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Abstract

Modern science’s ability to produce, store, and analyze big datasets is changing the way that
scientific research is practiced. Philosophers have only begun to comprehend the changed
nature of scientific reasoning in this age of “big data.” We analyze data-focused practices in
biology and climate modeling, identifying distinct species of data-centric science:
phenomena-laden in biology and phenomena-agnostic in climate modeling, each better
suited for its own domain of application, though each entail trade-offs. We argue that
data-centric practices in science are not monolithic because the opportunities and challenges
presented by big data vary across scientific domains.

1. Introduction
Modern science’s ability to produce, store, and analyze big datasets is changing the
way that scientific research is practiced (Anderson 2008; Boyd and Crawford 2012;
Mayer-Schönberger and Cukier 2013; Harford 2014; Kitchin 2014). In light of these
changes, philosophers have sought to better comprehend the nature of scientific
reasoning in this age of “big data” (Floridi 2012; Leonelli 2012; Pietsch 2015;
Pietsch 2016). Notable among these attempts is Sabina Leonelli’s (2016) book-length
treatment of data-centrism in model organism research, which addresses the “gaping
hole” in our collective understanding of data’s methodological role within the prac-
tice of contemporary science (Leonelli 2016, 198).

Data-centric sciences, as Leonelli defines them, are those that prioritize the
production and dissemination of data to enhance data’s evidentiary value. Leonelli
builds this notion of data-centric science through an analysis of model organism
research that traces the paths that data “travel” from their original location of

© The Author(s), 2022. Published by Cambridge University Press on behalf of the Philosophy of Science Association. This
is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided
the original article is properly cited.

Philosophy of Science (2022), 89, 802–823
doi:10.1017/psa.2021.50

https://doi.org/10.1017/psa.2021.50 Published online by Cambridge University Press

mailto:ealloyd@indiana.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/psa.2021.50
https://doi.org/10.1017/psa.2021.50


production to other applications. Central to data-centric model organism research are
databases organized using sophisticated labeling systems, which are a way of pack-
aging data for greater travel amongst different but related research contexts.
However, the success of these databases has both social and epistemic consequences:
As databases become standard tools for research, they begin to function as a filter,
allowing certain kinds of data to travel to certain places, but also restricting data jour-
neys based on location or kind of data. Particular kinds of data, such as genetic or
behavioral data, may consequently become preferred in an area of research, or data
may only flow to and from researchers of certain kinds, such as genomicists or phylo-
geneticists, marginalizing some research and social groups while rewarding others.

To what extent such sophisticated database structures and the consequences of
their use are constitutive of data-centric science is an open question. To help address
it, we analyze data management and dissemination in a different area of research:
regional climate modeling. We extend our analysis to a feature that we claim is crucial
for understanding data-centrism—the information architectures underlying data-
bases—revealing that data-centric sciences can come in at least two forms, one of
which avoids the use of sophisticated labeling systems and the potentially pernicious
consequences that they bring. These two forms of data-centric practice advance
different epistemic goals and employ different methods to do so. They are dissimilar
in the extent to which the information architectures employed are “phenomena-
laden.” Phenomena-laden data architectures organize data, typically in relational
databases, by appealing to the stable entities and processes that are widely recognized
by practitioners in an area of research. We demonstrate that data-centric science
can proceed without appeal to phenomena-laden information architectures.
However, this alternate approach may have trade-offs: While likely to avoid unin-
tended—and potentially pernicious—effects on research downstream, it also may
limit the value of data for certain classes of users. We refer to these approaches
as “phenomena-laden data-centrism” and “phenomena-agnostic data-centrism.”1

We develop this argument in several steps. In Section 2, we explore the origins and
nature of large datasets within climate science and model organism research.
We briefly explicate Leonelli’s framework for analyzing data and its value in
Section 3. In Section 4, we show that there are notable differences between data jour-
neys in the two fields resulting from the way the data is stored, managed, and dissem-
inated. In Section 5, we argue that these differences reflect two distinct approaches to
data-centrism, while in Section 6 we analyze the trade-offs apparent in each
approach. We examine how the introduction of machine learning (ML) algorithms
may compromise certain advantages in section seven before offering a brief
conclusion.

2. Data and its origins in climate science and model organism research
“Big data” describes data that has certain characteristics, for example, large volume,
velocity, or variety, typically analyzed using certain tools, for example, ML or artifi-
cial intelligence (AI) (Knüsel et al. 2019). We adopt Leonelli’s notion of data as the
material and informational outputs of research that serve as evidence for knowledge

1 We thank an anonymous referee for suggesting “phenomena-agnostic” as a descriptive term.

Philosophy of Science 803

https://doi.org/10.1017/psa.2021.50 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2021.50


claims. “Volume” is the size of the data, often discussed in terms of the computer
storage memory required to hold it. “Velocity” is the speed at which the data must
be processed, and “variety” the extent of heterogeneity of data with which a field or
investigation might deal. “Large” is typically cashed out operationally, that is, when
challenges for effective use of the data are encountered and new strategies must be
developed. Through this lens, aspects of both regional climate modeling and model
organism research qualify as “big data.” As we will see, model organism research must
overcome challenges related to high velocity and especially variety, whereas regional
climate modeling primarily faces challenges of massive volume.

Data-centrism is developed as a counterpoint to narratives that portray big data as
revolutionizing science, perhaps even bringing about the “end of theory” (Anderson
2008). Rather than viewing big data approaches as constituting the rise of a new data-
driven mode of research (a mode that has arguably long been present to some
degree), data-centrism views big data as making salient a different innovation: the
newfound attention given to data management and dissemination practices.
Leonelli associates data-centrism with an approach to science that prioritizes efforts
to gather, mobilize, integrate, and visualize data (2016, chap. 1). In this mode of
science, data management and dissemination are considered valuable scientific prac-
tices even if they do not directly contribute to the development of theory. Both model
organism research and regional climate modeling constitute data-centric science on
this view.

Regional climate modeling is a specific way of producing data within climate
science research. Climate science is the investigation of the Earth’s climate system
to understand how processes generate a region’s climate and to project how that
climate may change in the future. While climate science is often associated with
geoscience or geology, it also draws on chemistry, biology, oceanography, ecology,
physics, and meteorology, among others. This research involves analyzing data that
are taken to represent a variety of aspects of the climate, including air temperature,
wind speed and direction, water vapor, pressure, precipitation, cloud properties, radi-
ation budget, and atmospheric composition (e.g., CO2, CH4, Ozone).

Climate models are mathematical equations representing how the climate evolves
over time. In such models, a representation of the Earth is often divided into a three-
dimensional grid, and, at each time-step, the values of the variables in each grid-cell
are updated based on their present value and that of their neighbors in accordance
with the model’s equations. A computer algorithm specifies how solutions to these
equations should be estimated, and the process iterates, with the results of one
time-step serving as the starting conditions for the next time-step. The outputs from
climate models are large arrays of numbers, where each value in the array corre-
sponds to the value of a given variable (or “field”) over some discrete chunk of space
and time determined by its position in the array. Modelers run climate models to
generate a record of the evolving state of the simulated Earth system. One important
use of these models is to create projections of future climate that provide insight into
climatic changes for which adaptation planning may be required.

Regional climate models (RCMs), the source of data we focus on in this article, are
specifically designed for regional-scale analyses, which separates them from global
climate models (or “general circulation models” [GCMs]), their more well-known
counterparts. GCMs, as the name implies, are global in scope and produce results that
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span the planet. To remain computationally tractable, the spatial and temporal scales
they use to represent the Earth are somewhat coarse. RCMs offer more finely resolved
results for particular regions. These models “dynamically downscale” the results of
GCMs by representing a region of interest with a tighter spatial grid and using shorter
time-steps. They can thus better represent smaller-scale processes relevant to the
variables being computed that are difficult or impossible to capture with a GCM.
The results of GCMs provide boundary conditions for the region of interest examined
by the RCM. One can think of an RCM as embedded in a GCM and used to zoom in on a
specific region.

In an effort to examine uncertainties, climate scientists try to avoid relying on a
single model run; climate models are usually deployed as parts of ensembles
containing many runs of the same or different models. For example, climate models
are chaotic and thus sensitive to changes in the initial conditions. Scientists explore
this uncertainty by running many simulations of the same model with slightly altered
initial conditions to determine how sensitive that model’s results are to these
changes.2 In the case of RCMs, one can similarly explore uncertainties arising from
different boundary conditions by downscaling different GCMs. This use of ensembles
significantly enlarges the volume of data produced.

The data gathered in model organism research—the icon of big data in biology—
vary in kind. Sequencing projects, for example, generate large quantities of data on
model organisms that specify the order of DNA nucleotides, or bases, in a genome.
Presently available sequencing data covers a wide variety of model organisms,
including bacteria (e.g., Echerichia coli), plants (e.g., Arabidopsis thaliana), and animals
(e.g., Danio rerio, or zebrafish), as well as humans, though humans are not “model
organisms.” These sequences are often produced by automated means, such as
DNA sequencing machines, and often without connection to specific research
questions.

Sequencing data, on its own, is not very useful (Lloyd 1994). For example, one
cannot identify a gene straight from sequencing data. Thus, making sequencing data
valuable requires connecting it to other high-velocity types of data regarding subcel-
lular biology. Leonelli refers to this kind of data colloquially as “omics” data: metab-
olomics (metabolite behavior), transcriptomics (gene expression), and proteomics
(protein functions and structures). The objects that make up the data across these
areas of interest vary, and include photographs, measurements, specimens, observa-
tions from experiments or the field, and statistical surveys. The goal of gathering and
amalgamating this variety of data is to enhance scientific understandings of organ-
isms as a whole, including advancing knowledge of evolutionary processes, environ-
mental impacts, and immune system responses.

One point of similarity between data generated by RCMs and by model organism
biology is that both are used by multiple stakeholder groups. For climate model data,
the primary stakeholders are often climate science researchers—some of whom are
downstream and reliant on model data—but others include researchers in other
related fields, government regulators, and policy makers. Regional model data is

2 Similar procedures can be used to examine parameter uncertainty by varying parameter schemes,
and, to a certain extent, different GCMs in a “multimodel ensemble” can be employed to examine uncer-
tainty arising from different model structures.
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increasingly being used by local decision makers for infrastructure and emergency
planning. This is not unlike the cases Leonelli examines: Biological researchers,
including pharmaceutical companies, and public health organizations, are the
primary stakeholders, with private companies like 23andMe becoming increasingly
interested in the data.

These descriptions help demonstrate why both regional climate modeling and
model organism research might embrace data-centrism’s focus on data as a scientific
goal, rather than as just a means to develop theory. However, there is further
evidence that these disciplines prioritize the gathering, mobilization, integration,
and visualization of data. Model organism researchers have automated means of
producing data that are disconnected from concerns regarding theory testing.
They also, as we will see, place a high value on, and reward, data integration.
Along the same lines, the data produced by regional climate modeling studies are
distributed broadly and used for purposes beyond those imagined by their original
producers. Often, they are used for more than theoretical insight, for example, by
creating climate projections to support future planning. Regional climate modelers
also have developed suites of visualization tools (Rendfrey, Bukovsky, and
McGinnis 2018) and—demonstrating a focus on data management—have imple-
mented digital object identifiers so that those creating datasets or visualization tools
can receive professional credit for their work. Having established that, like model
organism research, regional climate modeling constitutes a data-centric area of
research, we now turn to analyzing the character of the data-centrism that regional
climate modeling displays.

3. A framework for data-centrism: Packaging for decontextualization
and recontextualization
To investigate the rise of data-centrism, Leonelli introduced, and she and others have
explored (Leonelli 2016; Leonelli and Tempini 2020), a conceptual framework featuring
data journeys as well as data decontextualization and recontextualization. Each component
of this framework helps analyze how the evidentiary value of data can be expanded.
“Data journeys” are the movement of data from their sites of production to other
similar or dissimilar sites of investigation. The ability for data to travel on a journey
is affected by several factors, including transmission speed, legal regulation, community
and disciplinary norms, and demand for the data. These factors encourage scientists to
package data in particular ways. Data packaging is essentially putting the data into a
form that would foreseeably decrease the “friction” data faces when it travels, making it
easier to produce, transfer, read, and utilize (Edwards 2010).

A packaging process might include storing data in a widely used file format, but
also may extend to ensure that data-handling practices abide by the relevant regu-
lations and that data are stored in a way that makes them accessible to relevant
researchers. Leonelli highlights the role of databases, and their ontologies, in this
packaging process. We join Leonelli in using the term “ontology” in the sense often
employed in computer science (Breitman, Casanova, and Trszkowski 2007), denoting a
set of categories with specified properties and relations linking the various categories
together. An ontology in this sense serves as a classificatory or labeling system that is
part of the structure, or information architecture, that organizes a database.
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Successful data packaging allows for efficient and accurate decontextualization
and recontextualization. Decontextualization is the process of disconnecting data,
temporarily, from its origin. The whole point of decontextualization, Leonelli claims,
is to strip data of as many qualifications as possible. By stripping data bare—taking
away the significance the data had in its original context by relegating, for example,
its method of production, precision, or uncertainty, to metadata—the data can be
more easily categorized and searched within a database, helping users to find poten-
tially useful data.

Recontextualization is the process of discovering potentially relevant data and
assessing whether they could serve as evidence in a new context. Recontextualization
involves researchers querying or exploring the ontological relations in a database to find
potentially relevant decontextualized data and then investigating the provenance of that
data through the associated metadata. Researchers thereby assess whether the data can
be situated within a new context to serve as evidence; if it can, this data is considered
recontextualized. Importantly, it is the successful packaging of data and its ability to be
recontextualized in different contexts that permits data to gain epistemic value: The
value of data as an epistemic object is enhanced when it can be situated as evidence
within multiple investigative contexts.

4. Information architecture and decontextualization
To compare data-centric practices between model organism biology and regional
climate modeling, we extend the level of analysis from Leonelli’s examination of
the role of databases in data journeys down to the details of the information
architectures underlying the databases. We use “database,” as is typical in informa-
tion science, as a general term encompassing any organized collection of data.
The information architecture, more properly the “data model,”3 organizes the
elements of data and specifies how they relate to one another and to the properties
of real-world objects or concepts. The choice of architecture thus significantly influ-
ences how data travels, how it can be searched and accessed, and, ultimately, the
objects and methods of investigation. Our contention is that this level of analysis
is necessary for effective disambiguation of species of data-centrism in science, as will
become apparent in the remainder of this article.

Model organism databases, like most business and government databases, are rela-
tional. Relational databases are effectively collections of tables of information related
to each other (see our author-created tables, Figures 1 and 2). The columns of each
table are referred to as “fields” (or “attributes”); rows are referred to as “records” (or
“tuples”).4

In normal practice, each table represents one type of entity or relation. We use the
term “entity” as it would be in computer science. In this sense, an entity can represent
an object type (e.g., chromosome or nucleotide) or a concept type (e.g., host gene
response or taxonomical class). Each record represents an instance of that entity,
each field (heading) represents an attribute or property of the entity type, and
the values in the cells represent the information about those properties for that

3 This IT term is analogous to Patrick Suppes’s “data model” in the semantic view of theories.
4 The records are n-tuples in the logical or mathematical sense, where n is the number of columns.
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instance. A unique key identifies each row—each row must have a different value for
that field,5 typically termed a “primary key.” For example, we may have a table for
genes (entity type) like the following, with “Gene ID” serving as primary key.

Tables are related to each other by including the primary key from one table as a
field in the other, where it functions as a “foreign key.” These relationships can be
one-to-one, one-to-many, or many-to-many.6

In Figure 3, “One” and “Many” describe the respective sides of the relation. Each
chromosome may appear in the genes table many times because for example chro-
mosome 1 contains around 3,000 genes. Likewise, we may have many sequences of a
particular gene in our collected samples. We can more succinctly provide a blueprint
for a relational database by listing the fields in each table and using lines and symbols
for relations in a “database diagram” (The Arabidopsis Information Resource [TAIR]
database [Phoenix Bionformatics Corporation 2021]; Figure 4).

Large relational databases with such sophisticated organization are not easy to
create or manage. Designing a relational database requires a great deal of thought
about which entity types need representation by tables and about the proper relation-
ships between tables. Furthermore, many fields—particularly those that are not

Figure 1. A database table.

Figure 2. A table for the entity type of genes.

5 The situation is not quite this simple. Typically, one field serves as the primary key, but there may be
more than one key or none at all, though the latter requires special circumstances, and there are various
types of keys (primary, alternate, super, composite, etc.). We direct curious readers to any of numerous
guides on the subject.

6 Databases often implement many-to-many relationships by creation of a resolving table. In the
resolving table, each record has fields for the primary keys of the resolved tables, which are thus foreign
keys in the resolving table, and a primary key value for that record in the resolving table. In this way, the
relationship becomes an entity.
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Figure 3. Relations between database tables.

Figure 4. The database (entity relationship) diagram for just the transposon portion of the TAIR
(The Arabidopsis Information Resource) Database (Huala et al. 2001). The list on the left displays other
portions of the database, most of which are far larger.
Source: https://www.arabidopsis.org/search/ERwin/Tair.htm.
Note: The precise relationships between the tables are indicated by the symbols at the end of the lines joining the tables.
The line with a short perpendicular line denotes “one,” and the circle with multiple lines denotes “zero or many.”
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quantitative—should accept only “valid codes,” which are predetermined categories
that collectively fully partition the relevant field. (These valid codes are examples of a
concept Leonelli calls “labels.”) Often users experience these valid codes as the
options in a drop-down box when searching for or inputting data; they are the only
acceptable choices of value for attributes that can be associated with that entity type.
To take a simplified example, if an entity type were “garden rose,” then each record
would be an instance of a particular type of garden rose, an attribute (i.e., field) might
be “color,” and the valid codes for it “red,” “white,” and “yellow.” Furthermore,
a protocol or rubric must be established for selecting appropriate entity types and
valid codes for the inputting of records into the database.

Choices made about the information architecture of the database and the proce-
dure(s) for inputting records into the database inform data decontextualization and
recontextualization. In model organism research, the organizing principles of the
information architecture makes heavy use of phenomena terms to aid in describing
the data independently from its source of production (Leonelli 2016). These
phenomena terms are typically represented in the data structures as not only entity
types or primary keys but also as the permissible valid codes for attributes.
Organizing around phenomena helps with decontextualization precisely because
phenomena are stable and repeatable features that do not depend on the idiosyncra-
sies of the data and its production (Bogen and Woodward 1988; Parker and Lusk
2019).7 Because phenomena are abstracted away from underlying data in this way,
they can be used to organize datasets to make them searchable without needing
to examine the context of data production—the primary goal of decontextualization.

We call databases organized in this way “phenomena-laden.” In using this term, we
are intentionally alluding to the phrase “theory-laden” that is so familiar to philos-
ophers of science. When one says that observation is theory-laden, one implies that
content of the theory is informing and perhaps classifying the way in which we inter-
pret observations. Observation, even if theory-laden, is not completely determined by
theory in all its aspects. Likewise, when we say that a database is phenomena-laden,
we imply that the information architecture reflects claims about phenomena that are
widely accepted. Nevertheless, the architecture is not completely determined by a
community’s knowledge of phenomena.

When examining the structuring of regional climate model data, a very different
picture emerges, one that lacks the phenomena-ladenness displayed in the architec-
ture of model organism databases. For ease of reference, we refer to this architecture
as phenomena-agnostic. The databases used in regional climate modeling are not
relational, but rather collections of “flat files,” or plain tables. In most cases, the

7 We are using the term “phenomena” roughly as introduced by Bogen and Woodward (1988): “events,
regularities, processes, etc. whose instances are uniform and uncomplicated enough to make them
susceptible to systematic prediction and explanation” (317). They attempted to avoid debates about
ontological classification by offering that, for their purposes, “anything which can play this role and
which has these general features can qualify as a phenomenon” (322). Phenomena function to pick
out stable scientific categories that are typically used to organize scientific ontologies. It is simply this
feature that does the work in our account, and we wish to remain agnostic about further debates
regarding phenomena in the literature.
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output is stored in a standard community-developed format (netCDF)8 that automat-
ically saves metadata about provenance (e.g., the model used, grid size, and other
important technical information).

One way to visualize this kind of data architecture (see Figure 5) is to consider a
workbook of tables, as is commonly used in spreadsheet programs, as a heuristic. In
practice, spreadsheet programs are not well-suited for analyzing climate model
outputs, in part because the data volumes are much too large, but the data structures
are conceptually similar. When representing the surface layer (of the Earth), for
example, the rows and columns of the workbook table would represent latitude and
longitude, so that each “cell” (location in the array) locates a unique spatial cube in
the simulation. Initially, the RCM generates one file per time-step, and each file contains
numerous sheets, each containing the values for one variable. The research teams rear-
range the initial outputs of simulations to create files representing single variables, such
as temperature, and each “sheet” in the file would then represent a single time-step.

The overall information architecture is therefore quite straightforward, and quite
different from the phenomena-laden relational databases used in model organism
research. In particular, the data are not classified into entity types with associated
attributes. This is because, whereas relational databases are organized around records
as instances of the entity type defined by the primary key, here there are no primary
keys and no records. Rather, each file constitutes a single variable, which is akin to a
field in the relational database. The (typically quantitative) values are distributed
throughout the “cells,” which are the unique intersections of latitude and longitude
for that time step. In short, each “cell” contains a single datum. This structure is opti-
mized for storing and making computations with data, rather than for instantiating
and being searchable in terms of phenomena.

RCM databases organized in this way obviously are not phenomena-laden. The
absence of phenomena as structural organizing principles reflects the relative lack

Figure 5. A heuristic to represent NetCDF architecture.

8 NetCDF, which was developed as a file format for sharing earth science data, stands for “network
common data form.” See https://www.unidata.ucar.edu/software/netcdf/docs/BestPractices.html.
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of decontextualization. Certain highly idiosyncratic features of the data are resolved
—replacing the spatial gridding that was most efficient for computation of the model
on a specific computer by one that is more geographically intuitive, for example.
Overall, though, the data made available to users in netCDF format preserves the
context of production of the data, and the storage structure more or less preserves
its form (organized by variable and spatio-temporal location). In the following
sections, we will discuss reasons why these ontologies and associated information
architectures are best situated for their respective scientific practices as well as asso-
ciated trade-offs. For now, we note that whereas model organism relational databases
contain decontextualized information, RCM output archives contain data effectively
still in context, so to speak.

However, the analysis of the two different approaches to data architecture
discussed in the preceding text are sufficient to demonstrate that the centrality of
phenomena-laden relational databases and their associated ontologies is not a
universal aspect of data-centric science. The data-packaging process—which influ-
ences the way data is decontextualized and recontextualized—differs significantly
between the model organism context and the regional climate model context.

5. Varieties of data-centrism: Phenomena-laden and phenomena-agnostic
These significant dissimilarities in the information architectures employed in model
organism research and RCMs suggest the existence of different varieties of data-
centrism, that is, distinct sets of practices that reflect the prioritization of data which
differ in epistemically significant ways. The information architectures, and the asso-
ciated practices linked with them, reflect the different challenges to effectively
producing, managing, disseminating, and making use of data in each case.

Big data in model organism biology features a high velocity and especially extensive
variety. Many research groups from many specializations are producing many datasets
that can be quite different from each other. The model organism research community is
“highly fragmented, encompassing a wide variety of epistemic cultures, practices, and
interests and multiple intersections with other fields” (Leonelli 2016, 4). In the past, the
flow of data was restricted so that it remained within siloed communities of interest.
Information that would be highly valuable to scientists beyond the area of production
was difficult for them to discover and thus underutilized. The prioritization of data in
model organism biology has been driven by technological advances that have enabled
various modes of useful integration (Leonelli 2016, chap. 6).

To promote data travel, data-centrism in model organism biology embraces data
decontextualization using the phenomena-laden relational databases discussed in the
preceding section. In such databases, data is “ontologized” through reference to
phenomena, noting relationships between phenomena, and providing a relatively
user-friendly database interface for identifying and downloading appropriate infor-
mation. Phenomena-terms (as primary keys) function as crucial organizing principles
for revealing to users large-scale and stable structures in the data, enhancing a user’s
ability to get an overview of potential connections between types of data. Because the
phenomena terms associated with primary keys typically reflect fundamental
concepts that would be familiar to many different kinds of researchers working in
a particular area, they are widely recognized, and even those unfamiliar with the
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motivations or techniques that produced the data categorized by that key can easily
browse through them. Such methods support data integration by allowing data to
travel further and among more researchers, thus enhancing its value.

As an example, consider the cross-species integration of research on Miscanthus
giganteus and Arabidopsis. The former is a plant of great interest because of its appli-
cations for biofuels but is too large to grow in a laboratory. The latter is
convenient to study and similar in important (genetic) respects to Miscanthus
giganteus and other plants of interest, and so has become a model organism.
The Arabidopsis Information Resource (TAIR) database (Phoenix Bionformatics
Corporation 2021; Huala et al. 2001) serves to disseminate information about it, which
can be recontextualized for Miscanthus. A Miscanthus researcher can enter “floral
organ formation” into the TAIR Keyword Search. The result provides a definition,
synonyms, a “treeview” showing how the phenomenon fits into a hierarchy with
other phenomena, and citations for data on it and “child” concepts (phenomena lower
in the hierarchy). (See Figure 6 displaying the search results and Figure 7 for the
“treeview” [TAIR 2021]). It is then straightforward to click on a publication in “data
associated to this term” and collect relevant datasets.

Access to such databases helps enhance the value of the data by decontextualizing
it in ways that enable it to travel and later be recontextualized by researchers inter-
ested in an entirely different organism.9 By using widely known phenomena terms to
categorize the data, researchers with disparate backgrounds are able to navigate the

Figure 6. Search results from the TAIR database.
Source: https://www.arabidopsis.org/servlets/TairObject?type=keyword&id=18869.

9 In addition to this cross-species integration, Leonelli also describes interlevel and translational (across
subfields) integration. See Leonelli (2016, sec. 6.1, particularly p. 143).
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data architecture. Synonyms are provided for users when it is known that various
communities refer to the same or similar phenomena using different expressions.
Furthermore, the database interface suggests paths for finding data that users might
have been unaware of when designing their original query, by, for example, pointing
toward similarly annotated genes from other organisms. This method of using
a relational database helps enhance the value of data across contexts.

Employing phenomena-laden databases for integration in this way promotes
certain methodological developments. Particularly important for our analysis is
the work performed by dedicated data curation teams. Data curators shoulder the
responsibility for the decisions surrounding database creation and management,
including their ontological structure and selection of data to include in the databases.
In model organism research, curators are generally professionals with strong back-
grounds in both biology—often a doctorate—and in information technology. They
typically work for consortia—often funded by organizations like the National
Science Foundation or National Institutes of Healths—established for the purpose
of managing and disseminating biological data donated by a myriad of researcher
groups. They do not engage in fundamental biology research, but rather they are
the key packagers of data for travel. These curators work with the community to
establish data standards and serve as gatekeepers that enforce and lead revisions
of those standards. In collaboration with the research communities they serve, cura-
tors choose the data architecture to be employed (e.g., the primary keys and valid
codes), the criteria by which submitted data will be judged for inclusion in the

Figure 7. A “treeview” from the TAIR database.
Source: https://www.arabidopsis.org/servlets/Search?action=new_tree&type=tree&tree_type=keyword&node_id
=18869.
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database, design the workflows to handle submitted data, and lead efforts to revise
the database architecture. In essence, data-centrism in this form aims to help enhance
the value of data across research contexts, relying on heavily curated relational data-
bases to do so. The curators address big data velocity by including in the databases
only data they consider valuable. They address big data variety by transforming
formats and metadata for increased consistency and especially by ontologizing the
data into phenomena that are meaningful for researchers across specialties.

The practices in regional climate modeling constitute a different variety of data-
centrism generated specifically in response to challenges arising from data volume;
neither velocity nor variety are of primary concern. There are very few producers
of regional climate-model data because of the computational requirements for
producing such data; a supercomputer with massive storage capabilities is practically
essential. Datasets are thus a relatively rare commodity. Such datasets are also rela-
tively low in variety, due to the standardized netCDF format used for data management,
the relatively consistent sets of variables of interest, and the similarity amongst models.

While scientists in a variety of subspecialties use RCM output datasets in down-
stream research activities, sometimes beyond those envisioned by the modelers, that
variety—in the scientific users and uses rather than the data—also does not end up
posing a significant challenge for use of big data.10 The broad community of climate
scientists is more epistemically unified (than that of biologists) in an important sense:
their training, background knowledge, methods, objects of study, and so on, are similar
enough to provide sufficient epistemic cohesion to alleviate the need for extensive
decontextualization.11 Climate scientists who are not modelers understand RCMs
and their output to a level needed to identify relevance, evaluate provenance, acquire,
and make use of output datasets in the context of their production, without curators
identifying phenomena.12 For example, consider the Navier–Stokes equations: Virtually
every climate scientist knows the role they play in climate models, whereas there really
is no comparable law grounding data-intensive model organism research. While
modelers may occasionally worry about how nuanced some downstream researchers’
appreciation of details may be, the ecosystem of climate science research functions
successfully in this manner (Edwards 2010), reinforcing that specializations in climate
science are not as epistemically disparate as those in biology.

Phenomena-agnostic data-centrism therefore seeks to overcome challenges
regarding data volume when packaging data to ensure its travel. The general

10 The variety of uses by nonexperts is considered in section 6.
11 One might wonder if the relative lack of decontextualization and recontextualization marks these

practices as something other than data-centric—just “plain old” production of data in the course of
traditional scientific priorities. In addition to publishing articles articulating their own research conclu-
sions, regional climate modeling teams, as mentioned as justification for data-centrism in section 2,
prioritize the production, packaging, and dissemination of massive volumes of experimental data for
use by subsequent researchers (as well as some nonexpert users). This focus on data as a goal rather than
as just a means indicates that these practices are data-centric.

12 In biology, researchers across specializations, lacking familiarity with many contexts of data
production, work with curators to develop definitions of phenomena to create enough common under-
standing (at that level) to facilitate sharing information with each other. Curational identification of
phenomena is essential to decontextualization. Climate scientists do not go through this process because
they have their common understanding at the level of (phenomena-agnostic) data in context. Instead,
they collaborate on standards for data file formats, such as netCDF.
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strategies are to divide, parse, and limit data—as well as distribute labor—for effi-
cient data distribution. These strategies lead to “lean” information architectures and
efficient data management tools that facilitate storage, processing, and dissemination
of massive files. Simply saving the files requires extensive storage space and manipu-
lating and editing them during the packaging process is computationally expensive.

The information architecture employed in packaging RCM data—as exemplified by
the netCDF framework—helps minimize storage requirements and maintain computa-
tional tractability, even when compared to the data architectures deployed in model
organism research. The netCDF framework consists of simple arrays of values, with
each element in each array standing alone. This simplicity stands in contrast to rela-
tional databases, like those used by the bio-ontologies, which are organized into records
(the rows in tables) with the columns linked together (as an n-tuple by record) and
additional relationships between tables. In a relational database system, referential
integrity must be maintained when a record’s value is changed. Such a change prompts
cascading alterations that update other dependent values and ensure references to the
changed object remain consistent. Such computational complexity is avoided with
netCDF because there is no referential integrity to maintain. The format simplifies
the database management actions needed when working with data, which helps main-
tain computational tractability. A relational database likewise must store not only the
data but also additional information about relationships, valid codes, and so forth,
multiplying the size of stores. This is unnecessary in the netCDF framework. The
methods of data handling, afforded by netCDF, help further the goal of making the bulky
datasets from regional climate modeling packageable for travel.

Beyond the information architecture, various methods are employed to help
ameliorate the difficulties with large data volumes when packaging and disseminating
data. While the RCMs run with relatively fine-grained time-steps, only certain vari-
ables are made available at these fine resolutions; for most variables only daily and
longer time resolutions are published. Likewise, climate scientists have decided to
only publish datasets for certain variables, with publication of some variables depen-
dent on resources. For example, the NA-CORDEX13 archive categorizes variables into
tiers as essential (always archived), high priority (archived if at all possible), and aspi-
rational (archived if time and resources allow) (McGinnis, Mearns, and Gutowski 2016).
The data archives often provide a feature that allows users to “subset” the data to a
region of interest,14 as well as selecting only variables of interest. In this way, users
can reduce volumes to a level where they can download and work with the files.

13 NA-CORDEX stands for the North American component of the Coordinated Regional Downscaling
Experiment.

14 Selection of RCM output datasets by geographic region is not equivalent to selection of biology
datasets by phenomena; phenomena are not coming in through the back door. A developmental biologist
might select a genetic dataset because a curator indicated that it provides data about a gene with a
particular function, say that it helps regulate flowering. Selecting a subset of data by geographic region
is more akin to selecting a genetic dataset by the chromosomal location about which it provides data.
Subset regions have no representation in the data archive at all; they are defined by the user, typically in
the form of an arbitrary latitude-longitude bounding box. In the gene function case, the curator has
created meaning by association with a phenomenon; in the chromosomal and geographic location cases,
no such meaning has been imbued.
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The roles curators play and the methods they employ in the RCM context reflect
the concern over handling large data volumes and differ from those of curators in
model organism research. RCM curators are normally members of modeling groups,
not members of consortia working on dedicated data-curation projects. Their multi-
disciplinary backgrounds in science and information systems make them unique
members of these groups. Because data volume prohibits these “data wranglers” from
postprocessing data in commercial software tools, they must be able to write
programs in low-resource languages, such as R or Python. Bias correction requires
serious data science chops, too. Moving RCM output datasets to a centralized location
and processing them en masse would be costly in terms of computational and
network requirements due to data volume. It is also advantageous for data curators
to have access to detailed knowledge of the model when postprocessing the data, for
example in helping them understand the original grid system, which may be idiosyn-
cratic, or having a feel for model biases to correct. For these reasons, regional
modeling groups have incentives to hire or develop in-house data curators who
prepare and publish their team’s data rather than relying on third parties to compile
and integrate data from multiple contributors.

The general approach to phenomena-agnostic data-centrism found in RCM
research is to eschew, rather than embrace, decontextualization. Curators do not
organize data in terms of phenomena. To do so is likely to be unwieldy, unnecessary,
and add to the already significant computational costs. Thus, data are preserved in a
formmuch closer to the context of their production as they travel, which makes sense
given the goal is distribution of massive datasets within an ecosystem of researchers
with overlapping expertise. Not only can users identify phenomena of interest using
criteria relevant for their work but also curators could not possibly do so for many of
the applications RCM data serves. Identifying hurricanes, for example, requires visu-
alizing the data and looking at it play out over time, a labor-intensive process. This
lack of concern for decontextualization is reflected in the organization of curatorial
practices in regional climate modeling: Rather than installed as part of a dedicated
team, data curators are often individuals that support groups of climate modelers.
That the identification of phenomena within data is left almost entirely to end users
is one noteworthy aspect in which work is distributed in this form of data-centrism.
The goal in this form of data-centrism, which is supported by the chosen information
architecture, is one of providing phenomena-agnostic data in context, not decontex-
tualizing it by recourse to phenomena.

6. Trade-offs of the varieties of data-centrism
While they are each suited to the circumstances in which they are deployed, there are
trade-offs involved in implementing either form of data-centrism. In particular, the
extensive decontextualization that makes the phenomena-laden approach useful for
researchers working across contexts also has downstream impacts that are some-
times disadvantageous. The lack of decontextualization in phenomena-agnostic
data-centrism helps the approach avoid these potentially pernicious downstream
impacts, but it also may prevent data from traveling to and being recontextualized
by certain interested stakeholders.
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The complexities of managing large relational databases with extensive
phenomena-laden ontologies seemingly promotes a centralization of data manage-
ment, as is noted in model organism research (Leonelli 2009, 2016, chap. 2). Not only
does this centralization tend to result in dedicated teams of curators that specialize in
data management—creating an efficient division of scientific labor—but it also
promotes cooperation between various stakeholders, including academia, govern-
ment agencies, and industry. This cooperation is important in model organism
research in light of the special properties that bio-data can have. The commodifica-
tion and enormous resulting financial value of model organism data, for example, in
biomedicine or biofuel development, introduces intellectual property issues.
Additionally, some data used in model organism research comes with privacy
concerns, such as medical datasets containing protected health information or other
forms of personally identifiable information. The centralization of databases that
store this data helps implement uniform data-handling procedures that accord with
the relevant regulations adhered to by various stakeholders.

But the success of phenomena-laden data-centrism does not come without its
problems. As Leonelli (2016, chap. 6) details, database architecture and management
practices can have downstream consequences that might be viewed as pernicious. For
example, data that is not easily machine-readable is laborious to integrate into a large
relational data architecture and thus is often excluded from databases all together.
This creates a preference for a certain kind of data, and marginalizes researchers
working with certain methods of analysis or outside the omics fields (e.g., DNA,
RNA, and protein sequence databases). Analyses that focus on photos, films, field
notes, focal animal observation data, or whole animal morphology and physiology
are already being sidelined as databases become a dominant research tool.

These are not the only problems that may result from phenomena-laden data-
centrism. The standards for data inclusion in a database may be articulated in ways
that exclude the work of laboratories that lack adequate funding, particularly those in
the Global South, further marginalizing some already marginalized research teams.
Furthermore, as databases become the standard tool for organizing information,
scientists become reliant on research methods that are promoted by database use
at the expense of developing new methods. As Leonelli explains, “Such unequal
participation in data journeys has epistemologically significant implications.
Perhaps the most important of those is that online data collections tend to be
extremely partial in the data that they include and package for travel” (Leonelli
2016, 163). In short, the success of phenomena-laden data centrism may reduce
epistemic pluralism while promoting a kind of scientific conservatism and bias.

One advantage of phenomena-agnostic data-centrism is that it does not seem to
promote these pernicious downstream effects. Because the extent of decontextuali-
zation is minimal, phenomena-agnostic data-centrism does not face the myriad of
decisions required to ontologize data to promote information integration. Thus,
the management of data, or the packaging of large datasets in an economical way,
can be distributed among various research groups. This allows a kind of flexibility.
In regional climate modeling, the netCDF architecture can be used by anyone; it is
not a resource with a gatekeeper who enforces standards for access or admission.
It is unclear how the netCDF data architecture and the decisions made in its
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administration could be used in exclusionary ways; the pernicious downstream effects
are seemingly minimal.

However, because phenomena-agnostic data-centrism minimizes decontextualiza-
tion and assumes a high level of knowledge among its users, certain stakeholders face
difficult hurdles when utilizing data. An example is that nonexpert users, when they
successfully access data, often fail to properly interpret models, believing that output
values are forecasts (predictions) rather than projections, or worse, that there is a
single “right” model. More concretely, a city planner might desire to know the exact
number of days the city will experience more than 90°F twenty years in the future, for
example, and might access model data assuming it can give them that information.
RCMs today cannot provide such precise predictions; rather they give ranges of values
that support only inferences about means and trends. Even less-savvy users face other
problems: Despite being freely available, the relative simplicity of RCM data archives
may result in novice users struggling to search for relevant datasets and accessing the
necessary meta-information to properly interpret what they find. Climate data, in
part because its ontology and structure are not focused on integration across a
diverse community, has less epistemic value for certain untrained users.

That certain stakeholders might struggle to use data can be seen as a shortcoming
of phenomena-agnostic data-centrism: The lack of integration puts some users at a
disadvantage. For example, climate scientists recognize that particular stakeholders
may struggle to access and properly use climate data; this “usability gap”
(Lemos, Kirchhoff, and Ramprasad 2012) has led to the emergence of a subdiscipline
called “climate services.” Climate service providers aim to work with certain
stakeholders—often decision makers—to tailor climate data—often from RCMs—
to the users’ needs (Parker and Lusk 2019; Lusk 2020). They thereby recontextualize
data for a particular stakeholder problem on a case-by-case basis. Part of the work of
these specialists may be using the data to identify and quantify phenomena, for
example, droughts, for which stakeholders need to plan. Some of the work that is
done by curators on phenomena-laden approaches may still need to be performed,
but that work is divided and accomplished piecemeal under the phenomena-agnostic
approach. The path data need to travel to become useful for certain stakeholder proj-
ects might be significantly longer under phenomena-agnostic data-centrism. While
each variety of data-centrism demonstrates a scientific focus on data management,
the reasons for this focus, and the resulting paths of data travel, are significantly
different.

7. Prescriptive recommendations for identifying phenomena in climate data
Data-centric practices are evolving as some tools for data analysis, such as ML and AI,
become more useful. In this section, we detail a new concern for phenomena-agnostic
data-centrism that it had thus far largely avoided, in contrast to the phenomena-
laden variety, but which arises from this quite different cause.

Leonelli maps out some risks of the influence of certain groups, individuals, and
institutions to determine the field’s ontologies, categories, and theories. These frame-
works serve to organize big data and thus determine much about downstream
research. On Leonelli’s account, in biology, these downstream researchers, who are
typically other biologists, are often tightly restricted by those ontologies in their
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investigations into nature, steered only down certain pathways, and forbidden down
others, with some negative effects on both the science and its overall fairness, as we
discussed in the preceding text. Biologists have conferences and workshops to get
users, theoreticians, and curators all together to discuss the ontologies, to both spread
the word and mitigate any harms that might arise from them. Nevertheless, there are
significant risks that remain, argues Leonelli.

A possible parallel risk applies to data-centrism in climate science, especially in
analysis of climate model outputs. Clearly, the outputs of numerical experiments
are rather different from the outputs of biological experiments. And currently, data
managers and curators of, for example, regional model outputs are not in the habit of
imposing much ontology, classification, or interpretation, that is, identifying
phenomena and events within the dataset, and so forth, on their output data beyond
the identification of variables, parameters, and parameterizations, as well as key
instructions to make sense of the model output.

In other words, if a downstream user of the data wants to know what the atmo-
spheric rivers are doing, or how many hurricanes occurred in the history of the
system over a span of time, the user must identify phenomena in the data; the data
curators do not define them. Thus, data curators are doing little of the sort of onto-
logizing that Leonelli has defined as socially, politically, or scientifically risky and
biased or partial.

But there are potential risks bearing down on climate science in the future. As big
data tools are developed and implemented, and it becomes easier to pick out entities
and define ontologies through AI and ML, there will be ever-increasing risk of
imposing just the kinds of error, bias, and partiality warned against by Leonelli in
the biological setting.

For instance, take the recent developments and advancements in the detection of
hurricanes from climate model data. ML algorithms are being developed to detect
hurricanes from climate model output, a much desired and valued goal of modelers
and end users.

Why is this change so desirable? Partly because it expands the evidential value of
data, because users with lower levels of training or lack of access to theoretical
models or tools can access the data and apply them to their own projects at the civic
or environmental project level. ML algorithms are advantageous in that such discov-
eries would reduce the time required to find these phenomena in the large datasets
climate models produce, in some cases dramatically. One does not have to take the
time to find the events of interest, one can just leap ahead to asking questions about
those events.

We can picture automated identification of heat waves, droughts, and atmospheric
rivers in climate model outputs as ML is adopted in climate science. But taking note
from Leonelli’s analysis, that ease comes with risks: Who will define the parameters of
what counts as a drought, heat wave, or atmospheric river? Which datasets will be
used to train the algorithms, and what consequences does that have for real-world
applications? It makes a difference whether an algorithm comes up with a heat wave,
drought, or atmospheric river in a particular context or contexts, especially for adap-
tation purposes. There is also the problem of users taking some of the models at face
value; they might not present an accurate or good representation of surface rainfall,
but the user sees such representation as “realistic,” and takes it as such.
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Taking responsibility for mitigating the scientific, social, and political risks and
trade-offs, detailed in the preceding text, that might be associated with faulty or
biased definitions of climate phenomena falls with the community that is building
the big data processing plus its users, both professional and downstream. In general,
it would seem that the more centralized and standardized the organization of data
using phenomena is, the greater the chance that potentially valuable minority views
or practices may be excluded from the research conversation. Centralization and
standardization, however, may also afford additional efficiencies. A more distributed
and egalitarian approach to phenomena identification might bring epistemic advan-
tages associated with a diversity of views, but it may not be as efficient and possibly
could result in confusion or inconsistency when results are presented.

The strategy in model organism research to address this problem was to convene
conferences and workshops to come to consensus on definitions (and synonyms) of
fundamental concepts that would be used in data ontologies (Leonelli 2016, chap. 1).
These conferences included users and institutional representatives to develop
responsible, responsive ontologies and working definitions that can periodically be
reviewed and updated as needed. We applaud this kind of effort, and a similar level
of inclusiveness should characterize efforts in regional climate modeling.

The Atmospheric River Tracking Model Inter-comparison Project (ARTMIP), coor-
ganized by researchers at NCAR (National Center for Atmospheric Research) and
NOAA (National Oceanic and Atmospheric Administration) (UCAR 2019), may be taken
as an exemplar of just the sort of thing we have in mind. It might be that a variety of
definitions should be used and tested in a variety of settings, using a variety of tech-
niques or algorithms, before a single standard is settled on; it will be important to
ensure that the training data is available to the users for these purposes. These
are issues that could be discussed at length at the planning workshops. What is most
urgent is vigilance and awareness concerning these various risks, and an avoidance of
a naïve and “gee whiz” or “Wild West” approach to big data processing, AI, and ML,
despite its power—or rather, because of it.

8. Conclusion
The dominant narrative about big data is that it represents a new step in the evolu-
tion of science. Though there is nothing new about a concern for data in science, new
tools and capabilities have increased the value of data and made data-centric science
viable. But as we have shown, data-centrism is not monolithic.

Building on Leonelli’s framework, we argued that understanding how big data is
harnessed by science requires investigating the information architectures of systems
that organize, store, and disseminate data. Applying this method, we identified two
data-centric approaches—phenomena-laden and phenomena-agnostic—as distinct
species. This insight adds to our understanding of the role of phenomena in science:
In one species, categorizing the data in terms of phenomena helps it travel to new
contexts, while, in the other, phenomena are absent, and travel is catalyzed by other
means.

Each of these species of data-centrism entails trade-offs. On one hand, the
phenomena-laden approach requires curators to engage in extensive ontologizing
to decontextualize data. Diverse users can thus easily access information, but there
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is a risk that curators implicitly steer downstream research. On the other hand, users
are expected to search datasets in phenomena-agnostic approaches more directly,
relying on shared knowledge to select and apply them, including identifying
phenomena after dataset acquisition. Nonexpert users may struggle to employ data,
but the risks associated with the steering of downstream research are diminished.
Thus, the success of data-centric science, and who can easily utilize its products, is
heavily shaped by the data practices employed. There is no single “big data” or
“data-centrism,” and no single narrative to describe the expanded reliance on data
in science.

Varieties of data-centric science exist because the opportunities and challenges
presented by big data vary across scientific domains. Information architectures
and data-packaging practices designed for model organism biology, in which many
datasets are produced (velocity) with significant heterogeneity (variety), are not
optimal for regional climate modeling, in which there are few and relatively homog-
enous datasets each of massive scale (volume). Harnessing the advantages of big data
and facilitating the sharing of data needs to be done in domain-specific ways that
address the specific conditions that scientists and other stakeholders face.

Looking forward, we expect data-centric science to further evolve through
advancements in AI and ML. We briefly examined the potential use of these tools
in climate science, noting that the looming implementation of ML models for identi-
fying phenomena could introduce new vulnerabilities as well as capabilities and
suggested some amelioration strategies. We believe there is more work to be done
to understand the vulnerabilities of different forms of data-centrism and how they
can be overcome. The identification of distinct types of data-centrism is a step
forward in illuminating both the benefits and risks of big data in science.

Acknowledgments. This paper is based on research that was funded by the National Science
Foundation (NSF) Award Number 1754740: A Methodological Study of Big Data and Atmospheric
Science. We would also like to thank the National Center for Atmospheric Research [NCAR] Affiliate
Scientist program for their support. We would like to thank the Mearns research group at NCAR in
Boulder, Colorado for hosting us and contributing their space, time, and ideas. Thanks are also due
to Ryan O’Loughlin, research assistant on the project, the philosophers of science at Michigan State,
as well as Monica Morrison and Suzanne Kawamleh for their feedback.

References
Anderson, Chris. 2008. “The End of Theory: The Data Deluge Makes the Scientific Method Obsolete.”Wired

Magazine 16 (7). June 23, 2000. https://www.wired.com/2008/06/pb-theory/.
Bogen, James, and James Woodward. 1988. “Saving the Phenomena.” The Philosophical Review 97 (3):

303–52.
Boyd, Danah, and Kate Crawford. 2012. “Critical Questions for Big Data.” Information, Communication &

Society 15 (5):662–79.
Breitman, Karin Koogan, Marco Antonio Casanova, and Walter Trszkowski. 2007. “Ontology in Computer

Science.” In Semantic Web: Concepts, Technologies and Applications, 17–34. London: Springer-Verlag.
Edwards, Paul N. 2010. A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming.

Cambridge, MA: MIT Press.
Floridi, Luciano. 2012. “Big Data and Their Epistemological Challenge.” Philosophy & Technology 25 (4):

435–37.
Harford, Tim. 2014. “Big Data: A Big Mistake?” Significance 11 (5):14–19.
Huala, Eva, Allan Dickerman, Margarita Garcia-Hernandez, Danforth Weems, Lenore Reiser, Frank

LaFond, David Hanley et al. 2001. “The Arabidopsis Information Resource (TAIR): A Comprehensive

822 Elisabeth Lloyd et al.

https://doi.org/10.1017/psa.2021.50 Published online by Cambridge University Press

https://www.wired.com/2008/06/pb-theory/
https://doi.org/10.1017/psa.2021.50


Database and Web-Based Information Retrieval, Analysis, and Visualization System for a Model Plant.”
Nucleic Acids Research 29 (1):102–5.

Kitchin, Rob. 2014. The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences.
Thousand Oaks, CA: Sage Publications.

Knüsel, Benedikt, Marius Zumwald, Christoph Baumberger, Gertrude Hirsch Hadorn, Erich M. Fischer,
David N. Bresch, and Reto Knutti. 2019. “Applying Big Data beyond Small Problems in Climate
Research.” Nature Climate Change 9 (3):196–202.

Lemos, Maria Carmen, Christine J. Kirchhoff, and Vijay Ramprasad. 2012. “Narrowing the Climate
Information Usability Gap.” Nature Climate Change 2 (11):789–94.

Leonelli, Sabina. 2009. “Centralising Labels to Distribute Data: The Regulatory Role of
Genomic Consortia.” In The Handbook for Genetics and Society: Mapping the New Genomic Era,
edited by Paul Atkinson, Peter Glasner, and Margaret Lock, 469–85. London: Routledge.

Leonelli, Sabina. 2012. “Classificatory Theory in Data-Intensive Science: The Case of Open Biomedical
Ontologies.” International Studies in the Philosophy of Science 26 (1):47–65.

Leonelli, Sabina. 2016. Data-Centric Biology: A Philosophical Study. Chicago: University of Chicago Press.
Leonelli, Sabina, and Niccolo Tempini. 2020. Data Journeys in the Sciences. Cham: Springer.
Lloyd, Elisabeth A. 1994. “Normality and Variation: The Human Genome Project and the Ideal Human

Type.” In Are Genes Us? The Social Consequences of the New Genetics, edited by Carl Cranor, 199–212.
New Brunswick, NJ: Rutgers University Press.

Lusk, Greg. 2020. “Political Legitimacy in the Democratic View: The Case of Climate Services.” Philosophy
of Science 87 (5):991–1002.

Lusk, Greg. 2021. “Saving the Data.” British Journal for the Philosophy of Science 72 (1):277–98.
Mayer-Schönberger, Viktor, and Kenneth Cukier. 2013. Big Data: A Revolution That Will Transform How

We Live, Work, and Think. New York: Houghton Mifflin Harcourt Publishing Company.
McGinnis, Seth, Linda Mearns, and William Gutowski. 2016. NA-CORDEX. https://na-cordex.org/variable-

list.html.
Parker, Wendy, and Greg Lusk. 2019. “Incorporating User Values into Climate Services.” Bulletin of the

American Meteorological Society 100 (9):1643–50.
Phoenix Bionformatics Corporation. 2021. The Arabidopsis Information Resource. April 1. https://www.

arabidopsis.org/index.jsp.
Pietsch, Wolfgang. 2015. “Aspects of Theory-ladenness in Data-intensive Science.” Philosophy of Science 82

(5):905–16.
Pietsch, Wolfgang. 2016. “The Causal Nature of Modeling with Big Data.” Philosophy & Technology 29

(2):137–71.
Rendfrey, Tristan S., Melissa S. Bukovsky, and Seth A. McGinnis. 2018. NA-CORDEX Visualization Collection.

https://doi.org/10.5065/90ZF-H771.
TAIR. 2021. The Arabidopsis Information Resource. April 1. https://www.arabidopsis.org/index.jsp.
UCAR. 2019. ARTMIP | Atmospheric River Tracking Method Intercomparison Project. http://www.cgd.

ucar.edu/projects/artmip/.

Cite this article: Lloyd, Elisabeth, Greg Lusk, Stuart Gluck, and Seth McGinnis. 2022. “Varieties of
Data-Centric Science: Regional Climate Modeling and Model Organism Research.” Philosophy of Science
89 (4):802–823. https://doi.org/10.1017/psa.2021.50

Philosophy of Science 823

https://doi.org/10.1017/psa.2021.50 Published online by Cambridge University Press

https://na-cordex.org/variable-list.html
https://na-cordex.org/variable-list.html
https://www.arabidopsis.org/index.jsp
https://www.arabidopsis.org/index.jsp
https://doi.org/10.5065/90ZF-H771
https://www.arabidopsis.org/index.jsp
http://www.cgd.ucar.edu/projects/artmip/
http://www.cgd.ucar.edu/projects/artmip/
https://doi.org/10.1017/psa.2021.50
https://doi.org/10.1017/psa.2021.50

	Varieties of Data-Centric Science: Regional Climate Modeling and Model Organism Research
	1.. Introduction
	2.. Data and its origins in climate science and model organism research
	3.. A framework for data-centrism: Packaging for decontextualization and recontextualization
	4.. Information architecture and decontextualization
	5.. Varieties of data-centrism: Phenomena-laden and phenomena-agnostic
	6.. Trade-offs of the varieties of data-centrism
	7.. Prescriptive recommendations for identifying phenomena in climate data
	8.. Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages true
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


