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1. Noetherian unique factorisation rings.

1.1. Introduction. The theory of unique factorisation in commutative rings has
recently been extended to noncommutative Noetherian rings in several ways. Recall that
an element x of a ring R is said to be normal if xR = Rx. We will say that an element p of
a ring R is (completely) prime if p is a nonzero normal element of R and pR is a
(completely) prime ideal. In [2], a Noetherian unique factorisation domain (or Noetherian
UFD) is defined to be a Noetherian domain in which every nonzero prime ideal contains a
completely prime element: this concept is generalised in [4], where a Noetherian unique
factorisation ring (or Noetherian UFR) is defined as a prime Noetherian ring in which
every nonzero prime ideal contains a nonzero prime element; note that it follows from the
noncommutative version of the Principal Ideal Theorem that in a Noetherian UFR, if p is
a prime element then the height of the prime ideal pR must be equal to 1. Surprisingly
many classes of noncommutative Noetherian rings are known to be UFDs or UFRs: see
[2] and [4] for details. This theory has recently been extended still further, to cover
certain classes of non-Noetherian rings: see [3].

It is shown in [2] that Noetherian UFDs have many good properties. In particular, let
R be a Noetherian UFD, and put

C = C{R) = {ceR:ce %?(/?/?) for all prime elements p of R}.
Then every nonzero element r of R can be written essentially uniquely in the form
r = cp{...pn with neZ, ceC and p{,...,pn completely prime elements of R.
Furthermore, C is an Ore subset of R and in the localised ring Rc every one-sided ideal is
two-sided and multiplication of ideals is commutative. Note that if R is a commutative
UFD then it follows from the Principal Ideal Theorem that the set C consists of units. In
non-commutative rings this is not generally the case: in fact a result of M. P. Gilchrist and
M. K. Smith states that if R is a Noetherian UFD which is not commutative then every
prime ideal of R which has height two or more contains an element of C(R) [5]. It follows
that in general the process of localising at the set C will bring about a considerable
simplification in the structure of the ring involved.

The question naturally arises as to whether any of the above can be generalised to
Noetherian UFRs, and in particular whether the set C consisting of those elements of a
UFR R which are regular modulo all of the height one prime ideals of R is an Ore set. In
general, this seems to be a very difficult problem, having certain resemblances to
questions about localisability of cliques in Noetherian rings (however, see [3, Propositions
4.11 and 4.12]).

In the present paper we will investigate the problem above in a specific class of rings.
K. A. Brown has given a complete characterisation of those polycyclic group rings which
are UFDs and UFRs. We will use these results to prove that if A is a commutative
Noetherian UFD and G is a polycyclic group such that the group ring AG is a Noetherian
UFR then the set C is indeed an Ore set in AG; we will also describe certain aspects of
the ideal structure of the ring obtained by inverting the elements of C.
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1.2. Notation. If R is a ring then R° will denote the set of units of R and Spec1 R
will denote the set of height-one prime ideals of R. If R is a Noetherian UFR then we put

X(R) = {x e R : xR = Rx *0},

X,(K) = {pe X(R): pR e Spec1 R),

C(R) = ̂ (Spec1 R) = n{c€R(pR):pR e Spec1 R).

We will abbreviate these to X, X, and C if the ring under consideration is clear from the
context. Note that if R is a Noetherian UFR then by definition we have Spec' R =
{pR:peXt(R)}.

1.3. The next result collects together various basic properties of UFRs that we will
need.

LEMMA. Let R be a Noetherian UFR.
(i) IfO*I<>RtheninX(R)*0.
(ii) IfPe Spec R and x e X(R)\P then x e <€R(P).
(iii) X(/?)c<g*(0).
(iv) If peXi(R) then <&R{pR) = <iR(p"R) for all ns*l; furthermore, <gR(pR)c

(vi) Suppose that p, q eX{(R). If c e <€R(qR) and c' e R is such that cp =pc' then
c' e <6{qR).

(vii) / / pu. . . ,pneXx(R) with p,R±pjR for i^j then ptRn . . . r\p,,R =
P\ • • pnR-

(viii) X(R) = {uPl ...Pn:ueR°,neNandpu pneXt(R)}.
(ix) Ifxe X(R) then C(R) <= <€R{Rx).

Proof, (i) Since R is Noetherian, every nonzero ideal of R contains a finite product
of nonzero prime ideals of R; each of these prime ideals contains a prime element of R
(i.e. an element of X,(/?)), and the product of these prime elements is clearly a nonzero
normal element of R.

(ii) If r e R and xr e P then xRr = Rxr c P. Since P is a prime ideal and x $ P we
have r e P.

(iii) Apply (ii) with P = 0.
(iv) See [3, Proposition 3.3].
(v) is immediate from (iv) and the definition of C(R).

(vi) Suppose that r e R and c'r e qR. If p $ qR then cpr= pc'r e qR and so pr eqR;
but p e m^qR) by (ii) and hence r eqR. On the other hand, if p eqR then pR = qR and
so cpr =pc'r epqR = p2R, so pr ep2R by (iv) and now r epR = qR, by (iii).

(vii) follows from [3, Lemma 3.1 and Theorem 3.3].
(viii) See [3, Lemma 3.4].
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(ix) Suppose that c € C(ft), x e X(R) and ref t with cr e Rx. Part (viii) shows that
x = up\ • • . pn for some u e R° and some /?, e X,(ft); so cr e ftp, . . . p,,c. Rpn. Since
ce^^Rp,,) we have reRpn, say r = r'pn. Now cr'p,, = cr eRp, . . . pn, and since
pn e ^ ( 0 ) we have cr' e ftp, . . . pn~\. Induction on n (the case n = 1 being obvious)
allows us to assume that c e %?(/?/?, . . . / ?„_ , ) , so that r' eft/?, . . . /?„_,; but now
r = r'p,, e Rp{ . . . pn = Rx and it follows that c e ^ ( f t x ) .

1.4. We now wish to give a sufficient condition for C(ft) to be an Ore set in R.

DEFINITION. Let R be a Noetherian UFR. Put

D(ft) = {cPl...Pn:ce C(ft), n e N and Pj e X,(ft)}

= {cx:ceC(R)andxeX(R)}.

It follows from (vi) and (viii) of Lemma 1.3 that we also have

D(fi) = {P\ • • • Pnc : c e C(R), neNand p, e X,(ft)}
= {*c:ceC(ft)and;teX(ft)}.

We may view D(ft) as being the set of elements of R which do in fact have a unique
factorisation as in a UFD. A UFR R will be a UFD precisely when D(ft) = R\0.

1.5. The theorem below shows that the imposition of a certain Goldie-type
condition on D(ft) will ensure that C(R) is an Ore set. Recall [8, 6.4.7] that a ring A is
right bounded if every essential right ideal of A contains a nonzero two-sided ideal. If K is
an essential right ideal of a ring A then we will write K^CA.

THEOREM. Let R be a Noetherian UFR. Then the following are equivalent:
(i) C(R) is a right Ore set in R and RC(R) is right bounded.

(ii) For all c e ̂ ( 0 ) there exists r e R such that cr e D(R) (so cr = dp, . . . p,, with
deC(R)andpJeXl(R)).

(*) If K is an essential right ideal of R then K n D(R) ¥= 0 .

Proof, (ii) <=>(*) is clear from Goldie's Theorem.
(i) =£>(*). Suppose that (i) holds and denote the partial quotient ring of R with

respect to C by Rc, it is clear that Rc is a UFR and Spec1 Rc = {pRc :p eX,(/?)}.
Suppose that K is an essential right ideal of R. Then KRC is an essential right ideal of Rc

and hence contains a nonzero two-sided ideal / < Rc. Now / n R is a nonzero two-sided
ideal of R, so / f l X ( / ? ) ^ 0 by 1.3(i); thus there exists xeX(R) with XBICKRC. It
follows that xc e K for some c e C(R), so that (*) holds.

(*)=>(i). Suppose that (*) holds and let c e C(R) and r e R. Put K = {a e R : ra e
cR}^RR. Since C(R) c ^ ( 0 ) and <gR(0) is an Ore set by Goldie's Theorem, the right
Ore condition shows that K D <gR(0) =£0, so by [8, 2.3.5], K is essential in ft. By (*) we
know that K meets D, so there exist d e C(R) and x e X(ft) with dx e K. Thus rd* e eft,
say cs = r<£t e Rx. By 1.3(ix) c e ̂ (ftjc), so that s e Rx, say 5 = tx. But now ctx = cs = rdx,
so ct = rd with d e C(ft) and / e ft. Thus we have shown that C(ft) is a right Ore set. By
1.3(v) we know that C(ft) consists of regular elements. We may thus invert C with
impunity; we will denote the localisation by ftc.

Now suppose F^CRC. Then FDR is an essential right ideal of ft, so there exist
ceC(ft) and jceX(ft) with j c c e f n f t c F ; but now x =xc.c~l eF in ftc, so that F
contains the nonzero two-sided ideal xRc = Rcx. Thus ftc is bounded.
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NOTE. Of course, there is also a left-handed version of this theorem. Thus to prove
that C(R) is a two-sided Ore set in some UFR R, we have to establish both condition (*)
and its left-handed analogue. The rings that we will be dealing with are sufficiently
symmetrical that having proved (*), the proof of the left-handed version of (*) will cause
no difficulty.

1.6. We know of no UFR which fails to satisfy the condition (*) of Theorem 1.5,
but we have been unable to prove that all UFRs satisfy (*). We now give some examples
where (*) can be shown to hold.

PROPOSITION. Suppose that R is a bounded UFR. Then C(R) consists of units and
hence is an Ore set; thus R is equal to Rc and so satisfies the conditions of Theorem 1.5.

Proof. Let c e C(R) c ^(0). Then cR contains some two-sided ideal of R, and hence
some nonzero normal element x, so xR s cR, say x = cr. But cr exR = Rx and c e ^{xR),
so r e Rx, say r = sx. We now have x = csx so cs = 1 and c € R°.

1.7. Recall that if 5 is a ring and Q c Spec 5 then Q is said to satisfy the right
intersection condition if, whenever K^SS with K (~)C€(P)=£0 for all PeQ, we have
K n <8(Q) # 0 , where <g(Q) = ("!{«„(/») :PeQ} (see [7, Chapter 7]).

PROPOSITION. Suppose that R is a UFR and Spec1 R satisfies the right intersection
condition. Then R satisfies (*) of Theorem 1.5.

Proof. Let K^CRR be maximal with respect to ATlD = 0 . If />eX,(/?) put
Kp~l = {r € R : rp e K}; note that Kp~l is a right ideal of R and that K^Kp~\ If
K < Kp'1 then Kp~x n D * 0 and hence K n D # 0 . Thus K = Kp~l for all p e X,(/?), so
that

rpeK^reK. (1)

Now let P = pRe Spec1/?, where peX,(/?). P is localisable by [4, 2.2], and RP is a
bounded local ring whose two-sided ideals are precisely {p"RP: n eN} ([6,1.3]). Thus
there exists n with p" e KRP, so p"c e K for some c e 'G^pR). Now there exists
c' e <S(pR) with /?"c = c'p" e K; it follows from (1) that c' e K. Thus K n <e(pR)*0 for
all p e X,(/?), and the intersection condition on Spec1 R shows that K D C(R) =£0, so that

1.8. The last result above is not very revealing. It can be shown that if R is a UFR
then Spec1 R satisfies the intersection condition if |Spec" R\ < °° or if R is an algebra over a
field k with |Spec' R\ < \k\ (see [7,7.2.12]). However, it follows easily from the Principal
Ideal Theorem that if R is a commutative UFR then Spec1 R will satisfy the intersection
condition precisely when R has Krull dimension 1. Thus it seems that examples of UFRs
whose height one primes satisfy the intersection condition will be rare.

Despite these remarks, the condition (*) of Theorem 1.5 is useful. We will show that
if A is a commutative UFD and G is a polycyclic-by-finite group such that the group ring
AG is a UFR then AG satisfies (*). Then basic idea is to show that in this situation G has
a normal subgroup H of finite index such that AH is a UFD; there is then a sufficiently
close connection between Spec/IG and Spec/4// to allow us to prove (*). This will be
done in the next section.
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2. Group rings and Noetherian UFRs.

2.1. It is a well-known result of P. Hall that if A is a commutative Noetherian ring
and G is a polycyclic-by-finite group then AG, the group ring of G over A, is a
Noetherian ring (see [9,10.2.8] or [8,1.5.12]). When A is a commutative UFD, necessary
and sufficient conditions on G for AG to be a UFD or UFR are given in [1] and [1'].
Using these we will prove the following theorem.

THEOREM. Let A be a commutative Noetherian UFD and G a polycyclic-by-finite
group. If AG is a UFR then G has a normal (in fact, characteristic) subgroup H of finite
index such that AH is a UFD.

The proof is group-theoretic and is deferred until Section 3.

2.2. In the situation of Theorem 2.1 there is a strong relationship between Spec AG
and Spec AH, which we will now sketch (see [10, Chapters 14 and 16] for full details).

Here and in 2.3 we suppose that A is a ring, G is a group, and H is a normal
subgroup of finite index in G. Put S = AH and R = AG. We can identify R with a crossed
product S*G, where G is the finite group G/H (cf. [10, Chapter 1]).

Firstly, note that G acts naturally on the lattice of (two-sided) ideals of AH, via

An ideal / of S is G-stable if Is c / for all g 6 G (we write / 3 G S if this is the case). A
proper ideal Q of S is G-prime if, whenever / and J are G-stable ideals of 5 with U c Q ,
then / c Q or J c Q; we denote the set of G-prime ideals of 5 by SpecG S. Note that every
ideal of S is H-stable, so that G acts on S. If / is an ideal of S then it is not hard to see

;that {Is : g e G} = {F : g e G}; it follows from this that every ideal of S has only finitely
many (in fact, at most [G : H]) conjugates under the action of G. It is clear that the
G-stable ideals of S coincide with the G-stable ideals, so that Spec0 S = Specc S. The
G-prime ideals of S can be described explicitly (see [10, Lemma 14.2]). Firstly, if / is an
ideal of S, write

It is easily seen that Ic is a G-stable ideal of 5 for every ideal / of 5, and that Pc is a
G-prime ideal for every prime ideal P. In fact, if Q is any G-prime of S and P is any
prime ideal of S which is minimal over Q then Q = PG = PG; it follows that there exist
g\,gi, • • • ,g,eG s u c h t h a t

Q = />«' n pg2 n . . . n />«-.
Let {r,,. . . , tn) be a right transversal to H in G; we may assume that r, = 1, and we

have

R = S®St2@...®Stn,

a finite normalising extension (see [10, p. 159] or [8, §§10.1, 10.2]). We may regard S as a
subring of R, and this gives us a means of passing from ideals of R to ideals of 5 and back.
If PeSpecfl then it turns out that P n S e S p e c c S ([10, Lemma 14.1]), so that
P D 5 = Qc for some Q e Spec 5. Moreover, if / is a G-stable ideal of 5 then IR = RI is an
ideal of R: in particular, if Q e Spec 5 then QGR is an ideal of R. It can be shown that a
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prime ideal P of R is minimal over QCR if and only if P D 5 = Q° ([10, Theorem 16.2]),
and thus if and only if P lies over Q (see [10, 16.6(i)]).

We thus have a means of passing between Spec S and Spec R. It is shown in [10, 16.6,
16.8] that this process satisfies analogues of the Going Up, Going Down and Incom-
parability properties of commutative algebra; also, height is preserved by this process.

2.3. We also need a result on Ore sets in group rings.

LEMMA. / / Sf is a (right) Ore set in S and ys c y for all g eG then y is a (right) Ore
set in R.

Proof. The proof of [11, Lemma 2.6] can be used without changes.

2.4. We can now return to UFRs. We will use the following notation for the
remainder of Section 2: A is a commutative Noetherian UFD, G is a polycyclic-by-finite
group such that AG is a UFR, H is a normal subgroup of G with [G : H] <°° such that
AH is a UFD, as given by Theorem 2.1, and R =AG and 5 = AH are the group rings of
G and H over A.

2.5. LEMMA. C(5) = C(R) D S.

Proof. C(S) is an Ore set in 5 by [2, 2.5], and it is easily seen to be G-invariant
(essentially because Spec1 5 is G-stable); Lemma 2.3 now shows that C(5) is an Ore
set in R.

(i) C(5) c C(R). Let P e Spec1 R and put

K = {r e R: cr e P for some c e C(S)} =s RR.

Since C(S) is an Ore set in R, K is in fact a two-sided ideal of R (cf. [8, 2.1.9]). Now
PcK. Suppose that K>P: then Goldie's Theorem shows that Knc€R(P)*0, and
hence cd e P for some c e C(5) and some d e <€R(P). Thus cePH C(P). Let p e Spec5 be
minimal over P n 5; it follows from [10, 6.8] that p has height one in 5. Since c e C(5) we
have c e ^ ( p ) ; but we also have c e P f l S c p , a contradiction.

Thus K = P, and hence C(5) c ^ ( P ) . Since P was an arbitrary height one prime of
R we have C(5) c C(R).

(ii) C(R) n 5 c C(5). Let c e C(R) D 5 and let p e Spec1 5. Recall from 2.2 that p has
only finitely many distinct G-conjugates and denote them by p, = p, p2,. . . , p,,. Let s e S
with cs e p. Then

csp2... pn c p , p 2 . . . pn c p, n . . . n pn = pc.

Let P e Spec R be minimal over pcR. By [10, 6.8] we have P e Spec' R (so that
c e ^ ( P ) ) , and [10, 16.6, (i) and (iii)] show that P D S = pc. Thus

a p 2 . . . pn c pG = P n S

and since c e %(P) we have sp2. • • pn c P n 5 = pG c p. Since p is prime and py £ p for
j ^ l w e see that s ep. Thus c e ^S(P) for all p eSpec1 5, which is to say that c eC(S).

2.6. LEMMA. / / K is an essential right ideal of R then K C\S is an essential right ideal
of S: in particular it is nonzero.
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Proof. Recall from 2.2 that R is a finitely generated module over the Noetherian ring
5, so that Rs is Noetherian. Suppose that L =£ Ss with (K n 5) D L = 0. Since K is essential
in the prime ring R it contains a regular element c e ^ ( 0 ) , and we have cRHLc
K D L = 0. A standard argument now shows that there is an infinite direct sum

L(BcL®c2L®...

of S-submodules of R. If L =£0 this contradicts the fact that /?s is Noetherian.

2.7. LEMMA. / / x e X(S) f/jen ftoere exists x e 5 SUC/J r/jaf x* e X(/?).

Proof. Suppose firstly that p e X^S), so that pS e Spec1 S. Now pS has only finitely
many distinct G-conjugates, and these are all height one primes of S and thus principal:
suppose that there are m of them and choose normal generators p, = p, p2, • . . ,pm- Now
by Lemma 1.3(vii), (pS)c = piSC\p2SC\ . . . OpmS =pxp2 • • • Pm$- Put p =p2 • • • pm e
X(5), so that (pS)c =ppS = Spp. We have

ppR = (ppS)R = (pSfR = R(pS)G = R(Spp) = Rpp, (*)

so that pp e X(R). Now suppose x is any element of X(5). We know by 1.3(viii) that x
can be written in the form x = uqlq2...qn with ueS°cR° and <7yeX|(S). Put
y = «<7, . . . <7,,_, and q = qn, so that x =yq with y e X(5) and q e X,(5). Using induction
on n (the case n = 0 being obvious) we may assume that there exists y e S with yy e X(R).
Since q is a normal element of 5 there exists y' e 5 with qy' =yq. Put x = y'q, where q is
defined as in (*). Then xx =yqy'q -yyqq- We know that yy and qq both lie in X(R), so
xxeX(R) also.

2.8. Recall that D(R) = {ex : c e C(R) and x e X(R)}.

THEOREM. LetK^cRR. Then K D D(R)i=0.

Proof. By Lemma 2.6 we have K n 5 ¥=0. Since 5 is a UFD there exist c e C(5) and
pu... ,/>,,eX,(S) with cPi...p,,eKnS (see [2, 2.1]). Put x = p , . . . pn e X(S). By
Lemma 2.7 there exists xsS with xf eX(ft); but since C(5)cC(f i ) (Lemma 2.5), we
have exx e KC\t>(R).

2.9. COROLLARY. Let A be a commutative Noetherian UFD and G a poly cy die-by-
finite group such that the group ring R = AG is a Noetherian UFR.

(i) C = C(R) is an Ore set in R and Rc is bounded.
(ii) Either R satisfies a polynomial identity and R = Rc is a bounded UFR or Rc has

classical Krull dimension one and all of its two-sided ideals are principal.

Proof, (i) follows from Theorems 2.8 and 1.5, and their left-handed analogues. Note
that C(S) is an Ore set in R by [2, 2.5] and Lemma 2.3. If c e C(R) c <gR(0) then the
proof of Theorem 2.8 shows that there exists r e R such that cr = dx for some d e C(5)
and x e X(R); now c e %?(*/?) (by Lemma 1.3(ix)) so that r = r'x, say. But now we have
cr' = de C(S). It follows that RC(R) = RC{S).

(ii) If H is abelian then 5 = AH is a commutative ring and since R = AG is a finite
extension of AH, [8, 13.1.13(iii)] shows that R is a Pi-ring. It follows from [8, 13.6.6] that
in this case R is a bounded ring and so by Proposition 1.6, C(R) = R".

Thus if R is not a Pi-ring, H cannot be abelian and hence 5 cannot be commutative.
In this case it follows from [5] that every prime of 5 of height 2 or more meets C(5) and
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hence C(R). Suppose PeSpecR with htR(P)^2 and let peSpecS with PnS = \)a.
Then htsp = htRP 5= 2 ([10, 16.8]) so that p n C(5) # 0 . Now pG is the product of a finite
number of G-conjugates of p, each of which must also meet C(5), since C(5) is G-stable.
Thus p c f l C ( 5 ) # 0 , so that PnC(S)=£0 and hence P(1C(R)¥=0, so that PRC(R) =

Rc(R)- Thus all maximal ideals of Rc have height one and so Rc has classical Krull
dimension 1. Since all of the maximal ideals of Rc are principal, and hence invertible, Rc

is an Asano order (see [8, 5.2.6]); in an Asano order multiplication of ideals is
commutative and every two-sided ideal is a unique product of maximal ideals ([8, §5.2]).
Thus every two-sided ideal of Rc is a product of principal ideals, and so is principal.

3. Proof of Theorem 2.1.

3.1. If A is a commutative Noetherian UFD and G is a polycyclic-by-finite group
then K. A. Brown ([1] and [1']) has given necessary and sufficient conditions for the
group ring AC to be a Noetherian UFD or UFR: we will use these results to prove
Theorem 2.1. We must recall some notation and definitions before we can state these
results.

DEFINITION. Let G be a group. We denote the centre of G by Z{G). If S is a subset
of G then the centraliser of 5 (in G) is CG(S) = {x e G : s" = s Vs e S}, and the normaliser
of S (in G) is NG(5) = {x e G : 5A c S } . The f.c. (finite conjugate) subgroup of G is
A(G) = {x e G : [G : CG(JC)] < <*>} = {x e G : \{x8 : g e G}\ < °°}, and A+(G) = {x s A(G):

o(jt)<°°}, where o(x) = inf{/c > 0 : xk = 1} is the order of x e G. A subset 5 of G is
orbital if \{Sg : g e G}\ <°°. It is not hard to show that the obvious map between
{Ss:geG} and {gNG(S): g e G} is a bijection, so that 5 is orbital if and only if
[G:Nc(5)]<oo.

Now suppose that G is a polycyclic-by-finite group. A plinth of G is a torsionfree
abelian orbital subgroup B=sG such that 5®2Q> is an irreducible QT-module for all
subgroups T of Nfi(fl) with [No(fl): 7i<oo. A plinth B is centric if [G : CC(B)]<<*>,
otherwise is is eccentric. The group G is dihedral free if it contains no orbital subgroup
isomorphic to the infinite dihedral group D = (a, b : a2 = 1, b" = b'1).

In 3.2 and 3.3 we assume that A is a commutative Noetherian ring and G is a
polycyclic-by-finite group.

3.2. THEOREM ([1, Theorem E], [1', Theorem E']). If A is a UFD then AG is a UFD
if and only if (i) G is torsionfree, (ii) G/A(G) is torsionfree, and (iii) all plinths of G are
central (i.e. contained in Z(G)).

3.3. THEOREM ([1, Theorem D]). If A is a UFD then AG is a UFR if and only if (i)
A+(G) = 1, (ii) G is dihedral free, and (iii) every plinth of G is centric.

3.4. Now suppose that G is a polycyclic-by-finite group such that AG is a UFR: to
prove Theorem 2.1 we must find a normal subgroup H of finite index in G such that H
satisfies the conditions (i), (ii) and (iii) of Theorem 3.2. The next few results will prepare
us for this.

LEMMA. Let G be a group. If H^G and [G ://]<«> then A(H) = A(G)HH. In
particular, if A(G)^H^G then A(H) = A(G).

https://doi.org/10.1017/S0017089500030676 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030676


POLYCYCLIC GROUP RINGS 143

Proof. It is clear that A(G) C\H c A(H), for if an element xeH has only finitely
many G-conjugates then it certainly has only finitely many //-conjugates. Conversely, if
xeA(H) then [H : CH{x)] < °°, so that [G : CH(x)] <<*>. Hence [G : CG(x)] < «>, so
jceA(G).

3.5. PROPOSITION. Le/ G be a poly cy die-by-finite group. If H is a normal subgroup of
finite index in G then every plinth of H is also a plinth of G.

Proof. This follows easily from the definition.

3.6. PROPOSITION. Let G be a polycyclic-by-finite group. Then G has a characteristic
poly-(infinite cyclic) subgroup E = E(G) of finite index such that E/A(E) is poly-(infinite
cyclic) and Z(E) = A(£) = A(G) f~l E.

Proof. It follows from [9, 10.2.5] that G has a characteristic poly-(infinite cyclic)
subgroup F of finite index in G. The subgroup F is torsionfree by [9, 10.2.4] and hence
A+(F) = 1: [9, 4.1.6] now shows that A(F) is a characteristic torsionfree abelian subgroup
of F, and hence of G. Also, A(F) is poly-(infinite cyclic) ([9, 10.2.4]) and hence is finitely
generated, say A(F) = (a,, . . . , an). Let K = CF(A(F)), which is characteristic in G since
F and A(F) are, and has finite index in G, since [G:F]<°°, K = f^{QF{ai): 1 =£/=£«}.
Now A(F)cK, so by Lemma 3.4 A(F) = A(K) 2 Z(K). By the definition of
K, A(F)cZ(/C), so

We have /(=£ F so that K is poly-(infinite cyclic) [9, 10.2.4] and K/A(K) is polycyclic-by-
finite. Applying [9, 10.2.5] to K/A(K) we obtain a subgroup E = E(G) which is
characteristic in K with A(K) c E, E/A{K) poly-(infinite cyclic) and [K/A(K): E/A(K)] =
[K :£]<«>. By Lemma 3.4 again, A(£) = A(K) = A(F). We have A(£) = A(K) =
A(K) n £ = Z(K) n £ c Z(£) s A(£), so

A(£) = Z(£) = A(/C) = Z(K) = A(F) = A(G) n £.

Now £ is poly-(infinite cyclic) (since it is a subgroup of K), is of finite index in C, and is
characteristic in G, as required.

3.7. The proof of Theorem 2.1.

THEOREM. Let A be a commutative Noetherian UFD and G a polycyclic-by-finite
group such that the group ring AG is a UFR. If we put H = £(G) then H < G, [G : //] < °°
and AH is a UFD.

Proof. Let H = E(G) and recall from Proposition 3.6 that H is a normal subgroup of
finite index in G such that Z{H) = A(H) = A(G) D H. We know that both H and H/A(H)
are poly-(infinite cyclic) and hence torsionfree. Thus by Theorem 3.2 it suffices to show
that all plinths of H are central.

Let B « H be a plinth of H; by Proposition 3.5, B is also a plinth of G, and since AG
is a UFR, B must be centric in G, i.e. [G: CG(B)]<oo. Now let beB; then
[H: C«(6)]« [H : CH(B)] = [H: CG(B) n tf ] <s [G : CC(B) n //] «s [G : Cc(fl)][G : / / ] < « .
Thus 6 e A(//) = Z(//), so B c Z(//) is central in //.

https://doi.org/10.1017/S0017089500030676 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030676


144 KENNETH W. MACKENZIE

REFERENCES

1. K. A. Brown, Height one primes of polycyclic group rings, J. London Math. Soc. (2) 32
(1985), 426-438.

1'. K. A. Brown, Corrigendum and addendum. Height one primes of polycyclic group rings,
J. London Math. Soc. (2) 38 (1988), 421-22.

2. A. W. Chatters, Noncommutative unique factorisation domains. Math. Proc. Cambridge
Philos. Soc. 95 (1984), 49-54.

3. A. W. Chatters, M. P. Gilchrist and D. Wilson, Unique factorisation rings, Proc.
Edinburgh Math. Soc. (2) 35 (1992), 255-269.

4. A. W. Chatters and D. A. Jordan, Noncommutative unique factorisation rings, J. London
Math. Soc. (2) 33 (1986), 22-32.

5. M. P. Gilchrist and M. K. Smith, Noncommutative UFDs are often PIDs, Math. Proc.
Cambridge Philos. Soc. 95 (1984), 417-419.

6. C. R. Hajarnavis and T. H. Lenagan, Localisation in Asano orders, J. Algebra 21 (1972),
441-449.

7. A. V. Jategaonkar, Localization in Noetherian rings, London Math. Soc. Lecture Note
Series 98 (Cambridge University Press, 1986).

8. J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings (Wiley-Interscience,
1987).

9. D. S. Passman, The algebraic structure of group rings (Wiley-Interscience, 1977), (Krieger,
1985).

10. D. S. Passman, Infinite crossed products (Academic Press, 1989).
11. P. F. Smith, Quotient rings of group rings, J. London Math. Soc. (2) 3 (1971), 645-660.

DEPARTMENT OF MATHEMATICS Present address:

UNIVERSITY OF EDINBURGH DEPARTMENT OF MATHEMATICS

JAMES CLERK MAXWELL BUILDING UNIVERSITY OF LIVERPOOL

KING'S BUILDINGS P.O. Box 147

MAYFIELD ROAD LIVERPOOL L69 3BX

EDINBURGH EH9 3JZ

https://doi.org/10.1017/S0017089500030676 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500030676

