu_{1}, p_{1}} H_{m, \mu_{1}, p_{1}} f=T_{\mu_{1} / p_{1}} C_{\mu_{1}, p_{1}} f
$$

but clearly $C_{\mu_{1}, p_{1}} f \in L_{2}(-\infty, \infty)$, and hence by Lemma 3.1, so is $C_{\mu_{1}, p_{1}} H_{m, \mu_{1}, p_{1}} f$, and from (3.1),

$$
\left(C_{\mu_{1}, p_{1}} H_{m, \mu_{1}, p_{1}} f\right)^{\wedge}(t)=m\left(\left(\mu_{1} / p_{1}\right)+i t\right)\left(C_{\mu_{1}, p_{1}} f\right)^{\wedge}(t) .
$$

But $C_{\mu_{1}, p_{1}} f$ is clearly also in $L_{1}(-\infty, \infty)$, and hence

$$
\begin{aligned}
\left(C_{\mu_{1}, p_{1}} f\right)^{\wedge}(t) & =\int_{-\infty}^{\infty} e^{i t u}\left(C_{\mu_{1}, p_{1}} f\right)(u) d u=\int_{-\infty}^{\infty} e^{\left(\mu_{1} u / p_{1}\right)+i u t} f\left(e^{u}\right) d u \\
& =\int_{0}^{\infty} x^{\left(\mu_{1} / p_{1}+i t-1\right)} f(x) d x=F\left(\left(\mu_{1} / p_{1}\right)+i t\right)
\end{aligned}
$$

Hence, from [8, Theorem 48],

$$
\left(C_{\mu_{1}, p_{1}} H_{m, \mu_{1}, p_{1}} f\right)(u)=\lim _{R \rightarrow \infty} \frac{1}{2 \pi} \int_{-R}^{R} e^{-i u t} m\left(\left(\mu_{1} / p_{1}\right)+i t\right) F\left(\left(\mu_{1} / p_{1}\right)+i t\right) d t
$$

the limit being in the topology of $L_{2}(-\infty, \infty)$. But then there is a sequence $\left\{R_{j}\right\}$, with $R_{j} \rightarrow \infty$ as $j \rightarrow \infty$, so that

$$
\left(C_{\mu_{1}, p_{1}} H_{m, \mu_{1}, p_{1}} f\right)(u)=\lim _{j \rightarrow \infty} \frac{1}{2 \pi} \int_{-R_{j}}^{R_{j}} e^{-i u t} m\left(\left(\mu_{1} / p_{1}\right)+i t\right) F\left(\left(\mu_{1} / p_{1}\right)+i t\right) d t
$$

a.e. on $(-\infty, \infty)$, or

$$
\begin{aligned}
\left(H_{\mu_{1}, p_{1}} f\right)(x) & =\lim _{j \rightarrow \infty} \frac{1}{2 \pi} \int_{-R_{j}}^{R_{j}} x^{-\left(\mu_{1} / p_{1}\right)-i t} m\left(\left(\mu_{1} / p_{1}\right)+i t\right) F\left(\left(\mu_{1} / p_{1}\right)+i t\right) d t \\
& =\lim _{j \rightarrow \infty} \frac{1}{2 \pi i} \int_{\left(\mu_{1} / p_{1}\right)-i R_{j}}^{\left(\mu_{1} / p_{1}\right)+i R_{j}} x^{-s} m(s) F(s) d s,
\end{aligned}
$$

a.e. on $(0, \infty)$.

Similarly

$$
\begin{aligned}
\left(C_{\mu_{2}, p_{2}} H_{\mu_{2}, p_{2}} f\right)(u) & =\lim _{R \rightarrow \infty} \frac{1}{2 \pi} \int_{-R}^{R} e^{-i u t} m\left(\left(\mu_{2} / p_{2}\right)+i t\right) F\left(\left(\mu_{2} / p_{2}\right)+i t\right) d t \\
& =\lim _{j \rightarrow \infty} \frac{1}{2 \pi} \int_{-R_{j}}^{R_{j}} e^{-i u t} m\left(\left(\mu_{2} / p_{2}\right)+i t\right) F\left(\left(\mu_{2} / p_{2}\right)+i t\right) d t
\end{aligned}
$$

the limits being in the topology of $L_{2}(-\infty, \infty)$. But then there is a subsequence $\left\{S_{j}\right\}$ of $\left\{R_{j}\right\}$ so that

$$
\left(C_{\mu_{2}, p_{2}} H_{\mu_{2}, p_{2}} f\right)(u)=\lim _{j \rightarrow \infty} \frac{1}{2 \pi} \int_{-S_{j}}^{S_{j}} e^{-i u t} m\left(\left(\mu_{2} / p_{2}\right)+i t\right) F\left(\left(\mu_{2} / p_{2}\right)+i t\right) d t
$$

almost everywhere on $(-\infty, \infty)$, or

$$
\begin{aligned}
\left(H_{\mu_{2}, p_{2}} f\right)(x) & =\lim _{j \rightarrow \infty} \frac{1}{2 \pi} \int_{-S_{j}}^{S_{j}} x^{-\left(\mu_{2} / p_{2}\right)-i t} m\left(\left(\mu_{2} / p_{2}\right)+i t\right) F\left(\left(\mu_{2} / p_{2}\right)+i t\right) d t \\
& =\lim _{j \rightarrow \infty} \frac{1}{2 \pi i} \int_{\left(\mu_{2} / p_{2}\right)-i S_{j}}^{\left(\mu_{2} / p_{2}\right)+i S_{j}} x^{-s} m(s) F(s) d s,
\end{aligned}
$$

a.e. on ($0, \infty$).

Hence, since $\left\{S_{j}\right\}$ is a subsequence of $\left\{R_{j}\right\}$, we have for almost all $x \in(0, \infty)$,

$$
\begin{align*}
\left(H_{m, \mu_{1}, p_{1}} f\right)(x)- & \left(H_{m, \mu_{2}, p_{2}} f\right)(x) \tag{3.3}\\
& =\lim _{j \rightarrow \infty} \frac{1}{2 \pi i}\left\{\int_{\left(\mu_{1} / p_{1}\right)-i S_{j}}^{\left(\mu_{1} / p_{1}\right)+i S_{j}}-\int_{\left(\mu_{2} / p_{2}\right)-i S_{j}}^{\left.\left(\mu_{2} / p_{2}\right)+i S_{j}\right)}\right\} x^{-s} m(s) F(s) d s .
\end{align*}
$$

If $\mu_{1} / p_{1}=\mu_{2} / p_{2}$, the right hand side of this equation is zero, and

$$
\left(H_{\mu_{1}, p_{1}} f\right)=\left(H_{\mu_{2}, p_{2}} f\right) \quad \text { a.e. }
$$

If $\mu_{1} / p_{1} \neq \mu_{2} / p_{2}$, let γ be the rectangle with vertices $\left(\mu_{1} / p_{1}\right) \pm i S_{j}$ and $\left(\mu_{2} / p_{2}\right) \pm i S_{j}$. Then since γ is contained in the strip $\alpha(m)<\operatorname{Re} s<\beta(m)$, m is analytic in this strip, and F is entire, we have for $x>0$,

$$
\int_{\gamma} x^{-s} m(s) F(s) d s=0,
$$

from which (3.3) can be written

$$
\begin{align*}
& \left(H_{m, \mu_{1}, p_{1}} f\right)(x)-\left(H_{m, \mu_{2}, p_{2}} f\right)(x) \tag{3.4}\\
& =\lim _{j \rightarrow \infty} \frac{1}{2 \pi i}\left\{\int_{\mu_{1} / p_{1}}^{\mu_{2} / p_{2}} x^{-\sigma-i S_{j}} m\left(\sigma+i S_{j}\right) F\left(\sigma+i S_{j}\right) d \sigma\right. \\
& \\
& \left.\quad-\int_{\mu_{1} / p_{1}}^{\mu_{2} / p_{2}} x^{-\sigma+i S_{j}} m\left(\sigma-i S_{j}\right) F\left(\sigma-i S_{j}\right) d \sigma\right\},
\end{align*}
$$

almost everywhere.
But by the Riemann-Lebesgue lemma, $F\left(\sigma \pm i S_{j}\right) \rightarrow 0$ as $j \rightarrow \infty$; also

$$
\left|F\left(\sigma \pm i S_{j}\right)\right| \leqq \int_{0}^{\infty} x^{\sigma-1}|f(x)| d x
$$

which is clearly bounded on the interval of integration since $f \in C_{0}$; further by Definition 3.1 (b), $\left|m\left(\sigma \pm i S_{j}\right)\right| \leqq K$, where K is a constant, for σ in the interval of integration; and $\left|x^{-\sigma \pm i S_{j}}\right|=x^{-\sigma}$ is clearly bounded on the interval of integration. Hence by the theorem of dominated convergence, the two integrals in (3.4) tend to zero as $j \rightarrow \infty$, and hence

$$
H_{m, \mu_{1}, p_{1}} f=H_{m, \mu_{2}, p_{2}} f \quad \text { a.e. }
$$

Now if $f \in L_{\mu_{1}, p_{1}} \cap L_{\mu_{2}, p_{2}}$, then by Lemma 2.1, there is a sequence $\left\{g_{n}\right\}$ of functions of C_{0} so that $\left\|f-g_{n}\right\|_{\mu_{i}, p_{i}} \rightarrow 0$ as $n \rightarrow \infty, i=1,2$. But then, as $n \rightarrow \infty$,

$$
\left\|H_{m, \mu_{1}, p_{1}} f-H_{m, \mu_{1}, p_{1}} g_{n}\right\|_{\mu_{1}, p_{1}} \rightarrow 0
$$

and hence there is a subsequence $\left\{n_{i}\right\}$ such that

$$
H_{m, \mu_{1}, p_{1}} f=\lim _{i \rightarrow \infty} H_{m, \mu_{1}, p_{1} g_{n_{i}}} \quad \text { a.e. }
$$

However, as $i \rightarrow \infty$

$$
\left\|H_{m, \mu_{2}, p_{2}} f-H_{m, \mu_{2}, p_{2}} g_{n_{i}}\right\|_{\mu_{2}, p_{2}} \rightarrow 0
$$

so that there is a subsequence $\left\{n_{i}{ }^{\prime}\right\}$ of $\left\{n_{i}\right\}$ so that

$$
H_{m, \mu_{2}, p_{2}} f=\lim _{i \rightarrow \infty} H_{m, \mu_{2}, p_{2} g_{n^{\prime}}} \quad \text { a.e. }
$$

Hence, for almost all x, since $g_{n_{i}} \in C_{0}$,

$$
\begin{aligned}
H_{m, \mu_{1}, p_{1}} f & =\lim _{i \rightarrow \infty} H_{m, \mu_{1}, p_{1}} g_{n_{i}}=\lim _{i \rightarrow \infty} H_{m, \mu_{1}, p 1} g_{n_{i}} \\
& =\lim _{i \rightarrow \infty} H_{m, \mu_{2}, p_{2}} g_{n_{i}}=H_{m, \mu_{2}, p_{2}} f,
\end{aligned}
$$

as was to be proved.
In view of the last part of Lemma 3.2, it appears that $H_{m, \mu, p}$ is independent of μ and p, and so we will rename it.

Definition 3.2. If $m \in \mathscr{A}, 1<p<\infty, \alpha(m)<\mu / p<\beta(m)$, we define H_{m} by

$$
H_{m}=C_{\mu, p}{ }^{-1} T_{\mu / p} C_{\mu, p} .
$$

The chief properties of H_{m} are summed up in the following theorem.
Theorem 1. If $m \in \mathscr{A}$, then for each μ and p such that $1<p<\infty$ and $\alpha(m)<\mu / p<\beta(m), H_{m} \in\left[L_{\mu, p}\right]$. If $1<p \leqq 2$, and $f \in L_{\mu, p}$,

$$
\begin{equation*}
\left(\mathscr{M} H_{m} f\right)((\mu / p)+i t)=m((\mu / p)+i t)((\mathscr{M} f)((\mu / p)+i t) . \tag{3.5}
\end{equation*}
$$

If $1<p \leqq 2, \alpha(m)<\mu / p<\beta(m), H_{m}$ is one-to-one on $L_{\mu, p}$, unless $m \equiv 0$. If $m^{-1} \in \mathscr{A}$, then for $\max \left(\alpha(m), \alpha\left(m^{-1}\right)\right)<\mu / p<\min \left(\beta(m), \beta\left(m^{-1}\right)\right)$, $1<p<\infty, H_{m}$ is a one-to-one mapping of $L_{\mu, p}$ onto itself, and

$$
\begin{equation*}
\left(H_{m}\right)^{-1}=H_{m-1} . \tag{3.6}
\end{equation*}
$$

Proof. This follows immediately from Lemma 3.1.
4. Transformations of \mathscr{S}_{μ} and \mathscr{T}_{μ}. In this section we find necessary and sufficient conditions that transformations S and T be in \mathscr{S}_{μ} and \mathscr{T}_{μ} respectively, and equivalent forms of (1.2) and (1.3), that are easier to work with. The results are summed up in the following lemma.

Lemma 4.1. (a) A transformation $S \in\left[L_{\mu, 2}\right]$ is in \mathscr{S}_{μ} if and only if there is a function ω, bounded a.e. on $(-\infty, \infty)$, so that for all $f \in C_{0}$

$$
\begin{equation*}
(\mathscr{M} S f)\left(\frac{1}{2} \mu+i t\right)=\omega(t)(\mathscr{M} f)\left(\frac{1}{2} \mu-i t\right) \quad \text { a.e. } \tag{4.1}
\end{equation*}
$$

When $S \in \mathscr{S}_{\mu}$, (4.1) holds for all $f \in L_{\mu, 2}$. Conversely, given ω, bounded a.e. on $(-\infty, \infty)$, (4.1) defines a transformation $S \in \mathscr{S}_{\mu}$, with kernel $k \in L_{-\mu, 2}$ given by $(\mathscr{M} k)\left(-\frac{1}{2} \mu+i t\right)=\omega(t) /\left(\frac{1}{2}-i t\right)$ a.e.
(b) A transformation $T \in\left[L_{\mu, 2}\right]$ is in \mathscr{T}_{μ} if and only if there is a function ω, bounded a.e. on $(-\infty, \infty)$, so that for all $f \in C_{0}$

$$
\begin{equation*}
(\mathscr{M} T f)\left(\frac{1}{2} \mu+i t\right)=\omega(t)(\mathscr{M} f)\left(\frac{1}{2} \mu+i t\right) \quad \text { a.e. } \tag{4.2}
\end{equation*}
$$

When $T \in \mathscr{T}_{\mu}$, (4.2) holds for all $f \in L_{\mu, 2}$. Conversely, given ω, bounded a.e. on $(-\infty, \infty)$, (4.2) defines a transformation $T \in \mathscr{T}_{\mu}$, with kernel $l \in L_{\mu-2,2}$ given by $(\mathscr{M} l)\left(\frac{1}{2} \mu-1+i t\right)=\omega(t) /\left(\frac{1}{2}-i t\right) a . e$.

Proof. (a) is known when $\mu=1$ (see Kober [4]), and by minor changes of variables, the \mathscr{S}_{μ} case can be changed to the \mathscr{S}_{1} case. (b) follows from (a) once it is noticed that $T \in \mathscr{T}_{1}$ if and only if $T U \in \mathscr{S}_{1}$, where $(U f)(x)=$ $x^{-1} f\left(x^{-1}\right)$.
5. Existence and extendability of $R_{2}{ }^{-1} R_{1}$. The theorem below gives conditions under which $R_{2}^{-1} R_{1}$ exists and can be extended. Throughout the remainder of the paper we will suppose ω_{1} and ω_{2} are bounded a.e. on $(-\infty, \infty)$, and λ is a real number, and we let S_{1} and S_{2} be the transformations of \mathscr{S}_{λ} associated with ω_{1} and ω_{2} respectively by (4.1), and let T_{1} and T_{2} be the transformations of \mathscr{T}_{λ} associated with ω_{1} and ω_{2} respectively by (4.2).

Theorem 2. Suppose ω_{1} and ω_{2} are bounded a.e. on $(-\infty, \infty)$ and that there is an $m \in \mathscr{A}$, with $\alpha(m)<\frac{1}{2} \lambda<\beta(m)$, so that $m\left(\frac{1}{2} \lambda+i t\right)=\omega_{1}(t) / \omega_{2}(t)$ a.e. Then $S_{2}{ }^{-1} S_{1}$ and $T_{2}^{-1} T_{1}$ exist and belong to $\left[L_{\lambda, 2}\right]$, and $S_{2}^{-1} S_{1}$ can be extended to $L_{\mu, p}$, uniquely as an element of $\left[L_{\mu, p}\right]$, for all μ and p satisfying $1<p<\infty$, $(\lambda-\beta(m))<\mu / p<(\lambda-\alpha(m))$, while $T_{2}^{-1} T_{1}$ can be extended to $L_{\mu, p}$, uniquely as an element of $\left[L_{\mu, p}\right]$, for all μ and p satisfying $1<p<\infty, \alpha(m)<\mu / p<$ $\beta(m)$. If, in addition, $1<p \leqq 2$, the extended operators are one-to-one.

If also $m^{-1} \in \mathscr{A}$, then $S_{2}^{-1} S_{1}$ is a one-to-one mapping of $L_{\mu, p}$ onto itself if $1<p<\infty$,
$\max \left((\lambda-\beta(m)),\left(\lambda-\beta\left(m^{-1}\right)\right)\right)<\mu / p<\min \left((\lambda-\alpha(m)),\left(\lambda-\alpha\left(m^{-1}\right)\right)\right)$, while $T_{2}^{-1} T_{1}$ is a one-to-one mapping of $L_{\mu, p}$ onto itself if $1<p<\infty$,

$$
\max \left(\alpha(m), \alpha\left(m^{-1}\right)\right)<\mu / p<\min \left(\beta(m), \beta\left(m^{-1}\right)\right) .
$$

Proof. Since $\omega_{1}(t) / \omega_{2}(t)$ is defined a.e., $\omega_{2}(t) \neq 0$ a.e., and hence if $S_{2} f=0$ a.e., then from $(4.1)(\mathscr{M} f)\left(\frac{1}{2} \lambda-i t\right)=0$ a.e., and $f=0$ a.e., and thus $S_{2}{ }^{-1}$ exists. Similarly $T_{2}{ }^{-1}$ exists.

To show $S_{2}{ }^{-1} S_{1}$ exists, we must show that the range of S_{1} is a subset of the range of S_{2}; this is equivalent to showing that if $f \in L_{\lambda, 2}$, then there is a $g \in L_{\lambda, 2}$ so that $S_{2} g=S_{1} f$. But since

$$
m\left(\frac{1}{2} \lambda+i t\right)=\omega_{1}(t) / \omega_{2}(t) \quad \text { a.e. }
$$

and, from Definition $3.1 m\left(\frac{1}{2} \lambda+i t\right)$ is bounded, it follows that

$$
\omega_{1} / \omega_{2} \in L_{\infty}(-\infty, \infty)
$$

Hence, since the Mellin transformation is a unitary mapping of $L_{\lambda, 2}$ onto $L_{2}(-\infty, \infty)$, there is a $g \in L_{\lambda, 2}$ so that

$$
(\mathscr{M} g)\left(\frac{1}{2} \lambda+i t\right)=\left(\omega_{1}(-t) / \omega_{2}(-t)\right)(\mathscr{M} f)\left(\frac{1}{2} \lambda+i t\right) \quad \text { a.e. }
$$

But then, from (4.1), for almost all t

$$
\begin{aligned}
\left(\mathscr{M} S_{2} g\right)\left(\frac{1}{2} \lambda+i t\right) & =\omega_{2}(t)(\mathscr{M} g)\left(\frac{1}{2} \lambda-i t\right)=\omega_{2}(t)\left(\omega_{1}(t) / \omega_{2}(t)\right)(\mathscr{M} f)\left(\frac{1}{2} \lambda-i t\right) \\
& =\omega_{1}(t)(\mathscr{M} f)\left(\frac{1}{2} \lambda-i t\right)=\left(\mathscr{M} S_{1} f\right)\left(\frac{1}{2} \lambda+i t\right),
\end{aligned}
$$

and $S_{2} g=S_{1} f$ a.e., so that $S_{2}{ }^{-1} S_{1}$ exists. Also

$$
\left\|S_{2}^{-1} S_{1} f\right\|_{\lambda, 2}=\|g\|_{\lambda, 2}=\|\mathscr{M} g\|_{2} \leqq K\|\mathscr{M} f\|_{2}=K\|f\|_{\lambda, 2},
$$

where K is an essential upper bound for ω_{1} / ω_{2}, and $S_{2}{ }^{-1} S_{1} \in\left[L_{\lambda, 2}\right]$.
Similarly, if we define h by

$$
(\mathscr{M} h)\left(\frac{1}{2} \lambda+i t\right)=\left(\omega_{1}(t) / \omega_{2}(t)\right)(\mathscr{M} f)\left(\frac{1}{2} \lambda+i t\right) \quad \text { a.e., }
$$

then from (4.2), for almost all t

$$
\begin{aligned}
\left(\mathscr{M} T_{2} h\right)\left(\frac{1}{2} \lambda+i t\right) & =\omega_{2}(t)(\mathscr{M} h)\left(\frac{1}{2} \lambda+i t\right) \\
& =\omega_{2}(t)\left(\omega_{1}(t) / \omega_{2}(t)\right)(\mathscr{M} f)\left(\frac{1}{2} \lambda+i t\right) \\
& =\omega_{1}(t)(\mathscr{M} f)\left(\frac{1}{2} \lambda+i t\right)=\left(\mathscr{M} T_{1} f\right)\left(\frac{1}{2} \lambda+i t\right),
\end{aligned}
$$

and $T_{2} h=T_{1} f$ a.e., so that $T_{2}{ }^{-1} T_{1}$ exists. Also

$$
\left\|T_{2}^{-1} T_{1} f\right\|_{\lambda, 2}=\|h\|_{\lambda, 2}=\|\mathscr{M} h\|_{2} \leqq K\|\mathscr{M} f\|_{2}=K\|f\|_{\lambda, 2},
$$

and $T_{2}{ }^{-1} T_{1} \in\left[L_{\lambda, 2}\right]$.
Let $\tilde{m}(s)=m(\lambda-s) ;$ clearly $\tilde{m} \in \mathscr{A}, \alpha(\tilde{m})=\lambda-\beta(m)$, and $\beta(\tilde{m})=$ $\lambda-\alpha(m)$. Hence from Theorem 1, $H_{\tilde{m}} \in\left[L_{\mu, p}\right]$ if $1<p<\infty,(\lambda-\beta(m))<$ $\mu / p<(\lambda-\alpha(m))$. Note that $(\lambda-\beta(m))<\frac{1}{2} \lambda<(\lambda-\alpha(m))$, and hence if $f \in L_{\lambda, 2}$, then from (4.1) and (3.5), for almost all t

$$
\begin{aligned}
\left(\mathscr{M} S_{2} H_{\tilde{m}} f\right)\left(\frac{1}{2} \lambda+i t\right) & =\omega_{2}(t)\left(\mathscr{M} H_{\tilde{m}} f\right)\left(\frac{1}{2} \lambda-i t\right) \\
& =\omega_{2}(t) \tilde{m}\left(\frac{1}{2} \lambda-i t\right)(\mathscr{M} f)\left(\frac{1}{2} \lambda-i t\right) \\
& =\omega_{2}(t) m\left(\frac{1}{2} \lambda+i t\right)(\mathscr{M} f)\left(\frac{1}{2} \lambda-i t\right) \\
& =\omega_{2}(t)\left(\omega_{1}(t) / \omega_{2}(t)\right)(\mathscr{M} f)\left(\frac{1}{2} \lambda-i t\right) \\
& =\omega_{1}(t)(\mathscr{M} f)\left(\frac{1}{2} \lambda-i t\right) \\
& =\left(\mathscr{M} S_{1} f\right)\left(\frac{1}{2} \lambda+i t\right),
\end{aligned}
$$

so that $S_{2} H_{\tilde{m}} f=S_{1} f$ a.e., $S_{2} H_{\tilde{m}}=S_{1}$ on $L_{\lambda, 2}$, and $H_{\tilde{m}}=S_{2}^{-1} S_{1}$ on $L_{\lambda, 2}$.
Hence we can extend $S_{2}^{-1} S_{1}$ to $L_{\mu, p}$, if $1<p<\infty,(\lambda-\beta(m))<\mu / p<$ $(\lambda-\alpha(m))$, by defining it to be $H_{\tilde{m}}$, and then $S_{2}{ }^{-1} S_{1} \in\left[L_{\mu, p}\right]$. This extension will be unique as an element of [$L_{\mu, p}$], for it coincides with $S_{2}{ }^{-1} S_{1}$ on $L_{\mu, p} \cap L_{\lambda, 2}$, and this set is dense in $L_{\mu, p}$, since it contains C_{0}. The remaining statements about $S_{2}{ }^{-1} S_{1}$ in the statement of Theorem 2 are just paraphrases of statements about $H_{\tilde{m}}$ in Theorem 1 .

In a similar way $H_{m}=T_{2}^{-1} T_{1}$ on $L_{\lambda, 2}$, and thus we can extend $T_{2}{ }^{-1} T_{1}$ to $L_{\mu, p}$, if $1<p<\infty, \alpha(m)<\mu / p<\beta(m)$, by defining it to be H_{m}, and then $T_{2}{ }^{-1} T_{1} \in\left[L_{\mu, p}\right]$; this is the unique extension as an element of $\left[L_{\mu, p}\right]$; and the remaining statements about $T_{2}^{-1} T_{1}$ are paraphrases of those about H_{m} in Theorem 1.
6. Extension and range of R_{1}. In many cases R_{2} can be extended from $L_{\lambda, 2}$ to other spaces $L_{\mu, p}$ for a collection P of pairs (p, μ), as a bounded operator from $L_{\mu, p}$ to $L_{\nu, q}$ for a range of values of (q, ν), depending on (p, μ). In our next theorem, we show that when this is so, and the hypotheses of Theorem 2 are satisfied, it may be possible to extend R_{1}, and that then there is a relation between the range of R_{1} and that of R_{2}.

Theorem 3. Suppose that ω_{1} and ω_{2} are bounded a.e., and that there is an $m \in \mathscr{A}$ with $\alpha(m)<\frac{1}{2} \lambda<\beta(m)$, so that $m\left(\frac{1}{2} \lambda+i t\right)=\omega_{1}(t) / \omega_{2}(t)$ a.e. Then
(a) if S_{2} can be extended to $L_{\mu, p}$ for a collection P of pairs (p, μ), as an element of $\left[L_{\mu, p}, L_{\nu, q}\right]$, for a range of values of (q, ν) depending on (p, μ), then for all μ and p so that $(p, \mu) \in P, 1<p<\infty,(\lambda-\beta(m))<\mu / p<(\lambda-\alpha(m))$, S_{1} can be extended to $L_{\mu, p}$, uniquely as an element of $\left[L_{\mu, p}, L_{\nu, q}\right]$, and for such μ and p, $S_{1}\left(L_{\mu, p}\right) \subseteq S_{2}\left(L_{\mu, p}\right) ;$
(b) if T_{2} can be extended to $L_{\mu, p}$ for a collection P of pairs (p, μ), as an element of $\left[L_{\mu, p}, L_{\nu, q}\right]$, for a range of values of (q, ν) depending on (p, μ), then for all μ and p so that $(p, \mu) \in P, 1<p<\infty, \alpha(m)<\mu / p<\beta(m), T_{1}$ can be extended to $L_{\mu, p}$, uniquely as an element of $\left[L_{\mu, p}, L_{\nu, q}\right]$, and for such μ and $p, T_{1}\left(L_{\mu, p}\right) \subseteq$ $T_{2}\left(L_{\mu, p}\right)$.

Further (c) if $m^{-1} \in \mathscr{A}$, then for $(p, \mu) \in P, 1<p<\infty$,
$\max \left((\lambda-\beta(m)),\left(\lambda-\beta\left(m^{-1}\right)\right)\right)<\mu / p<\min \left((\lambda-\alpha(m)),\left(\lambda-\alpha\left(m^{-1}\right)\right)\right)$,
$S_{1}\left(L_{\mu, p}\right)=S_{2}\left(L_{\mu, p}\right)$, and for $(p, \mu) \in P, 1<p<\infty$,
$\max \left(\alpha(m), \alpha\left(m^{-1}\right)\right)<\mu / p<\min \left(\beta(m), \beta\left(m^{-1}\right)\right), T_{1}\left(L_{\mu, p}\right)=T_{2}\left(L_{\mu, p}\right)$.
Proof. We shall only prove (a) and that part of (c) referring to S_{1} and S_{2}, the proof of (b) and the rest of (c) being similar.

We extend S_{1} by defining it to be $S_{2}\left(S_{2}{ }^{-1} S_{1}\right)$. Since by Theorem 2 , for the indicated values of p and $\mu, S_{2}^{-1} S_{1} \in\left[L_{\mu, p}\right]$ and by hypothesis $S_{2} \in\left[L_{\mu, p}, L_{\nu, q}\right]$, then $S_{1} \in\left[L_{\mu, p}, L_{\nu, q}\right]$, and it is the unique such extension, since it coincides with S_{1} on $L_{\mu, p} \cap L_{\lambda, 2}$, and this set is dense in $L_{\mu, p}$ since it contains C_{0}.

To show $S_{1}\left(L_{\mu, p}\right) \subseteq S_{2}\left(L_{\mu, p}\right)$, we must show that if $f \in L_{\mu, p}$, there is a $g \in L_{\mu, p}$, so that $S_{2} g=S_{1} f$. But if we let $g=S_{2}^{-1} S_{1} f$, then $S_{2} g=S_{1} f$.

To show (c) for S_{1} and S_{2}, it is enough to notice that under the hypotheses of (c), the general hypothesis of the theorem is true with ω_{1} and ω_{2} interchanged, if m is replaced by m^{-1}, and the hypotheses of (a) are true with S_{1} and S_{2} interchanged, if P is replaced by $Q=\{(p, \mu) \mid(p, \mu) \in P, 1<p<\infty$, $(\lambda-\beta(m))<\mu / p<(\lambda-\alpha(m))\}$, and the conclusion of (c) follows.
7. Applications. We shall give two applications of our results, the first when R_{1} and R_{2} are in \mathscr{S}_{μ} for a particular μ, and the second when they are in \mathscr{T}_{μ}.

For our first application let $\eta>-1$, and let H_{η} be the Hankel transformation; that is if $f \in C_{0}$

$$
\left(H_{\eta} f\right)(x)=\int_{0}^{\infty}(x t)^{\frac{1}{2}} J_{\eta}(x t) f(t) d t
$$

and for $0 \leqq \zeta<\eta+1$, let $\left(H_{\eta, 5} f\right)(x)=x^{-\zeta}\left(H_{\eta} F\right)(x)$, where $F(t)=t^{-5} f(t)$; that is

$$
\left(H_{\eta, s f}\right)(x)=\int_{0}^{\infty}(x t)^{\frac{1}{2}-5} J_{\eta}(x t) f(t) d t
$$

If we integrate both sides of this equation from zero to x, it has the form (1.2) for $\mu=1$, with kernel

$$
k_{\eta, \zeta}(x)=\int_{0}^{x} t^{\frac{1}{2}-5} J_{\eta}(t) d t
$$

H_{η} is studied in [8, Chapter $8, \S \S 4$ and 5], and by minor changes of variables in the results of those sections, it is easy to show that $k_{\eta, 5} \in L_{-1,2}$ and

$$
\left(\mathscr{M} k_{\eta, s}\right)\left(-\frac{1}{2}+i t\right)=\omega_{\eta, 5}(t) /\left(\frac{1}{2}-i t\right)
$$

where

$$
\omega_{\eta, \zeta}(t)=2^{i t-\zeta} \Gamma\left(\frac{1}{2}(\eta-\zeta+1+i t)\right) / \Gamma\left(\frac{1}{2}(\eta+\zeta+1-i t)\right) .
$$

But from [2, 1.18(6)],

$$
\begin{equation*}
|\Gamma(x+i y)| \sim(2 \pi)^{\frac{1}{2}}|y|^{x-\frac{1}{2}} \mathrm{e}^{-\pi|y| / 2} \tag{7.1}
\end{equation*}
$$

uniformly in x for x in any finite interval, and thus

$$
\left|\omega_{\eta, 5}(t)\right| \sim|2 t|^{-5} \quad \text { as } \quad|t| \rightarrow \infty
$$

Hence since $0 \leqq \zeta<\eta+1$, $\omega_{\eta, \zeta}$ is bounded a.e., and $H_{\eta, \zeta} \in \mathscr{S}_{1}$.
We shall take $H_{\eta, 5}$ as S_{1} in Theorems 2 and 3 , and for S_{2} we shall take the Fourier cosine transformation $\mathscr{F}_{c}=H_{-\frac{1}{2}}$. Since both transformations are in \mathscr{S}_{1}, we must find a function $m \in \mathscr{A}$, with $\alpha(m)<\frac{1}{2}<\beta(m)$, so that

$$
\begin{aligned}
m\left(\frac{1}{2}+i t\right)= & \omega_{\eta, \zeta}(t) / \omega_{-\frac{1}{2}, 0}(t)=2^{-\zeta}\left(\Gamma\left(\frac{1}{2}\left(\frac{1}{2}-i t\right)\right)\right. \\
& \left.\cdot \Gamma\left(\frac{1}{2}(\eta-\zeta+1+i t)\right)\right) /\left(\Gamma\left(\frac{1}{2}\left(\frac{1}{2}+i t\right)\right) \Gamma\left(\frac{1}{2}(\eta+\zeta+1-i t)\right)\right) .
\end{aligned}
$$

An analytic function with the right value at $\frac{1}{2}+i t$ is

$$
\begin{aligned}
& m_{\eta, \zeta}(s)= \\
& \quad 2^{-\zeta}\left(\Gamma\left(\frac{1}{2}(1-s)\right) \Gamma\left(\frac{1}{2}\left(\eta-\zeta+\frac{1}{2}+s\right)\right)\right) /\left(\Gamma\left(\frac{1}{2} s\right) \Gamma\left(\frac{1}{2}\left(\eta+\zeta+\frac{3}{2}-s\right)\right)\right)
\end{aligned}
$$

$m_{\eta, \zeta}(s)$ is analytic in the strip $\zeta-\eta-\frac{1}{2}<\operatorname{Re} s<1$, and if $\zeta-\eta-\frac{1}{2}<$ $\sigma_{1} \leqq \sigma_{2}<1$, then from (5.1), uniformly in σ for $\sigma_{1} \leqq \sigma \leqq \sigma_{2},\left|m_{\eta, 5}(\sigma+i t)\right| \sim$ $|2 t|^{-\zeta}$ as $|t| \rightarrow \infty$. Hence since $\zeta \geqq 0, m_{\eta, \zeta}(s)$ is bounded in the strip $\sigma_{1} \leqq$ $\operatorname{Re} s \leqq s_{2}$. Also

$$
\begin{aligned}
& m_{\eta, \zeta}^{\prime}(s)=\frac{1}{2} m_{\eta, \zeta}(s)\left\{\psi\left(\frac{1}{2}\left(\eta-\zeta+\frac{1}{2}+s\right)\right)\right. \\
&\left.\quad-\psi\left(\frac{1}{2}(1-s)\right)+\psi\left(\frac{1}{2}\left(\eta+\zeta+\frac{3}{2}-s\right)\right)-\psi\left(\frac{1}{2} s\right)\right\}
\end{aligned}
$$

where $\psi(s)=\Gamma^{\prime}(s) / \Gamma(s)$. But from [2, 1.18(7)],

$$
\psi(z)=\log z+(2 z)^{-1}+O\left(|z|^{-2}\right) \quad \text { as } \quad z \rightarrow \infty \text { in }|\arg z| \leqq \pi-\delta .
$$

Hence as $|y| \rightarrow \infty$,

$$
\begin{align*}
\psi(x+i y) & =\log (x+i y)+(2(x+i y))^{-1}+O\left(|x+i y|^{-2}\right) \tag{7.2}\\
& =\log i y-i\left(\left(x-\frac{1}{2}\right) / y\right)+O\left(y^{-2}\right)
\end{align*}
$$

and thus as $|t| \rightarrow \infty$

$$
m_{\eta, \zeta}^{\prime}(\sigma+i t)=m(\sigma+i t)\left\{(-i \zeta / t)+O\left(t^{-2}\right)\right\},
$$

so that $m(\sigma+i t)=O\left(|t|^{-1}\right)$, as $|t| \rightarrow \infty$ for $\zeta-\eta-\frac{1}{2}<\sigma<1$. Thus $m_{\eta, \zeta} \in \mathscr{A}$, with $\alpha\left(m_{\eta, \zeta}\right)=\zeta-\eta-\frac{1}{2}, \beta\left(m_{\eta, \zeta}\right)=1$, so that $\alpha\left(m_{\eta, \zeta}\right)<\frac{1}{2}<$ $\beta\left(m_{\eta, \xi}\right)$.

Hence by Theorem 2, since $\mathscr{F}_{c}{ }^{-1}=\mathscr{F}_{c}, \mathscr{F}_{c} H_{\eta, \zeta}$ can be extended to $L_{\mu, p}$ as an element of $\left[L_{\mu, p}\right]$ for all μ and p such that $1<p<\infty, 0<\mu / p<\eta-\zeta+\frac{3}{2}$, $0 \leqq \zeta<\eta+1$, and is one-to-one if $1<p \leqq 2$. Clearly $\left(m_{\eta, 0}\right)^{-1} \in \mathscr{A}$, $\alpha\left(\left(m_{\eta, 0}\right)^{-1}\right)=0, \beta\left(\left(m_{\eta, 0}\right)^{-1}\right)=\eta+\frac{3}{2}$, and hence if $1<p<\infty$,

$$
\max \left(0,-\eta-\frac{1}{2}\right)<\mu / p<\min \left(1, \eta+\frac{3}{2}\right)
$$

$\mathscr{F}{ }_{c} H_{\eta}$ is a bounded one-to-one mapping of $L_{\mu, p}$ onto itself.
Now by [5, Theorem 1], if $1<p<\infty, \max \left(p^{-1}, p^{\prime-1}\right) \leqq \mu<1$, $p \leqq q \leqq 1 /(1-\mu)$, then $\mathscr{F}_{c} \in\left[L_{p \mu, p}, L_{q(1-\mu), q}\right]$. Hence from Theorem 3 , if $1<p<\infty, \max \left(p^{-1}, p^{\prime-1}\right) \leqq \mu<1, p \leqq q \leqq 1 /(1-\mu), \mu<\eta-\zeta+\frac{3}{2}$ and $0 \leqq \zeta<\eta+1, H_{\eta, \zeta} \in\left[L_{p \mu, p}, L_{q(1-\mu), q}\right]$, or writing this in terms of H_{η}, $H_{\eta} \in\left[L_{p(\mu+\zeta), p}, L_{q(1-\mu-\zeta), q]}\right.$.

But, if $1<p \leqq q<\infty$, $\max \left(p^{-1}, q^{\prime-1}\right) \leqq \nu<\eta+\frac{3}{2}$, there are numbers μ and ζ with $\max \left(p^{-1}, p^{\prime-1}\right) \leqq \mu<1, q \leqq 1 /(1-\mu), \mu<\eta-\zeta+\frac{3}{2}$ and $0 \leqq \zeta<\eta+1$, so that $\nu=\mu+\zeta$. To see this, note first that if we define $\zeta(\mu)=\nu-\mu$, for $\max \left(p^{-1}, q^{\prime-1}\right) \leqq \mu<1$ then the range of ζ is $(\nu-1$, $\left.\nu-\max \left(p^{-1}, q^{\prime-1}\right)\right]$, and this intersects $\left[0, \eta+\frac{1}{2}\right)$, since $\nu-1<\eta+\frac{1}{2}$, and $\nu-\max \left(p^{-1}, q^{\prime-1}\right) \geqq 0$. Hence letting ζ be any point of this intersection, and $\mu=\nu-\zeta$, we have $\max \left(p^{-1}, p^{\prime-1}\right) \leqq \max \left(p^{-1}, q^{\prime-1}\right) \leqq \mu<1, q \leqq 1 /(1-\mu)$ since $\mu \geqq q^{\prime-1}, \mu=\nu-\zeta<\eta-\zeta+\frac{3}{2}, 0 \leqq \zeta<\eta+\frac{1}{2}<\eta+1$, and $\nu=$ $\mu+\zeta$.

Hence we have shown that if $1<p \leqq q<\infty, \max \left(p^{-1}, q^{\prime-1}\right) \leqq \nu<\eta+\frac{3}{2}$, $H_{\eta} \in\left[L_{p \nu, p}, L_{q(1-\nu), q}\right]$.

If we take $1<p \leqq 2, \mu=1 / p, q=p^{\prime}$, this result becomes $H_{\eta} \in\left[L_{p}, L_{p^{\prime}}\right]$ if $p>\left(\eta+\frac{3}{2}\right)^{-1}$, which is well-known if $\eta \geqq-\frac{1}{2}$, see $[\mathbf{1}]$, since then $\left(\eta+\frac{3}{2}\right)^{-1}<1$, but is less well-known if $-1<\eta<-\frac{1}{2}$.

Also, from Theorem 3, $H_{\eta, 5}\left(L_{p \mu, p}\right) \subseteq \mathscr{F}_{c}\left(L_{p \mu, p}\right)$ if $1<p<\infty$, max $\left(p^{-1}, p^{\prime-1}\right) \leqq \mu<1$, and $\mu<\eta-\zeta+\frac{3}{2}$, and since $\left(m_{\eta, 0}\right)^{-1} \in \mathscr{A}, H_{\eta}\left(L_{p \mu, p}\right)=$ $\mathscr{F}_{c}\left(L_{p \mu, p}\right)$ if $1<p<\infty, \max \left(p^{-1}, p^{\prime-1}\right) \leqq \mu<1$ and $\mu<\eta+\frac{3}{2}$.

For our second application let

$$
\begin{equation*}
\left(I_{\nu, \alpha, \xi} f\right)(x)=\frac{\nu x^{-\nu(\xi+\alpha-1)}}{\Gamma(\alpha)} \int_{0}^{x}\left(x^{\nu}-t^{\nu}\right)^{\alpha-1} t^{\nu \xi-1} f(t) d t, \tag{7.3}
\end{equation*}
$$

where $\operatorname{Re} \alpha>0, \nu>0$, and ξ is a complex number. It is well-known that $I_{\nu, \alpha, \xi} \in\left[L_{\mu, p}\right]$ if $1 \leqq p<\infty, \mu / p<\nu \operatorname{Re} \xi$; see [6, Corollary 3.1]. From [6, Corollary 4.1], if $\frac{1}{2} \lambda<\nu \operatorname{Re} \xi, f \in L_{\lambda, 2}$,

$$
\left(\mathscr{M} I_{\nu, \alpha, \xi} f\right)\left(\frac{1}{2} \lambda+i t\right)=\omega_{\nu, \alpha, \xi}(t)(\mathscr{M} f)\left(\frac{1}{2} \lambda+i t\right)
$$

where

$$
\omega_{\nu, \alpha, \xi}(t)=\Gamma\left(\xi-\left(\left(\frac{1}{2} \lambda+i t\right) / \nu\right)\right) / \Gamma\left(\xi+\alpha-\left(\left(\frac{1}{2} \lambda+i t\right) / \nu\right)\right) .
$$

But from (5.1)

$$
\left|\omega_{\nu, \alpha, \xi}(t)\right| \sim|t|^{-\mathrm{Re}_{\alpha}} \quad \text { as } \quad|t| \rightarrow \infty
$$

and hence since $\frac{1}{2} \lambda<\nu \operatorname{Re} \xi, \omega$ is bounded a.e., and $I_{\nu, \alpha, \xi} \in \mathscr{T}_{\lambda}$.
We shall take $T_{1}=I_{\nu_{1}, \alpha_{1}, \xi_{1}}, T_{2}=I_{\nu_{2}, \alpha_{2}, \xi_{2}}$ in Theorems 2 and 3. Transformations of the form $T_{2}^{-1} T_{1}$ have been considered by Erdélyi [3]. Since both transformations are in \mathscr{T}_{λ}, if $\frac{1}{2} \lambda<\min \left(\nu_{1} \operatorname{Re} \xi_{1}, \nu_{2} \operatorname{Re} \xi_{2}\right)$, we must find $m \in \mathscr{A}$ so that

$$
\begin{equation*}
m\left(\frac{1}{2} \lambda+i t\right)=\omega_{\nu_{1}, \alpha_{1}, \xi_{1}}(t) / \omega_{\nu_{2}, \alpha_{2}, \xi_{2}}(t) \quad \text { a.e. } \tag{7.4}
\end{equation*}
$$

Clearly an analytic function satisfying (7.4) is

$$
m(s)=\left(\Gamma\left(\xi_{1}-\left(s / \nu_{1}\right)\right) \Gamma\left(\xi_{2}+\alpha_{2}-\left(s / \nu_{2}\right)\right)\right) /
$$

$$
\left(\Gamma\left(\xi_{1}+\alpha_{1}-\left(s / \nu_{1}\right)\right) \Gamma\left(\xi_{2}-\left(s / \nu_{2}\right)\right)\right)
$$

which is analytic for $-\infty<\operatorname{Re} s<\min \left(\nu_{1} \operatorname{Re} \xi_{1}, \nu_{2} \operatorname{Re}\left(\xi_{2}+\alpha_{2}\right)\right)$. Since from (7.1) and (7.2),

$$
\begin{gathered}
|m(\sigma+i t)| \sim|t|^{\operatorname{Re}\left(\alpha_{2}-\alpha_{1}\right)}, \text { and } \\
\left|m^{\prime}(\sigma+i t)\right| \sim|m(\sigma+i t)|\left\{\left(\operatorname{Re}\left(\alpha_{2}-\alpha_{1}\right) / t\right)+O\left(t^{-2}\right)\right\}
\end{gathered}
$$

if $\operatorname{Re} \alpha_{2} \leqq \operatorname{Re} \alpha_{1}, m \in \mathscr{A}$ with $\alpha(m)=-\infty, \beta(m)=\min \left(\nu_{1} \operatorname{Re} \xi_{1}, \nu_{2} \operatorname{Re}\right.$ $\left(\xi_{2}+\alpha_{2}\right)$). Also $m^{-1} \in \mathscr{A}$, if $\operatorname{Re} \alpha_{1}=\operatorname{Re} \alpha_{2}$, with $\alpha\left(m^{-1}\right)=-\infty, \beta\left(m^{-1}\right)=$ $\min \left(\nu_{1} \operatorname{Re}\left(\xi_{1}+\alpha_{1}\right), \nu_{2} \operatorname{Re} \xi_{2}\right)$. Thus from Theorems 2 and 3 , and using [6, Lemma 3.4] it follows that if $\operatorname{Re} \alpha_{2} \leqq \operatorname{Re} \alpha_{1},\left(I_{\nu_{2}, \alpha_{2}, \xi_{2}}\right)^{-1} I_{\nu_{1}, \alpha_{1}, \xi_{1}}$ exists and belongs to $\left[L_{\mu, p}\right]$ if $1<p<\infty, \mu / p<\min \left(\nu_{1} \operatorname{Re} \xi_{1}, \nu_{2} \operatorname{Re} \xi_{2}\right)$, and can be extended to $L_{\mu, p}$ as an element of $\left[L_{\mu, p}\right]$ if $\mu / p<\min \left(\nu_{1} \operatorname{Re} \xi_{1}, \nu_{2} \operatorname{Re}\left(\xi_{2}+\alpha_{2}\right)\right.$). It is one-to-one if $1<p \leqq 2$ or $\mu / p<\min \left(\nu_{1} \operatorname{Re} \xi_{1}, \nu_{2} \operatorname{Re} \xi_{2}\right)$ and onto if $\operatorname{Re} \alpha_{1}=\operatorname{Re} \alpha_{2}$ and $\mu / p<\min \left(\nu_{1} \operatorname{Re} \xi_{1}, \nu_{2} \operatorname{Re} \xi_{2}\right)$.

Further, if $\mu / p<\min \left(\nu_{1} \operatorname{Re} \xi_{1}, \nu_{2} \operatorname{Re} \xi_{2}\right), \operatorname{Re} \alpha_{1} \leqq \operatorname{Re} \alpha_{2}$,

$$
I_{\nu_{2}, \alpha_{2}, \xi_{2}}\left(L_{\mu, p}\right) \subseteq I_{\nu_{1}, \alpha_{1}, \xi_{1}}\left(L_{\mu, p}\right)
$$

with equality if $\operatorname{Re} \alpha_{1}=\operatorname{Re} \alpha_{2}$.

References

1. I. W. Busbridge, A theory of general transformations for functions of class $L_{p}(0, \infty), Q u a r t . J$. Math. Oxford Ser. 9 (1938), 148-60.
2. A. Erdélyi et al., Higher transcendental functions, I, (McGraw-Hill, New York, 1953).
3. A. Erdélyi, Some integral equations involving finite parts of divergent integrals, Glasgow Math. J. 8 (1967), 50-54.
4. H. Kober, Eine Verallgemeinerung der Transformation vom Fourier-Typ, Quart. J. Math. Oxford Ser. 8 (1937), 172-185.
5. P. G. Rooney, Generalized H_{p} spaces and Laplace transforms, Proc. Conf. Abstract Spaces and Approximation (P. L. Butzer and B. Sz. Nagy, eds.), Birkhauser, Zurich (1969).
6. - On the ranges of certain fractional integrals, Can. J. Math. 24 (1972), 1198-1216.
7. E. M. Stein, Singular integrals and differentiability properties of functions (Princeton U. Press, Princeton, 1970).
8. E. C. Titchmarsh, The Theory of Fourier integrals (Oxford U. Press, Oxford, 1948).

University of Toronto,
Toronto, Ontario

[^0]: Received June 29, 1972. This research was supported by N.R.C. Grant No. A4048.

