
A SPECTRAL SEQUENCE FOR COHOMOTOPY 

BENSON SAMUEL BROWN* 

1. Introduction. For a prime number p let (S(^) be the class of finite 
abelian groups whose orders are prime to p. For a finitely generated abelian 
group G, let Gp be the sum of the free and ^-primary components of G. Our 
aim in this paper is to prove the following theorem. 

THEOREM. Suppose that 
(i) Hl(X;Z) = Ofori> k, 

(ii) H*(X;Z) € &(p)for i > k - d. 
Then there exists a spectral sequence with 

Eï° = Hk+r(X;Z)P, 

E['q = #*+'+2^-D-i(X; Zv) for q > 0, 

EÏQ = 0 forq< 0; 

and the differential d['g: E{'Q —-> E[+ ,q+ is given by 

d['° = P1: Hk+r(X; Z)p -» Hk+r+™~2(X; ZP), 

dT{q = (q+ 1)P1Ô - qôP1: i J ^ + 2 ^ - D - i ( X ; Zp) -* Hk+r+^q+l^p-^ (X ; Zp). 
When 0 ^ — r ^ d + 2p(p — 1) — 2, /Ae spectral sequence converges to 

2k+r(X)p = ({X, 5fc+r}p). 77m/ is, there exists a filtration 

2k+r(X)p = AT'° D yl^1 D . . . D ^ r ' p - 1 3 Ar* = 0, 

E™ = A'-'/A'-'*1. 

When — r > d + 2^(£ — 1) — 2, then Ar,° does not give much information 
about 2k+r(X)p. 

Turning this result around, suppose given a space X of dimension k} then 
we can compute (up to extension) Hn(X)p if k — n ^ d + 2p(p — 1) — 2. 
(Here d is a function of p.) Putting these results together for different p, we 
can compute 2W(X) up to an "indeterminacy" corresponding to primes less 
than | ( 3 + (5 + 2(k — n)Y). This is roughly the square root of the in­
determinacy given in (5, p. 702, Theorem). 

The Theorem also gives some information about stable homotopy groups. 
If Ht(X;Z) = 0 for i < n and Ht(X; Z) £ (£(£) for i < n + d, the dual 
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COHOMOTOPY 713 

sequence (involving homology groups and the dual operations) will converge 
to 2 n + r (X) p when r ^ d + 2p(p — 1) — 2. The idea of a homotopy (mod S) 
reduction of a space is introduced and the (mod 6(^)) reduction of an appro­
priate space in the Postnikov system of S"- is studied. Aside from Theorem 1, 
the results in this paper rely heavily on the work of Toda (16) and of Adem 
(2). The construction of the spectral sequence is based on (15). 

The theorems in this paper have no content when p = 2. Therefore, we will 
assume throughout that p ^ 2. We will also assume that all the spaces discus­
sed are simply connected. 

2. The homotopy (mod £) reduction. 

Definition. Let E be a class of finite abelian groups. For a finitely generated 
abelian group G, G is the quotient group of G determined by adding the rela­
tion a = 0 for every a Ç G such that the cyclic group generated by a is in g. 
When the class (S is (S(£), we will write Gv for G. Furthermore, write Ge for the 
largest subgroup of G which is in S. 

Definition. X is a homotopy (mod S) reduction of X if ir^X) = 7rz-(X) and 
there exists a weak homotopy equivalence (whe) (mod Ê) / : X —> X such that 
/*: ^ ( X ) —>7rw(X) is the canonical projection when irn(X) is the first non-
trivial homotopy group of X. 

Note that/*: 7r*(X) —> 7rz(X) does not have to be the canonical projection 
when i > n. 

THEOREM 1. If X has only a finite number of non-trivial homotopy groups, 
then it has a homotopy (mod (5) reduction, and any two such reductions are of the 
same weak homotopy type (mod (£). 

That any two reductions have the same weak homotopy type mod Ê follows 
directly from their definition; cf. (5). The existence part requires two lemmas. 

LEMMA 1. If the diagram 

f 

ATx-A* Y1 

&2 

X2 > Y2 

is homotopy commutative and if f and g are weak homotopy equivalences (mod Ê), 
then there exists a map 

h: Ekl —> Ek2 

which is a whe (mod S). 

Proof. Let #i = gki: X\ —* F2 and a2 = £2/: Xi —> F2. Then ax is homotopic 
to a2 and there exists a homotopy equivalence 

b: Eai —> Ea2. 
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Now the diagram 

is commutative, hence there exists a map 

hi: Ekl —» Eai 

which commutes with the projection onto X\. This gives rise to the following 
commutative diagram 

7 r i + i ( Z i ) > Ti+i(Yi) —> irt(Ekl) —> T{(XI) > iri(Yi) 

J* 
TTi+i(Xi) U Ti+i(Y2) —> Ti(Eai) —> TT^Xl) ^» 7Tt(F2) 

where the rows are exact and the four outside vertical maps are isomorphisms 
(mod 6 ) . Therefore, 

hu: Tt(Ekl) - » 7 T i ( E a i ) 

is a (mod S) isomorphism for all i and hi is a whe (mod S). 
Similarly, it can be shown that there exists a whe (mod S) ^2: -Eû2 —* ^ 

and hence the composition 
&2I 

h = A2&&1: Ekl —> E* 

is a whe (mod E). 

LEMMA 2. Suppose that Tn(X) = 7rw_i(X) = 0 and f: X —>X is a homotopy 
(mod S) reduction of X. Let k: X —> K(G, n) be any map. Then there exists a 
map k: X —* K(G, n) such that Ek is a homotopy (mod (S) reduction of Ek. 

Proof. Let p: K(G, n) —>K(G, n) be the map induced by the natural 
projection G —> G. Let X be the fundamental class in Hn(K(G, n), G). The 
cohomology homomorphism: 

f: Hn(X,G)-*Hn(X,G) 

is a (mod Ê) isomorphism. Therefore, for some q such that Za £ S, the class 
qk*p*(\) lies in I m / \ Now 

ff*y(X) = £*(ç£*(X)) = k'(qpy&). 
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Thus, there exists a map k which makes the diagram 

X-^K{G,n) 

X—>K(G,n) 
homotopy commutative. 

Since Zg Ç fë, the map qp is a weak homotopy equivalence (mod E), and, 
of course, so i s / . Thus, by Lemma 1, there exists a whe (mod £) h: Ek —•> £*. 

Now we have only to check that 7Ti(£fc) = in(Ek). Since 7rw(X) = 7rn__i(X) = 
0, we know that 7rn(X) = 7rw_i(X) = 0 and iri(Ek) = 7r*(X) for all i 7e w — 1 
and 7rn^i(Ek) = G. Furthermore, Ti(Ek) = Tt(X) for all i 7± n — I and 
Trn_i(Ek) = G. This completes the proof. 

Proof of Theorem 1. The proof is by induction on the number of non-trivial 
homotopy groups of X. When X = K(G, r), take X = K(G, r) and let 
p: X —•> X be the map induced by the canonical projection G —> G. 

Suppose that X has ^ non-trivial homotopy groups and that the theorem is 
true for all spaces having fewer than n non-trivial homotopy groups. Let Xn~l 

be the space in the Postnikov system of X made up of the first n — 1 (non-
trivial) homotopy groups of X. Then Xn~l has a (mod ©) reduction Xn~l and 
there exists a whe (mod (S) / : Xn~l —•» Xw_1. Suppose that the highest non-
trivial homotopy group of X is in dimension r — 1. Then there is a map 
k: Xn-1-^K(Trr^1(X)1r) such that X = Ek. Furthermore, T T ^ X " - 1 ) = 
7rr(X

%_1) = 0. Hence, by Lemma 2, there exists a map fe: Xw-1-^X(7T r_i(X),r) 
such that Ek is a (mod S) reduction of Ek. Thus, we have constructed a 
homotopy (mod S) reduction of X. 

COROLLARY 1.1. / / 7r*(X) is finitely generated, then X has a homotopy 
(mod 6) reduction. 

Proof, Since 7r*(X) is finitely generated, there exists an m such that 
7fi(X) G Ë for all i > m. Then construct the (mod (S) reduction of the space 
Xrm in the Postnikov system of X made up of the first m homotopy groups. 

3. A periodicity theorem for cohomology. The next theorem is stronger 
than what we need at this point. However, it may be of some interest in itself. 

Notation. Let n(X) and m(X) be the smallest and greatest integers for 
which 7Ti(X)p 5* 0. 

THEOREM 2. Suppose that w*(X)p is finitely generated and n(X) > 2p(p — 1). 
Then 

P1: Hk(X; Zp)-+Hk+2p-2(X; Zv) 

is an isomorphism when m{X) + 3 < k < n(X) + 2(̂ ? — l ) 2 — 1. 
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Assertion. I t is sufficient to prove this theorem when T*(X) has only free 
and ^-primary summands. 

Proof. Since TT*(X)P is finitely generated, X has a homotopy reduction 
modulo the class (5(£). That is, there exists a space X, a whe (mod (£(£)) 
f:X—>X and ir* (X) has only free and ^-primary summands. Consider the 
commutative diagram 

H\X; Zv) i Hk+2p-2(X; Zv) 

\r r] 
p1 

H\X; Zv) - ^ Hk+2p~\X; Zv) 
Since/*: Hn(X; Zv) —>Hn{X\ Zv) is an isomorphism (mod (£(£)), ker /* and 
coker /* are finite groups whose orders are prime to p. However, they are a 
subgroup and a quotient group of groups whose orders are powers of p. 
Therefore, ker f* = coker /* = 0. Hence, f* is an isomorphism and the 
assertion is proved. 

We now need some information about the action of Pl on the spaces K(Z, n), 
K(ZP, n), and K(Zpr, n). Let S be the Steenrod algebra of reduced p-powers 
and S* the subgroup that raises the degree precisely by i. Let 

s <t = Zs i 
i<t 

The following table gives an additive basis for S* when 2 < i < 2p2: 
§[2*(P-1): pt 
g}2*(P-l) + l : ôptf pt^ 

g2Z(P-l) + 2. §pt§. 

The multiplication table is given by the Adem relations. 

LEMMA 3. Define a homomorphism h: S* —» Si+2P~2 by h(0) = Pl • 0. Then h is 
an isomorphism when 2 < i < 2(p — l ) 2 . 

Proof. When i = 2t{p - 1) and 1 ^ t < p - 1, then PlPl = tPt+1 is not 
zero and generates S2(H"1)(P-1). 

When i = 2t(p - 1) + 2 and 1 ^ t < p - 1, then PWô = tôPt+lô is not 
zero and generates S2(*+1)(p_1)+2. 

W7hen i = 2t(p — 1) + 1 and 1 ^ t < p — 1, we compute P1 on the basis 
ÔP^P'ô: 

PlbPl = tôPt+1 + Pt+1ô and PlPlb = tPt+1ô. 

Clearly, no non-trivial linear combination of these two can be zero. Thus, 
h: S2 ' (p -1 )+1 —» S2(H-1)(P-1)+1 is a monomorphism. However, these are both 
vector spaces of dimension two over Zv. Therefore, h is an isomorphism. 
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(A) Let X be a generator of Hn(K(Zp, n) ; Zp). If i < n, then the homo-
morphism e: S* —> Hn+i(K(Zp, n) ; ZP) denned by 6 —> 0(X) is an isomorphism, 
and furthermore the diagram 

^^R^\K{Zp,nYZp) 

P1 

is commutative (6). Using Lemma 3 we have: If n > 2p(p — 1) and 
2 < i < 2(p - l)2 , then 

p i . Hn^{K(ZP) n) ; Z„) -> Hn^-^(K(ZP, n) ; Zp) 

is an isomorphism. 

(B) Let X be a generator of Hn(K(Z,n) ; Zp). If i < w, then the homo-
morphism e: S* —>Hn+i(K(Z, n) ; Zp) defined by 0—»0(X) is onto and has the 
kernel S*d. U 2 < i < 2(p - l )2 , then PWô = Si+2P~2Ô. (This follows from 
the proof of Lemma 3.) Thus, we have a commutative diagram 

S ^ F + t ( Z ( Z , w ) ; Z p ) 0 

i+2p-2 

pi 

yTrn+i+2p-2 (K(Z,n);Zp)-+0 

where the rows are exact. When 2 < i < 2(p — l)2 , then the left and middle 
vertical homomorphisms are isomorphisms, and therefore P 1 is an isomorphism 
in this range. 

(C) If n > 2p{p - 1) and 2 < i < 2{p - l )2 , then 

p i . Hn^{K{Zpr} n) ; Zp) -> Hn+™-2+\K(Zpr, n) ; Zp) 

is an isomorphism. This is proved by induction on r. The case r = 1 is the 
content of statement (A). Assume that statement (C) is true for r — 1 and 
also that 

H*+2<p-i)*-i(K(zpr-i,n);Zp) = Hn+2p&-»(K(Zpr-i, n); Zp) = 0. 

Let / : K(Zpr, n) —> K(Zpr-i, n) be the fibring induced by the projection 
Zpr —* Zpr-i. The fibre has the homotopy type of a K(ZP, n). The sequence 

H n+ i— 1 / (Ki; Zp) -+Hn %(KT-i\ Zp) -^Hn \Kr; Zp) -±H %{Ki\ Zp) 

rjn+ i+1 ( xr ry \ 

n. ( A r _ i , Z p j 

is exact when i < n - 2. (Here, Kd = K(ZP*, n).) When i = 2(p - l ) 2 - 1, 
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then iï»+<(2S:r_i;ZJ,) = 0 by hypothesis and H^^K^Zp) = 0 by Lemma 3 
and the table preceding it. Therefore 

(*) IP^(Kr;Zp) = 0. 

The same holds for i = n + 2p(p — 1) — 1. And hence, trivially 

(**) P 1 : Hn^v-i)2-i(Kr\Zp) ->Hn+^-»-l(Kr\Zp) 

is an isomorphism. 
When i -\- 1 < 2(p — l ) 2 , then, by statement (A) and the induction 

hypothesis, P 1 is an isomorphism on the four outside groups. Therefore, by the 
Five Lemma: 

p i . ip+'iKriZp) -> IP+v-wiKr; Zv) 

is an isomorphism for i < 2{p — l ) 2 — 1. Combining this with (*) and (**), 
we recapture the induction hypothesis and the proof is complete. 

We will now write Hn(X) for the nth cohomology group of X with coeffi­
cients Zp. The only class we consider for the rest of this paper is the class §(£) , 
and objects such as G, X will be understood to be relative to this class. 

Statements (A), (B), and (C) are summed up in the following lemma. 

LEMMA 4. If G is a finitely generated abelian group and 
(i) G = Gp, 

(ii) n > 2p(p - 1), 
then P 1 : Hn+i(K(G, n)) -> Hn+i+2p~2(K(G, n)) is an isomorphism for 

2 < i < 2{p - l ) 2 . 

Proof. G is a direct sum of infinite cyclic groups and of cyclic groups whose 
orders are powers of p. K(G, n) is the product of the corresponding Eilenberg-
MacLane spaces, sayi£(G, n) = HjKj, whereKj = K(Z, n) or Ki = K(Zpr, n) 
for some r. The natural inclusion h: VjKj—^TljKj induces cohomology 
isomorphisms up to dimension 2n — 1 which is at least n + 2p{p — 1) — 1. 
We have 

and by statements (A), (B), and (C), P 1 is an isomorphism on each direct 
summand in the range indicated. Furthermore, P 1 commutes with the iso­
morphisms induced by the inclusion, and this completes the proof. 

Proof of Theorem 2. Recall that we may assume that Tt{X) = iri(X)p for 
all i. Then the proof is by induction on N(X), the number of non-trivial homo-
topy groups of X. When N(X) = 1 a stronger statement has been proved 
(Lemma 4). Now assume that the theorem is true for all spaces Y with 
N(Y) ^ r. Suppose that N(X) = r + 1. Let 

f:X-+K(wn(x)(X),n(X)) 
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be a fibring representing the fundamental class of X. Call the fibre F and write 
Ko = K(Tn(x)(X), n{X)). Then n(F) > n(X), m(F) = m(X), and N(P) = r. 
Furthermore, irt(F) = iri(F)p for all i. 

Now consider the Serre exact sequence: 

IP-^F) -+Hk(K0) -^Hk{X) ->Hk(F) ->fl*+i(i£:o). 

By our induction hypothesis, P 1 is an isomorphism on both Hk~1(F) and 
Hk(F) when 

m(P) + 4 < & < »( /0 + 2(£ - l ) 2 - 1. 

By Lemma 4, P 1 is an isomorphism on both Hk(K0) and Hk+1(K0) when 

»(Z) + 2 < k < n(X) + 2(p - l ) 2 - 1. 

Using the equalities and inequalities listed above, we see that P 1 is an iso­
morphism on the four outside groups if 

(***) m{X) + 4 < k < n(X) + 2{p - l ) 2 - 1. 

Then by the Five Lemma, it is also an isomorphism from Hk(X) to Hk+2P~2(X) 
when k is in this range. However, this does not recapture the induction 
hypothesis and another (similar) argument is necessary. 

Now let XT be the space in the Postnikov system of X made up of the first r 
homotopy groups of X. Let g: X —» Xr be a fibring with fibre 

K, (=K(Tn(x)(X),m(X))). 

Then N(Xr) = r,rn(Xr) < m{X), and n{XT) = n(X). Again we have an 
exact sequence 

H^iKi) ->Hk(Xr) -^Hk(X) ->Hk(K,) ->Hk+\Xr). 

By the induction hypothesis, P 1 is an isomorphism on both Hk(Xr) and 
Hk^(Xr) when 

m{Xr) + 3 < k < n(Xr) + 2(p - l ) 2 - 2. 

By Lemma 4, P 1 is an isomorphism on both Hk~1(Ki) and Hk{K{) when 

m{X) + 3 < k < m(X) + 2(p - l ) 2 . 

Altogether, P 1 is an isomorphism on the four outside groups if 

(****) m(X) + 3 < k < n(X) + 2{p - l ) 2 - 2. 

By the Five Lemma, P 1 : Hk(X) —•> Hk+2P~2(X) is an isomorphism when k is 
in the range defined by (****). However, P 1 is also an isomorphism when k is in 
the range defined by (***). Hence, P 1 is an isomorphism when k is in the union 
of these ranges, i.e. when 

m(X) + 3 < k < n(X) + 2{p - l ) 2 - 1. 

This completes the induction and the proof of Theorem 2. 
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4. A (mod fè(£)) study of Sn. Toda (16) has shown that when 

n > 2p(p - 1) > k + 1, 

we have Trn+k(S
n) Ç S(^) unless k = 0 or k is of the form 2t(p — 1) — 1, and 

Trn+2i(p-i)-i(Sn) « Zp (mod (£(£)) 
for 1 ^ t < p. 

Take w large and let Y be the space in the Postnikov system for Sn made up 
out of the homotopy groups of S*1 up to (and including) dimension 

n + 2p(p - 1) - 2. 

Let Xp be a (mod (S(^)) reduction of F; we shall study the Postnikov system 
of Xp. (We know that Xp is well-determined up to S(^) . In fact, as will be 
shown later, it is unique up to homotopy type.) We have 

Tn(X
p) = Z, Tn+2t(p-i)-i(Xp) = Zp when 1 ^ t < p, 

and all other homotopy groups of Xp are trivial. Let Xr be the space in the 
Postnikov system of Xp made up of r non-trivial groups. Let 

Kr = K(Zp,n + 2r(p - 1)). 

Then the Postnikov system of Xv has the diagram 

ttKr ïlKr-1 K(Z,n) 

\ir+1 \ir || 

xp ->xv~l - > . . . xr+1 ~^xr^xr-1 -*...-> x1 

\er+1 \er U1 

KT+1 K7 K1 

where HKr_1 is the fibre of fr-i: Xr —> Xr~l and Xr+1 has the same homotopy 
type as Edr. Let WT = Qr • iT for r > 1 and let W\ = d1. Then we may think of 
Wr (r > 1) as a class in Hn+2r(p-»(K(Zp} n + 2(r - l)(/> - 1) - 1)) and by 
means of the isomorphism e identify it with an element S2^""1. Similarly, 
W\ G Hn+2P~~2(K(Z, n) ; Zv) may be identified with an element in S2P~2 since 

e: S2P~2 -> Hn+2P~2(K(Z, n) ; Z„) 

is an isomorphism. The problem is to determine these elements. This diagram 
and the notation introduced will be used repeatedly in what follows. 

In the construction of the Postnikov system for Xp, 6r was chosen with an 
indeterminacy which corresponds to coefficient automorphisms in 

H**2'*-» (Xr ; Zp) ; 

that is, it is determined up to non-zero scalar multiplication. When we say 
that WT "equals" some named cohomology operation, this will mean that they 
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correspond under a non-zero scalar multiplication. Bearing this in mind, we 
have the following result. 

THEOREM 3. 

Wt = P \ Wr = rPlb - (r - DSP1, r = 2, 3, . . . , p - 1. 

Proof. We first assume that W r̂ ̂  0. Since P 1 generates S2P~2, we may take 
Wi = P1 , or PTi = P*(A) Ç Hn+2p-2(K(Z, n) ; Z„), where X is a generator of 
Hn(K(Z,n);Zp). 

The diagram 

ftXr X r + 1 

is commutative, and ir+i • tidr = 0. Therefore, W^+i • &Wr = 0, or as stable 
operations Wr+1Wr = 0; in particular, fl^P^A)) = 0- Let W2 = aP*5 + &5P1. 
Then 

(aP*ô + bbPl)Pl\ = (a + 2b)P2(\) = 0 

(since <5\ = 0). Since, by assumption, TF2 ^ 0, we must have Wi = 2P18 — ôP1. 
Let aPlb + MP1 and c P ^ + dôP1 be any two elements of S2*"1. Using the 

Adem relations, we obtain 

(f) (aPlb + UP1) {cPlb + dôP1) = (ac + 2bc + bd)ôP2ô. 

Take y G S227"1. Define 7: S227"1 -» S4P~2 by 7(a) = « 7 , (f) implies that 
7 = 0 if and only if 7 = 0. Since S4P~2 is one-dimensional (as a Zp vector space) 
and S22?_1 is two-dimensional, for 7 3̂  0, ker 7 is one-dimensional. Hence, if TFr 

and Wr+i are both not equal to zero, we may take Wr+i as any generator of 
ker Wr. Thus, to prove the theorem by induction, it is only necessary to check 
that 

[(r + l)P'b - rbPl][rPlb - (r - l J P ^ ] = 0. 

This readily follows from (f). 
I t is still necessary to prove that Wr 9^ 0. This requires some preliminary 

information about a test space. 
Let n — 1 > k = 2t(p — 1) — 1, where 1 S t < p. Choose a class 

a G 7rn+k(S
n) which is of order p. (Such a class exists since the group has a ZP 

summand.) Represent a by a map â: Sn+k —-> Sn and call the cone Ca. 

LEMMA 5. The co-Hurewicz homomorphism hn: Tn(Ca) —» Hn(Ca] Z) is a 
(mod &(p)) monomorphism and Im hn = pHn(Ca; Z). 

Proof. Let i: Sn —> Ca be the inclusion. There is an exact cohomotopy 
sequence 

.* — 
7T ( 6 ) —> 7T (Ca) > X ( 6 ) > 7T ( 6 ) . 
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Here, Trn(Sn+k+1) = irn+k+1(S
n) G ©(£) since k + 1 is not of the required form 

(k + 1 = 2t(p — 1)). Therefore, i* is a (mod Ê(i?)) monomorphism. ô* takes 
the identity map in irn(Sn) to a in 7rw(5w+fc). a has order />, and hence Im i* = 
ker ô* = pTrn(Sn). Consider the commutative diagram 

.* 

h! 

Hn(Ca;Z)-%Hn(Sn;Z) 

Since 2# and hn are isomorphisms, ker hn = ker i* Ç E(^) and 

ImAw = ( ^ - ^ ^ ( ^ ( C a ) ) 

= pHn(Ca;Z). 

Y is the space in the Postnikov system for Sn made up out of the homotopy 
groups of S*1 up to dimension n + 2p(p — 1) — 2 and Xp is a (mod E(£)) 
reduction of F. Thus, we have maps g: Sn —> Y a n d / : Y —> Xv such that 

(i) g*' TTi(Sn) —> 7Ti(F) is an isomorphism for i S n + 2p(p — 1) — 2, and 
(ii) /*: 7Ti(F) —> 7Ti(Xp) is an isomorphism (mod (S(i>)) for* all i and is onto 

(i.e., an isomorphism) when i = n. 
Let Xi and X2 be maps representing the fundamental classes of Sn and Xp, 
respectively. Then the following diagram is commutative up to sign 

Sn _JL+ Y -^-» Xp 

X2 

K(Z,n) 

If the signs do not fit, change Xi to its negative (without changing notation). 
Furthermore, X2 = fofi . • • fv-\ (the composition of the projections in the 
Postnikov system for Xp). Let S2L be a space of dimension less than 

n + 2p(p - 1) - 2. 

LEMMA 6. If a: S2L -> K(Z, n) lifts to â: S2L -> Xp (a = X2a), then for some 
q prime to p, qa lifts 0: S2L —•> Sn (i.e., qa = Xi/3). 

Proof Since dim S2L < n + 2p{p - 1) - 2, &: [52L, 5n] -> [52L, F] is an 
isomorphism. Furthermore, /# : [52L, F] —•» [52L, Xp] is an isomorphism 
(mod S(^)) . Thus, for some g prime to £, gâ Ç Im/ # , say gâ = f#(y); take 
£ = (g)"^- Then Xi*(/3) = (Mfg)^ = qa. Furthermore, note that 

hn 

Xx*: [S2L, 5W] -* [S2L, K(Z, n)] 
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is, up to sign, the co-Hurewicz homomorphism in that dimension. 

The following lemma will complete the proof of Theorem 3. 

LEMMA 7. Wr ^ Ofor r = 1, 2, . . . , p - 1. 

Proof. Take r > 1. We have the following diagram 

QK7-1 -X Xr - ^ KT = K(ZP, n + 2r(p - 1)) 

If Wr = Sr • ir = 0, then by the Serre exact sequence, there exists a y: Xr~l ~^Kr 

such that 7/V-1 = 0r. 7 is a class in Hn+2T&-v {Xr~l \ Zp) and m{Xr~l) = 
w + 2(r — 2)(£ •— 1) — 1. Therefore, by Theorem 2, 

p i . j f ^ + 2 ( r - l ) ( p - l ) / J p - l \ —>jff»+2r(l>-l)/j^r-l\ 

is an isomorphism and 7 = Ply. (The coefficient group has been dropped; it is 
ZP.) Thus, 6r = PHf/r- i ) , where 

7/V-1 6 ffl+«r-1>»-1>(Zr). 

Let aT G 7rw+2r(p-i)-i(»S*) be an element of order p. Represent ar by a map 
5»+2r(p-i)-i __> 5% a n ( j j e t £ ^ De t j l e c o n e Notice that Car is a double suspension 
since aT is well within the stable range. Let g: Car -+ K(Z, n) represent a 
generator of Hn(Car ; Z). Since i^+2^-1) (Car ; Z„) is trivial when l S t ^ p - I 
except for t = r, the only obstruction to lifting g to Xp is in dimension n + 
2r(p — 1). Let gr be the (unique) lift of g to Xr. Now we have the following 
commutative diagram: 

Car-^Xr-^K(ZP,n + 2r(p- 1)) 

Z r - 1 - ^ X ( Z 2 , , w + 2 ( r - l)(p- 1)). 

H e r e ^ r ^PHyfr-igr) = 0 since yfr^gr G fl^'-u^"^*,) = 0. Therefore, 
gr lifts to g: Car —* Xp and for some q prime to £, gg lifts to /3: Car -^ Sn 

(Lemma 6). But then the class of qg Ç Hn(Ca;Z) is in the image of the 
co-Hurewicz homomorphism. This contradicts Lemma 5. Hence, Wr ^ 0 for 
r > 1. 

When r = 1, Wi = d1 = 0 implies the existence of the lift to Xp and the 
remainder of the argument is the same. This completes the proof of Theorem 3. 

5. The (mod p) cohomology of the spaces X\ Before going on to con­
struct the spectral sequence of the Theorem, we will compute some of the 
cohomology of the spaces Xr and show that Xp is completely determined up to 
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homotopy type. The inequality n > 2p(p — 1) will be assumed throughout 
this section, and cohomology groups will have coefficients in ZP. Furthermore, 
the notation of the preceding section will be carried over. 

THEOREM 4. When n < i < n + 2(p — 1), we have 

H\K(ZPJ n + 2r(p - 1))) -^XH\XT) -> 0 

is exact, and the kernel of (0r)* is generated by (P3~1WT+i)\T and (ôPj8)\r, 
where \r is the fundamental class in 

IP+»<r-»(K(Zp, n + 2r(p - 1))) 

and 1 g j < p — r. 

COROLLARY 4.1. / / Vp is another (mod &(p)) reduction of Y (the space in 
the Postnikov system for Sn consisting of the homotopy groups of Sn to dimension 
n + 2p(p — 1) — 2), then there exists a homotopy equivalence h: Xp —* Vp. 

Proof of Corollary 4.1. Let Vr be the space in a Postnikov system for Vp 

made up of the first r non-trivial homotopy groups of Vp, and let 

<j)T G Hn+2r{p~l)(Vr) 

be the Postnikov invariants. Then Theorem 4 holds for {Vr, <j>r] and 
_H>H-2r(P-i)(Ff) a n d Hn+2r(p-i) (X

r) a r e generated by <p and 0r, respectively. 
Suppose that hr: Xr —» Vr is a homotopy equivalence. Then 

(hT)*: Hn+2r{p-l)(Vr) —> Hn+2r(p~u(Xr) 

is an isomorphism and (hrY<j>r = cdr, where 0 ^ c £ Zv. Therefore, Xr+1 is of 
the same homotopy type as Vr+1. We have only to check that X1 and V1 have 
the same homotopy type. This is true since each is a K(Z, n). 

We now begin to prove Theorem 4. 

(A) Let n < i < n + 2p(p - 1). Then 

(0i)*: H\K(ZV, n + 2p- 2))->Hi(X^) 
is onto. 

Proof. We have X1 = K(Z, n) and 

(Zp if i = n + 2r(p - 1), 
H\X^ = \ZP iîi = n + 2r(p - 1) + 1, 

(O otherwise, 

where 1 ^ r < p and n < i < n + 2p(p — 1). Let X be a generator of 
Hn(Xi). Then H»+*'<*-»(X*) and j ^ + w - i m ^ i ) a r e generated by P'X and 
<5PrX, respectively. If X is a generator of Hn+2p-2(K(Zp, n + 2p - 2)), then 
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P*X = (̂ 1)*X (up to a non-zero scalar multiple) since 01, as a cohomology 
operation, is P1 . Therefore, 

and 
(d^ôP^X = ÔP'-1^1)*), = bPr~lPl\. 

These two classes are non-zero mutiples of Pr\ and 5Pr\, respectively, and 
hence (61)* is onto. We shall now write Kr for K(ZP, n + 2r(p - 1)). 

(B) Let X be the fundamental class of Kr. Then (<9r)*ô\ j* 0. 

Proof. Let X be the fundamental class of ÇlKr~l. The maps 

induce cohomology homomorphisms 

H\KT)^^H\Xr)-^H\2Kr-1) and (;,)*(0r)*X = WT\. 

Furthermore, 

(ir)\d
r)*ô\ = ô(ir)*(dr)*\ = 5T7rX = rôP^X * 0. 

Therefore, (<9r)*6X ^ 0. 

(C) Let X be the fundamental class of Kr. Take 0 j* a G S 2 ^ " 1 ^ ' , where 
1 S d < p — r and j = 0, 1, 2. Then if (dr)*a\ = 0, a must be a multiple of 
P^-Wr+i if j = 1 or ôPdô if j = 2; and whenj = 0, no such a exists. 

Proof. I t is sufficient to check this statement when d = 1; the other cases 
will follow since (P1)^-1 is an isomorphism on both spaces in the ranges under 
discussion, (P^^Wr+i is a non-zero multiple of P^Wr+i and ( P 1 ) * " 1 ^ ^ is 
a non-zero multiple of ôPdô. 

As in part (B), (0r)*«X = 0 implies aWr\ = 0, where X is the fundamental 
class of 12i£r-1. Thus, the operation aWr must be zero. When d = 1 and j = 0, 
« is a multiple of P 1 and PlWr 5* 0. When d = 1 and 7 = 1, aWr = 0 if and 
only if a is a multiple of Wr+i; see Theorem 3. When d = 1 and j = 2, a is a 
multiple of ôP1ôJ and ô P 1 ^ ^ = 0 since it raises dimension by 4:p — 1. 

(D) (00*: iP(i£ r) -*H\XT) is onto when » < i < » + 2p(p - 1). 

Proof. This has already been proved when r = 1 (statement (A)). The 
proof is by induction on r. Suppose it is true for r. Since (0r)* is onto, the Serre 
exact sequence for the fibring 

Xr+1IuXr-^Kr 

decomposes into short exact sequences 

0 -^^-1(Xr+1) -&L H\Kr) -QX H\XT) -> 0. 
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Thus, H^X'*1) * 0 only when (0r)*: H\Kr) -^Hl{Xr) has a non-trivial 
kernel. By part (C), this can happen only when i = n + 2(r + d) (p — 1) + J, 
where l ^ < | ) - f and j = 1 or 2. Now, by part (B), 

0 ^ (0 r+1)*À £ iï»+2(r+l)(p-i)(J£"r+i) 

and 
o ^ (6> r+i)*ô\ e ^ + 2 ^ + i ) ( ^ - i ) + i ( x r + i ) , 

where X is the fundamental class of Kr+1. 
By Theorem 2, 

is an isomorphism for I ^ d < p — r and j = 1, 2. Hence, these groups are all 
non-trivial. Therefore part (C) describes the kernel of (0r)* exactly and since 
(P1)^ -1 commutes with (0r+1)*, (0r+1)* is onto. This completes the induction 
and the proof of Theorem 4. 

We now begin to prove the main Theorem. Let F° = Xv. Recall that 

irn(Y°) = Z, 7rn+2tf(p_i)_i(F0) = Zp when 1 g g g £ — 1, 

and all other homotopy groups of F° are trivial. Consider the Moore-Postnikov 
system of the map pt —+ F°. Let YQ be the space in this system obtained after 
killing the first q non-trivial homotopy groups of F°. Let 

K« = K(Zpjn + 2q(p - 1) - 1) 

when 1 S q è P — 1 and let K° = X(Z, n). Then the Moore-Postnikov 
system has the diagram 

KQ F° 

r II 
Il t £<z * 

II r5_1 

Pt. air -1 

where 03 is the fundamental class of Y9, 

QKQ-I jg-iy Y*-H Yq'1 

is a fibring, and YQ+1 = 1^«. 
The map cQ-i = <j>ajQ-\\ QK^1 —> i£ff also appears in the Postnikov system 

for £2 F° ( = &Y*). Therefore, 

^_x = Ûfo'j,): fl£(Z„ n + 2{q - l)(p - 1) - 1) -+QK(ZP, n + 2q{p - 1)). 

Since we are in the stable range, cff_i, as a cohomology operation, is equal to 
WQ = qP*ô - (q- VSP1 (or is equal to Pl when q = 0). 
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THEOREM 5. Suppose that X = S2L is a double suspension and Hl(X, Z) = 0 
for i > n. Then there exists a spectral sequence with 

E[>° = Hn+'(X;Z), 

Eï< = Hn+r+w-»-l{X\Zv) when a > 0, 
Eiq = 0 when q < 0, 

with the differential dT{q: E[,q —> E[+1'q+1 given by 

di° = P 1 : Hn+r(X; Z) -> Hn+r+™-*(X; Zp) 
and 

d['9 = (g + l)pi« - g^P1: Hn+r+2^-1^1 (X ; Zp) -> Hn+T+^+»&-v (X ] Zp) 

îê £?z g > 0. PM? spectral sequence converges to [S~rX, Y°] (when r > 0, everything 
is trivial). Thus, there exists a filtration 

[SrX, Y°] = Ar>° D A'*1 D . . . D Ar* = 0, 

where Erf = ^r«V^r , ff+1-

The proof follows (15). Take the Moore-Postnikov system for the map 
pt. -* 7°. For q < 0 and g > p let Fff = pt. and KQ = pt. Let 

£K.* = [ 5 - r ^ y<ẑ  r ^ o, - o o < g < oo, 
£'•* = [S-rZ, if*], r ^ 0, - oo < g < oo, 

and 
Er,Q = Dr,Q = Q w h e n ^ > 0. 

Since X is a double suspension, these are all abelian groups. Let 

p.* = fo«),: [5-rX, F«] -»• [S-'X, K«], 

and le t / ' ' 5 be the composition 

[ 5 _ X i f 5 ] - ^ [5- ( r+1)X, M T , ] - ^ h [5- ( r+1)X, F5+1], 

where e is the natural isomorphism. 
Since YQ+1 —> Yq -^ KQ is a fibring, we have exact sequences 

(ft) . . . -> P7--1'5 -> DT>Q+1 -> P>r'ff -> Pr«ff • - » . . . 

provided that r ^ 0. However, E0tQ = D0t9 = 0 unless q = 0, and the homo-
morphism (#0)*: [X, Y°] —> [X, K(Z, n)] is an isomorphism (since dim X S n 
and <£° is the fundamental class of F°). Therefore, the sequences (ff) are exact 
for all r and g. 

Now, following (15) dr{q: E['Q ->P;+i^+i is given by <^+i,<7+i.jr,ff> T h u s > 

dï'ç is the composition 

[S~rX, KQ] A [S~(r+1)X, OiT] (<^g+Jg)*) [5"(r+1)X, iT + 1 ] . 
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Now, e is the suspension isomorphism in cohomology and <j>a+ljq = Cq is the 
cohomology operation (q + l)P1ô — qôP1 (if q > 0) or the operation P1 

(when q = 0). Since stable operations commute with suspension we have 

dr,0 = p i . Hn+r(X] Z) -> ^ + 2 P - 2 + r ( X ; £ , ) 

and 

^,(7 = (q+ i ) p i g - gôP1: i f ^ + 2 « ( p - D - i ( X ; Z, ) -> i7 w + r + 2 ^+ 1 )^- 1 >(X; Zp) 

when g > 0. (When q < 0 all the groups are trivial.) Let 

,4r'* = lm([S~rX, F«] -> [5~rX, F0]). 
Then 

[5~rX, F°] = Ar'° D 4 ' - 1 D . . . D ^4r'p - 0 

and A'-'/A'''*1 = £™. 
Note that the only groups in Ei which may contain non-trivial subgroups 

that are in (£(£) are the groups ET{ = Hn+r(X, Z). Clearly, all differentials 
vanish on (E{' )6(J) and no element of (ET{ ) ^ P ) is in the image of a differ­
ential. Thus, £ i ° = (Erf)p 0 ( £ ï * \ & and A'>» = ( ^ ' ° ) p © ( £ l ' \ ( ? ) . If 
we modify the spectral sequence by having 

Ë[° = (EÏ°)P = H*+'(X;Z)P, 

then the convergence would be to [S~rX, Y°]p. Recall that we have a map 
/ : Sn-+ F° ( = Xp) such tha t / , : ir,(S») - > T T , ( F ° ) is an isomorphism (mod <£(£)) 
for i < n + 2£(£ — 1) — 1. Therefore, by (4, Lemma 14), if X is a double 
suspension and Hl{X\ Z) £ g(£) for i > w + 2p(p — 1) — 2, then 

f.[X,&]-+[X, 7»] 

is an isomorphism (mod S(£)) . Hence, [X, Sn]p ~ [X, Y°]p. 

Proof of the Theorem. We are given 
(i) H\X;Z) = Oiori > k, and 

(ii) W(X\Z) Ç g(£) for i > k - d. 
Choose » large. Let X1 = SW~*X. Then H\Xf\Z) = 0 îor i > k and by 

Theorem 5 and the remark above, the spectral sequence with 

EÏ0 = Hn+r(X';Z)p = Hk+r(X; Z)PJ 

E['Q = Hn+r+2,(P-l)-l(X
f ; Zp) 

= iï*+r+2«<p-1)-1(A';Z2l) 

if g > 0 and Eï'5 = 0 if q < 0 and with the same differentials (i.e., d['q = Ctf) 
converges to [5~rXr, F0]p. Now suppose that 0 ^ -r ^ d + 2p{p - I) - 2. 
Then if i > n + 2£(£ — 1) — 2, we have 

i - n + k + r> n + 2p{p - 1) - 2 - n + k - (d + 2p(p - 1) - 2) 
= k - d. 

Therefore, 

IPiS-'X'iZ) = if*(S»-*-rX;Z) = £P'-w+*+r(X;Z) 6 (£(£) 
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when i > n + 2p(p — 1) — 2. Using the remark above, this implies that 
[S~TX', Y°]p = [S~rXf

t S*]^ Since n is large, we are in the stable range and 

[S~rX,
1S

n]p = {Sn~k-rX,Sn}p = {X,Sk+r}p = 2*+r(X)p. 

Thus, the spectral sequence converges to this last group provided that 
0 ^ — r ^ d + 2p(p — 1) — 2. (When r > 0, the statement is also true since 
everything is trivial.) 
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