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THE SUBVARIETY LATTICE OF THE VARIETY
OF DISTRIBUTIVE DOUBLE p-ALGEBRAS

WlES^AW DZIOBIAK

Let L denote the subvariety lattice of the variety of

distributive double p-algebras, that is, the lattice whose

universe consists of all varieties of distributive double

p-algebras and whose ordering is the inclusion relation. We

prove in this paper that each proper filter in L is

uncountable. Moreover, we prove that except for the trivial

variety (the zero in L ) and the variety of Boolean algebras

(the unique atom in L ) every other element of L , generated by

a finite algebra, has infinitely many covers in L , among which

at least one is not generated by any finite algebra. The former

result strengthens a result of Urquhart who showed that the

lattice L is uncountable. On the other hand, both of our

results indicate a high complexity of the lattice L at least in

comparison with the subvariety lattice of the variety of

distributive p-algebras, since a result of Lee shows that the

latter lattice forms a chain of type w + 1 and every cover in

it of the variety generated by a finite algebra is itself

generated by a finite algebra.
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1. Preliminaries

An algebra {A, A, v, *, , 0, l) is called a distributive double

p-algebra if (A, A, v, 0, l) is a bounded distributive lattice and *

and are unary operations on A such that a A x = 0 if and only if

x S a* , and a v x = 1 if and only if a 5 x .

A distributive double p-algebra A is said to be of finite range if

for each a € A there exists n < u) such that a = a ,

0(+*) (k+l)(+*) k{+*)+*
where a := a and a :- a for every fe > 0 . When

a = a for every a € A , the algebra 4 is said to be of

range n . A is said to be regular if any two congruences on A with a

class in common are equal. By a result of Varlet [77], A is regular if

and only if it satisfies the quasi-ldentity: x* = y* and x = y imply

x = y .

With each distributive double p-algebra A there are associated the

following sets: D{A) = {a € A; a* = 0) , T)(A) = {a € A; a+ = l} and

Cen(A) = {a € A; a = a } .

A lattice filter F on a distributive double p-algebra A is called
+*

normal if a € F implies a € f . If F is normal then

C(F) = {(a, b) $. A * A; a A o = b h a for some a (. F] is a congruence

relation on A .

For a poset P , by Min P and Max P we denote the set of all

minimal and the set of all maximal elements in P , respectively. If

X c P then by [x) we denote the set of all a d P such that x 2 a

P

for some x $ X • {X] is defined dually. Instead of [{a;}) and (ix} ]

we shall write [x) and (x] , respectively. We call a map / : P -»• Q

admissible if i t is isotone and satisfies f[(x] n Min p) = (/(x)] n Min Q

and f([x) n Max p) = [fix)) n Max $ for every x € P . Recall that the

set of a l l increasing subsets of a poset P with respect to the set-

theoretical meet and join, and the operations *, defined by X* = P\{X]

and X = [P\X) forms a distributive double p-algebra. This algebra will

be denoted by DP .

For a given distributive double p-algebra A let P(A) denote the

set of a l l prime fi l ters on A . We have a poset (P(<4), cj . The map
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P : A •* DP(A) defined by P(a) = {X d P{A); a Z X] is an embedding of A

into DP(A) . If A is finite then P is an isomorphism.

Throughout this paper by 2 and 3 we denote, respectively, two and

three element chains, considered as distributive double p-algebras. By

V(K) , K is a class of similar algebras, we denote the least variety

containing all algebras of K . We shall write V{A) instead of V({A}) .

For a fuller account concerning distributive double p-algebras we

refer to [2], [3], [7], [S]. For lattice theory and universal algebra we

refer to [4] and [5].

2. A sequence of finite simple algebras

In this section we define an infinite sequence of finite simple

distributive double p-algebras whose every proper subalgebra is isomorphic

to 2 or to 3 . This sequence will be used in proofs of our results.

For each 5 - k let P, denote a poset with the universe

\-i ; 1 5 i S k} u {i; 1 5 i 5 k} , partially ordered by the relation 5,

defined as follows: for all x, y , x 5, y holds if and only if x = y ,

or x = -y and 1 5 j / S f e , o r x = -(y-l) and 2 2 y < k , o r

-(fc-3) 5 x S -2 and y - k - 1 . The diagrams of P and P, look as

follows:

1

[/
- 1

1

2

Ay
-2

2

-3

3

4

Ay
It

I
- 5

5

-1 -2 -3 -^ -5 -6

LEMMA 2.1. For eaefe fe an<2 a poset P , if f : P. -*• P is

admissible and not one-to-one then Im / is a 1- or 2-element chain.

Proof. Since P, is connected and / is admissible, it suffices to

show that |lm f\ < 2 .
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CLAIM 1. If 1 5 i t j < k and f(i) = /(-j) then |lm f\ = 1 .

Let 1 < i ± j 5 k and /(£) = f(-j) . Then f(i) € Min P since

-j € Min P^ . But /(£) € Max P because i € Max P, . Hence f(i) is

both minimal and maximal in P . Therefore f(i) = /(x) for all x € P, ,

proving the claim.

For 1 S i S k denote by N(i) the set of all 1 S j S fe such that

•i $ 3 and /(£) = /(j) imply |lm /| S 2 . By induction one can verify

the following

CLAIM 2. tf(i) = {l, 2, ..., k}\U} for every 1 5 £ < fc .

The lemma follows from Claims 1 and 2 and the observation that if

/(-£) = /(-</) for some 1 5 i + j < k then there exist 1 S m f n 5 fe

with /(m) = /(n) .

LEMMA 2.2 (see [3]). For /iwite posets P and Q , DP is

erribeddable into DQ if and only if there exists an admissible map from Q

onto P .

Proof. The "if" part is a particular case of Proposition 2.2 from

Davey [3]. For the "only if" part let f : DP •* DQ be an embedding. Then

the map g(X) = f {X) for all X , is onto and admissible. Hence the

observation that Q 3* [P(DQ), c) and P S [P(DP) , c) concludes the proof.

LEMMA 2.3 (see [3]). For a finite poset P ,

(i) DP is simple if and only if P is connected and

P = Min P u Max P ,

(ii) DP is subidreatly irreducible but not simple if and only

if |P| > 1 , P is connected and there exists a unique x

of P with P = (Min P u Max P) u {x} .

COROLLARY 2.4. Each DP, is simple and of range U . Moreover, the

only, up to isomorphism, proper subalgebras of DP, are 2 and 3 .

Proof. The range of DP, is verified easily. The rest follows from

Lemmas 2.1, 2.2 and 2.3.
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3. Cardinality of a proper f i l t e r in L

We prove here that each proper f i l t e r in L is of cardinality 2

We begin with the following lemma.

LEMMA 3.1. Let K be a variety of distributive double p-algebras,
all being of the same finite range. Then both the class K . of sub-

S1

directly irreducible algebras in K and the class K . of simple
s lm

algebras in K form universal classes.

Proof. That K . is a universal class follows directly from a result

of Katrinak [S] which says that a distributive double p-algebra A of

finite range and with \D{A)| 2 2 is subdirectly irreducible if and only

if \D(A) n D(A)\ 5 2 and Cen(A) = {0, 1} , and from the observation that

A is a Boolean algebra if and only if |£>U)| = 1 . That K . forms a

universal class is obvious since, by a result of Beazer [JD, a nontrivial

distributive double p-algebra A of range k is simple if and only if A

k(+*)
is regular and satisfies x = 0 for every x € i4\{l} .

THEOREM 3.2. Each proper filter in L is of cardinality 2 ° .

Proof. It suffices to show that the principal filter in L generated

by a proper subvariety K of the variety of distributive double

p-algebras is of cardinality 2 . As the variety of distributive double

p-algebras is generated by its finite members, there exists a finite poset

P having at least two elements and whose distributive double p-algebra

is subdirectly irreducible and does not belong to K . For each n > 5 >

let P + P denote a poset with universe P u P (we assume here that P

and P are disjoint) and whose ordering is given by

5p u £n u {(x, y); x € Min P^, y € P, O- -p y and a * y]

u f(x, y); x € P, y d Max Pn, x <p b and x # b} ,

where a and b are fixed elements of P such that a t Min P ,

b € Max P and a Sp b ; of course, such elements exist in P since

\P\ > 2 and DP is subdirectly irreducible. We claim that DP is
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embeddable into D(P+P ) for every n . Indeed, in view of Lemma 2.2, it

suffices to consider a map f : P u P -*• P defined by fix) = a when

x € Min P , f(x) = x when x € P and /(x) = b otherwise.

Now we select inductively a sequence Qn, Q-. , • • • of finite posets as

follows: Q := P + P and Qn := P + P, , for every

n = 0, 1, 2, ... , and, for every 0 # J c to , we define

K(J) := K v HSP[{DQn; n € i)) . Obviously, K c K(J) for every J e w .

It remains then to show that K(J) and K(t7) are different for different

I and J . To this end we suppose K(J) = K(<7) and consider a fixed

m € I . We have DQ € K(J') which, in conjunction with Jonsson's Lemma

(see [6]), Corollary 2.U and the above claim, yields that DQ is a

homomorphic image of a subalgebra A of an ultraproduct of some family of

algebras from among DQ 's , where n € J . We claim that DQ is

isomorphic to A which would yield that DQ is embeddable into some

DQ , where n (. J . Since every DP. is of range k and P is finite,

then due to the definition of P + P. it follows that all algebras of the
Is

form DQ have the same finite range k . If DP is simple then, by

Lemma 2.3, every algebra DQ is simple which, together with Lemma 3.1,

implies that A is simple as well, and thus DQ is isomorphic to A .

So assume that DP is not simple. Then, by Lemma 2.3, DQ is not simple

m

either. Evidently, A is of range k and, by Lemma 3.1, it is sub-

directly irreducible which, by Corollary 9 from [2], implies that the

lattice of congruence relations on A is a 2- or 3-element chain. From
this, since DQ is not simple, it follows that DQ is isomorphic to

m m
A , completing the proof of the claim. As DQ is finite, then by the

m
claim we conclude that DQ is embeddable into some DQ , where n d J .

m n
Hence, by Lemma 2.2, there exists an admissible map / from Q onto

Q . We show m = n . To the contrary suppose m # n . Then m < n ,
m
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Therefore, the map

1*n-\'

llm ftP,.

since f is onto, and hence \Q | < \P,

is not one-to-one which, together with Lemma 2.1, yields

5 2 . So, we have

\Q | = Im ftP u Im ftP, |I 5 \P\ + 2 ,
m l%i-ll'

a contradiction. Thus m = n , and so m € J which proves I c_ J .

Similarly, we show J c J . Thus I = J , concluding the proof.

4. On the bottom part of L

In this section we will be concerned with the bottom part of L . For

our efforts the following two lemmas are crucial.

LEMMA 4.1. Let A be a subdirectly irreducible distributive double

p-algebra with \A\ > 3 . Then there exist a set I and a congruence

relation 6 * I on A such that D[A /&) n ~5[A /Q) + 0 .

Proof. Since A is subdirectly irreducible, then by Theorem h from

Katrinak [S], CenU) = (0, l} . This yields x v x* £ £>U)\{l} for every

x € A\{0, l} . Hence D(A)\{l} # 0 . On the other hand, by Lemma 7 from

Katrinak [8], A [x ; n < to) = 0 for all x € D{A)\{l) . Therefore, in

the case when A is of finite range, we have x = 0 for some

x € D(A) and an integer n . But this, in view of the corollary

succeeding Theorem 7 from Katrinak [S], implies that D(A) n D(A) is non-

empty. So, in the case when A is of finite range, it suffices to take

I = {0} and 9 = id .

Let A be not of finite range. Then, for a certain element a of

A , the sequence a , n < to , is strictly descending. Put

b := a A

n < to .

CLAIM 1. b A c* = 0 for every n < to .
n n

Proof. It suffices to prove that p[b ) n p[c*) = 0 . But each prime

filter on A is contained in some maximal prime filter, so in fact it is
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enough to prove that for each maximal prime filter X on A the following

condition holds: X (. P[bn) if and only if AT € P[cn) . The "if" part

directly follows from the observation that c S b . For the "only if"
n n

p a r t , l e t X € p[b
n) t>e maximal. Then X i P(a) and

X * p( a ( 2<»+l>+l)<+*>) because a
2 (« + l>( + *)+ A a (2(» + l )+l )< + *) . Q _

Hence, there exists a greatest k < u> such that X € P(a J and

X t P(«x(k+l)( + <)) . Since I | P^* 1"** 1) , X * P(A)\(P(a
k{ + *)+K .

Hence X € (p (a^ + **+)] a J l d j therefore , X € p(ak ( + * ) +) because X i s

maximal. Thus X € P(a v y A a v ; ) which, by k 5 2(n+l) , implies

X € Pfc ) .

CLAIM 2. i> A c = fc for every n < to .
n n n J

Proof. ~5{A) i s an idea l on A and aJ^ + ^ A a ^ ' ( + * ) + g (̂>1) . Hence

c n € D(A) , and so 2>M A e^ = &M .

CLAIM 3. fc^+*) # 0 for every n < w .

Proof. For J , m we have

Moreover, a A a # 0 for every j < w because the sequence

a , j < u , is strictly descending. Hence b + 0 for every

n < a) .

Let £> = (fc ; n < w) and o = (c ; n < in) . By Claim 3, the normal

filter F on A^ generated by b is proper. So C(F) f I . But, by

Claims 1 and 2, [e]C(P) 6 D(i4<i)/C(F)) n of/ia)/C(F)) , proving the lemma.

LEMMA 4.2. Let U be a non-principal ultrafilter on

u)\{0, 1, 2, 3, *»} . The« 2 and 3 are, wp to isomorphism, the only

finite subdirectly irreducible algebras in v{j[ [DP.; 5 S k < w)) .
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Proof. That 2 and 3 are subdirectly irreducible and belong to

y(ny(OPk; 5 5 k < w)) is obvious. Let A € K(lIy(0P, ; 5 5 fc < 0))) be

finite and subdirectly irreducible. Then, by Jonsson's Lemma,

A € HSPy({ll (OP, ; 5 S k < w)}) . By Corollary 2.U and Lemma 3.1, each

algebra belonging to SP ({ii (OP, ; 5 2 fe < ui)}) is simple. From this we

get that A is simple and, by the assumption that A is finite, we
conclude that A is embedded into some direct power of

n [DP • 5 5 k < bi) . This yields that A is embeddable into

II (OP. ; 5 S k < oj) . Therefore there exists I Z U such that A is

isomorphic to a subalgebra of II [pP, ; k € JJ ; here we used again the

assumption that A is finite. Since U is non-principal and A is

simple, then by Corollary 2.h we get that 4 is isomorphic to 3 or to

2 .

THEOREM 4.3. (i) V{2) is a unique cover of V{2) in L .

(ii) V(3) has infinitely many covers in L , among which at least

one is not generated by any finite algebra.

Proof. (i) That V(3) covers V{2) is obvious. That F(3) is

unique follows from Lemma U.I.

(ii) By Corollary 2.U, every variety v[DP,) , where 5 S k < u ,

covers K(3) . To prove the rest, let U be a fixed non-principal ultra-

filter on w\{0, 1, 2, 3, h} . We have V(3) q F(ny(OPfe; 5 2 k < w)) .

So, as y(3) is finitely based, there exists a cover K of 7(3)

contained in f(lL.(0P. ; 5 2 k < u))) . By Lemma U.2, K is not generated

by any finite algebra.

THEOREM 4.4. For a variety K generated by a finite distributive

double p-algebra the following conditions are equivalent:

(i) every variety that covers K in L is generated by a

finite algebra;

(ii) K has finitely many covers in L ;

(Hi) K is the trivial variety or the variety of Boolean

algebras.
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Proof. By Theorem k.3, (iii) implies (i) and (ii). It remains then

to show that both (i) and (ii) imply (Hi).

(i) =* (Hi). Suppose that K is a nontrivial variety and K f 7(2) .

Then, by Theorem h.3, 7(3) c K . Let L be a fixed variety not generated

by any finite algebra that covers 7(3) in L ; by Theorem U.3, such a

cover really exists. We claim that 7(K u L) covers K in L , and that

7(K u L) is not generated by any finite algebra. The latter claim is

immediate since otherwise, by Jonsson's Lemma, L would be generated by a

finite algebra. To prove the former one, let K c M c 7( K u L) . Then, by

Jonsson's Lemma, K . c M . c K . u L . . when M . n L . c j( {2, 3}) ,
si — si — si si si si —

then M . = K . , and so M = K . Otherwise, A € M . n L . for some
si si si si

A '£ 2 and A £ 3 . But L covers 7(3) , so L = V({3, A}) . Hence

M = 7(K u L) . Obviously, K * 7(K u L) . Thus F(Ku L) covers K in

L .

(ii) =* (iii). Suppose that K is nontrivial and K # V(Z) . Then

7(3) c K by Theorem 1+.3- Let n be a least natural number such that

\A\ < n for every subdirectly irreducible algebra A from K . Clearly,

such a number exists because K is generated by a finite algebra and, by

Jonsson's Lemma, every subdirectly irreducible algebra in K is finite and

there are, up to isomorphism, only finitely many of them. Notice that

K + v(K U {0Pfe}) for every n 5 k . Moreover, by Corollary 2.U,

F(K U {DP. }) covers K in L , and v(K U {DP }) t V(K u {DP }) for all

n 5 k t m , proving that (ii) implies (iii).
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