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Parameterization Schemes:  Keys to Understanding Numerical Weather 
Prediction Models 

 
Comments on Course Development 

and 
Chapter Problem Solutions  

 
David J. Stensrud 

 
This book is a compilation and expansion of the course notes developed for a 

graduate course in parameterization taught within the School of Meteorology at the 
University of Oklahoma.  This course has been taught 7 times within a 15 week semester.  
There is a lot of material to cover in this short of a time period, and the graduate students 
are warned at the beginning that they will have to work hard.  I am not certain that 
undergraduate students could handle this pace, and so have not allowed undergraduates to 
take this course.  While I don’t think the material is too advanced for senior level 
undergraduates, the pace would have to be decreased for them to participate fully.  Most 
of the problems found at the end of each book chapter are assigned for homework, 
yielding a total of 10 problem sets.  In addition, I have the students select a journal article 
at the beginning of the semester on a topic of their own choosing and provide a 
professional review of that article.  The review is intended to mimic the peer-review 
process and serves two functions:  1) educate the students on how to provide a quality 
review, and 2) remind them that not everything in the literature is perfect.  

 
 The weekly course outline is as follows: 
 
Week 1 – Introductions and Chapter 1: Why study parameterization schemes?  I also 
review a few basics about primitive equation models (especially vertical coordinates) and 
stress that they need to take a more traditional numerical weather prediction course if 
they haven’t already.   
 
Weeks 2 and 3  – Chapter 2:  Land surface-atmosphere parameterizations. 
 
Weeks 4 and 5 - Chapter 3:  Soil-vegetation-atmosphere parameterizations. 
 
Week 6 - Chapter 4:  Water-atmosphere parameterizations and turbulence closure 
overview from Chapter 5. 
 
Week 7 - Chapter 5:  Planetary boundary layer parameterizations. 
 
Weeks 8 and 9 - Chapter 6:  Convective parameterizations. 
 
Weeks 10 and 11 - Chapter 7:  Microphysics parameterizations. 
 
Weeks 12 and 13 - Chapter 8:  Radiation parameterizations. 
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Week 14 - Chapter 9:  Cloud cover and cloudy sky radiation parameterizations. 
 
Week 15 - Chapter 10:  Orographic drag parameterization and final thoughts. 
 
To get through this much material, the lectures need to be very organized and highlight 
only the most important and fundamental points of each chapter.  Thankfully, the book 
can fill in a lot of details, so the lectures are really only needed to introduce the basic 
concepts and help dispel any misunderstandings that the students may develop.  I 
typically hear grumbling about the number of problem sets and the amount of material 
covered, but also have heard from a number of students after they are out of school and 
gainfully employed who indicate that the class was very valuable.   
 
It would be relatively easy to slow down the pace and offer the course over two 
successive semesters or quarters.  This would allow the students more time to digest the 
material and projects could be added to have the students work directly with a numerical 
weather prediction model.  During the first few times I taught this course in the mid-
1990s, I divided the students into groups of 3 to 5 and had them use the Penn State-
NCAR model to produce a simulation of an event of their choice.  They would then run 
sensitivity tests to changes in parameterization schemes, or perhaps grid spacing, and 
summarize the results in an oral presentation to the class and a written report.  However, 
as the material in the course grew the students no longer had the time to do a project in 
addition to keeping up with the problem sets, the paper review, and the mid-term and 
final exams.  
 
I also hope that the reference list will help an instructor expand upon the book chapters 
and add additional material of importance to their particular students.   However, I 
believe that it is important to introduce the students to these main types of 
parameterization schemes at some point during the teaching of this course.  Thus, I hope 
that all the chapters will be covered at least briefly by anyone who teaches from this 
book.   
 
If you find errors in these solutions, which almost certainly is the case, please let me 
know at David.Stensrud@noaa.gov.  The correct answers would also be most welcome! 
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Chapter 1 

 
1]  Do an internet search looking for information on operational and/or research 

numerical weather prediction models.  Read over the outlines of what is available with 

regard to these systems.  Based upon the information available on these web pages, list  

the positive and any negative aspects of each modeling system.  Which one seems most 

complete and user friendly? 

 

Solution: 

There is no right or wrong answer to this question.  The hope is that the students will 

spend some time searching on the web in order to learn something about the numerical 

models that are either available for use by researchers or are used to make forecasts.  As a 

starting point, the following web sites describe numerical models that could be used for 

numerical weather prediction.  Let’s start with some of the larger international providers 

of numerical forecasts: 

 

European Centre for Medium-range Weather Forecasting 

http://www.ecmwf.int/products/ 

Japan Meteorological Agency  

http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/nwp-top.htm 

Meteorological Services of Canada 

http://www.msc-smc.ec.gc.ca/cmc/op_systems/index_e.html 

U. S. National Centers for Environmental Prediction 

http://www.emc.ncep.noaa.gov/ 
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U. K. Met Office 

http://www.metoffice.com/research/nwp/numerical/unified_model/index.html 

 

 

One can also look at models developed more for use by researchers: 

 

Advanced Regional Prediction System 

http://www.caps.ou.edu/ARPS/index_flash.html 

Community Climate System Model 

http://www.ccsm.ucar.edu/ 

High-resolution Limited-Area Model 

http://hirlam.org/ 

Rapid Update Cycle Model 

http://maps.fsl.noaa.gov/ 

Regional Atmospheric Modeling System 

http://rams.atmos.colostate.edu/ 

Regional Spectral Model 

http://www.emc.ncep.noaa.gov/mmb/RSM/ 

The Penn State University - National Center for Atmospheric Research Mesoscale Model 

http://www.mmm.ucar.edu/mm5 

Weather Research and Forecast Model 

http://www.wrf-model.org 
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There are other modeling systems available as well that have not been listed.  Some of 

these are unknown to me, while others I wanted to list but had a hard time finding a good 

web site containing useful information.  The point is that there are a number of modeling 

systems being used to make forecasts and being used in research.  It is not always easy to 

find documentation on the details of these models, or to find out if one could download 

the model and compile it on your local computer.  Thus, the intent is that the student see 

both the breadth of models available but also perhaps become a bit frustrated with the 

difficulties involved with learning about each model.  In some ways, it might be useful to 

ask this question again at the end of this course and see what the students think after they 

know more about parameterization.   
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Chapter 2 

 

1]  The following mean wind data, sampled at various heights, occur above a vegetated 

canopy.  Find the displacement depth d for this canopy. 

 

Height (m)             Wind speed (m/s) 

10 7.11 

12 8.01 

14 8.63 

16 9.11 

20 9.81 

30 10.92 

40 11.63 

 

Typically, if ln(z-d) is plotted versus wind speed, the line will be concave upward if d is 

too small and concave downward if d is too large. 

 

Solution: 

The easiest way to approach this problem is to use a simple graphing program, such as 

Excel, to plot ln(z-d) versus wind speed and vary the value of d.  You  may want to 

suggest to the students that they try varying d by 0.5 m starting from 0 and increasing to 9 

m.  The answer is that a d value of 6.5 m yields a straight line and is the correct 

displacement depth.  It may or may not be easy to get this exact value, but from the graph 
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you can see that values more than 1.5 m away from the true value show considerable 

curvature in the plots and are clearly not correct.   

 

 

2]  Given that Tg = 302K, T10m = 294K, QH = 300 W m-2, and ρ = 1.0 kg m-3, calculate 

the resistance to sensible heat flux in the layer from the surface to 10 m above the 

surface.  Assuming T2m = 294.5K and z0 = 0.01 m, what is the resistance from the surface 

to 2 m?  Using this knowledge, estimate the resistance to sensible heat flux in the lowest 

20 m above the surface and determine the temperature at this level.  Is this temperature 

profile realistic?  State any assumptions made and show all work.   

 

Solution: 
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From (2.23) one can see that all the terms in the equation are defined except for the 

resistance.  Thus, one can simply plug in the values and solve for resistance.   

 

! 

(2.23)" rH =
#cp$T

QH

=
(1)(1004)(8)

(300)
= 26.77 sm

%1. 

 

It is also wise to always check the units, which you can do and you’ll find out that they 

work out to give resistance in s m-1 as needed.   

 

Now the value of temperature at 2 m is given, along with the roughness length, and one is 

asked to calculate the resistance from the surface to the 2 m height.  However, the 

roughness length really isn’t needed to solve the question.  Between the surface and 2 m, 

the temperature changes by 7.5 K.  Thus, with knowledge that these heights are within 

the surface layer, where fluxes are assumed constant, we have 

 

! 

(2.23)" rH =
#cp$T

QH

=
(1)(1004)(7.5)

(300)
= 25.1 sm

%1 

 

and the resistance from 2 m to 10 m is then 26.77 - 25.1 = 1.67 s m-1.   

 

Finally, estimate the resistance in the lowest 20 m and determine the temperature at 20 m.  

Here an assumption is required to solve the problem.  Assume that the resistance above 2 

m is a linear function of height.  Since the resistance increased by 1.67 s m-1 over 8 m, it 

will increase to 2.0875 s m-1 over 10 m (i.e., 1.67 * 10 / 8).  Thus, the total resistance 
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from the surface to 20 m is 26.77 + 2.0875 = 28.8575 s m-1.  Equation (2.23) is then used 

one more time, assuming that the heat flux is still constant within the 20 m deep surface 

layer, to get 

 

! 

"T =
rHQH

#cp
=
(28.8575)(300)

(1)(1004)
= 8.6228 

 

which leads to a 20 m temperature of 302 - 8.6228 = 293.3772 K.  So is this temperature 

realistic?  Yes, since the 20 m temperature is less than the surface temperature.  However, 

the lapse rate is certainly superadiabatic between 2 m and 20 m which may argue that the 

temperature profile is unrealistic.   

 

3]  Calculate the resistances for sensible heat flux assuming that u(20 m) = 10 m s-1 and 

that there are three different uniform vegetation types:  h = 1.6 m for one vegetation 

height, h = 0.8 m for another, and h = 0.1 m for the third.  State any assumptions made.  

Which resistance is larger?  Assuming a 10 K temperature potential, calculate the 

differences in sensible heat flux from these three resistances.  What does this say about 

the importance of the roughness length in models?   

 

Solution: 

The key equation for solving this problem is (2.49) that defines the resistance to sensible 

heat flux.  To make life much easier, and since the question provides no information on 

stability, assume that the layer has neutral stability.  Also assume that z0 = h/8, that z0h = 

z0/7 as shown in (2.50), and that the displacement depth is zero.   
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Using these assumptions, one finds that for a vegetation height of 1.6 m, z0 = 0.2 m, for a 

height of 0.8 m, z0 = 0.1 m, and for a height of 0.1 m, z0 = 0.0125 m.  If (2.49) is now 

examined, the only missing term is the friction velocity u*.   This can be calculated using 

the log wind profile (2.30), where one finds that with a bit of rearranging that 

 

! 

u
*

=
u k

ln
z

z
0

" 

# 
$ 

% 

& 
' 

, 

 

where z is used instead of zeff since the displacement depth is assumed to be zero.  

Plugging in the values from the question yields u* = (10)(0.4)/ln(20/0.2) = 0.8686 m s-1.   

 

Using (2.49), one can now calculate the resistance to heat flux 

 

! 

r
H

=
1

ku*

ln
z

z0

" 

# 
$ 

% 

& 
' +

1

ku*

ln
z0

z0h

" 

# 
$ 

% 

& 
' =

1

(0.4)(0.8686)
ln
20

0.2

" 

# 
$ 

% 

& 
' +

1

(0.4)(0.8686)
ln(7)

=13.25 + 5.6 =18.85 sm
(1

. 

 

The 7 in the right-most natural logarithm is from the assumption of (2.50) and so is 

constant for all the calculations.  Following this same approach for the other 2 vegetation 

heights yields friction velocities of 0.755 and 0.542 m s-1 for the vegetation heights of 0.8 

and 0.1 m, respectively.  The resistances are then 24.15 and 43.01, respectively.  Thus, 

the resistances increase as both the roughness length decreases and the roughness length 
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for heat decrease.  This makes sense, since the depth over which the resistance is 

calculated increases as the roughness lengths decrease.  This confirms that resistance is 

proportional to length.   

 

Finally, one assumes a 10 K potential difference from the surface to the 20 m height and 

calculates the sensible heat flux using (2.23) or (2.43) to yield for the 1.6 m vegetation 

height that 

 

! 

QH =
"cp#T

rH
=
(1)(1004)(10)

18.85
= 532.6Wm

$2 , 

 

assuming a density of 1 kg m-3.  For the other 2 vegetation heights, one finds that the 

sensible heat flux is 415.74 and 233.43 W m-2.  Thus, the differences in sensible heat flux 

from the 1.6 m vegetation height are 117 W and 299.17 W m-2 as the vegetation height is 

first halved and then reduced by another 1/8th.  This analysis suggests that roughness 

lengths are very important to specify correctly in numerical models.   

 

4]  Using the same three vegetation types as described in 3], calculate the resistances to 

latent heat flux.  Assuming a 0.02 kg kg-1 specific humidity potential [Δq = qs(Tg)-q(z)] 

and a canopy resistance of 200 s m-1, what are the latent heat fluxes for the three 

vegetation heights?  Do the changes in the relative values of latent and sensible heat 

fluxes over the three different vegetation types make sense?  What is the value of 

moisture availability?   
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Solution: 

Begin by noting that the equation for resistance to latent heat flux (2.62) is nearly the 

same as the equation for resistance for sensible heat flux (2.49), with a difference only in 

the last term.  Thus, portions of the calculations for the previous question can be used to 

solve this question as well.  So we can begin by using the same friction velocities as 

calculated in the previous problem, and make the same basic assumptions (neutral 

stability, atmospheric density of 1 kg m-3).  Using (2.62) we find that for the 1.6 m 

vegetation height 

 

! 

r
V

=
1

ku*

ln
z

z0

" 

# 
$ 

% 

& 
' +

1

ku*

ln
z0

z0h

" 

# 
$ 

% 

& 
' 
(

D
v

" 

# 
$ 

% 

& 
' 

2 / 3

=
1

(0.4)(0.8686)
ln
20

0.2

" 

# 
$ 

% 

& 
' +

1

(0.4)(0.8686)
ln(7)(0.93)

2 / 3
=13.25 + 5.34 =18.59 sm

)1

 

 

Similarly, for the 0.8 and 0.1 m vegetation heights one finds that rV = 23.82 and 42.58 s 

m-1, respectively.  Note that these resistance values are all slightly smaller than the 

resistances calculated for sensible heat flux, as expected from (2.62).   

 

The latent heat flux is then defined using (2.64) in which 

 

! 

QE =
M"Lv#q

ra + rbv
, 
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suggesting that we need to determine the moisture availiability M.  This variable is 

defined in (2.65) where for the 1.6 m vegetation height we find that 

 

! 

M =
r
a

+ r
bv

r
a

+ r
bv

+ r
c

=
18.59

18.59 + 200
= 0.085. 

 

knowing that the canopy resistance rc is 200 s m-1.  Similar calculations for the 0.8 and 

0.1 m vegetation heights yields M values of 0.1064 and 0.176, respectively.  Using the 

equation for latent heat flux, we then find that  

 

! 

QE =
M"Lv#q

ra + rbv
=
(0.085)(1)(2.5x10

6
)(0.02)

18.59
= 228.62 Wm

$2. 

 

Similarly, for the 0.8 and 0.1 m vegetation heights, one finds that the latent heat flux is 

223.34 and 206.67 W m-2.  Thus, the latent heat flux increases slightly as the vegetation 

height increases.  In contrast, over the same changes in vegetation height, the sensible 

heat flux changed by a factor of 2!  The difference is that the canopy resistance term in 

the latent heat flux calculation dominates, and so the latent heat flux is much less 

sensitive to changes in the atmospheric resistances.  So do the changes in the relative 

values of sensible and latent heat flux make sense?  Yes, they do once you realize the 

importance of the canopy resistance term.   

 

5]  Draw a typical diurnal cycle for each of the terms (Rnet, QG, QE, and QH) of the surface 

energy budget.  Then draw an energy flux diagram and show the magnitudes and signs of 
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each term at 1200 local noon and 0400 local morning (before sunrise).  Why are these 

values realistic?  Explain.   

 

Solution: 

This problem is intended to make the students think about the diurnal energy cycle and 

gain some appreciation for the relative magnitudes of the different terms.  While there are 

no specific answers to this question, there certainly are wrong answers.   

 

A definition is needed to define the signs of the terms.  Here it is assumed that positive 

flux values act to warm the surface, while negative flux values act to cool the surface.  

Thus, under clear sky conditions in midlatitudes or tropical latitudes, net radiation is 

generally going to be large and positive during the daytime (owing to incoming solar 

radiation acting to heat the ground) and small and negative at night (outgoing longwave 

greater than incoming longwave so cooling of the ground occurs).  Sensible and latent 

heat fluxes tend to follow the net radiation, but with opposite signs.  Thus, sensible and 

latent heat fluxes are large and negative during the daytime (acting to move heat away 

from the ground surface and hence cool it) and small and positive at night.  Ground heat 

flux follows the sensible and latent heat fluxes, also being larger and negative during the 

daytime and positive at night.  However, ground heat flux usually is not quite in sync 

with the other heat fluxes and has a slight phase shift to later times of maximum values.   

 

The magnitudes of the fluxes are determined by the net radiation.  This term is dominated 

by the incoming solar radiation, so certainly cannot exceed the solar constant.  Depending 
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upon the latitude under consideration, values could range from small positive numbers to 

values approaching 1000 W m-2.  A student could choose a location above the Arctic 

Circle during the wintertime, but this has not happened yet.  The 3 heat fluxes, since they 

differ in sign, should sum to the value of the net radiation as indicated by (2.102).  If not, 

then the surface energy budget is not in balance. So the values chosen are realistic if the 

surface energy budget balances and are not realistic if the energy budget is out of balance.   

 

A typical example of the resulting diurnal cycle is shown below along with the two 

energy flux diagrams.  Remember that arrows pointing toward the ground surface (the 

horizontal thin line) act to warm the ground, whereas arrows pointing away act to cool 

the ground surface.  Again, there is no specific correct answer, but the general rules 

discussed above can be used to evaluate the solutions and determine if any of them are 

obviously incorrect.  Also note that the net radiation at night often is less than 100 W m-2 

in magnitude.   
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6]  Write a computer program to calculate the change in surface temperature over an 

entire daytime heating cycle (sunrise to sunset) using the force-restore method.  Assume 

that the calculation is for near Amarillo, Texas on 30 June, 1999 (35.2 latitude, -102.0 

longitude), and begin the calculations at sunrise and end the calculations at sunset.  To 

actually do this without attaching the surface to a boundary layer model, we have to make 

some pretty stringent assumptions:  assume the atmospheric transmissivity is constant at 

0.8, the solar constant is 1368 W m-2, the Earth’s orbit is circular, the thermal capacity of 

the slab (cg) is 1.4x105 J m-2 K-1, the skies are clear, the Bowen ratio is 0.7, the 

temperature at 40 hPa above the ground surface is equal to 25°C, the initial temperature 

of the ground surface (skin temp) is 23°C, the reservoir temperature is 25°C, the 

precipitable water is 2.5 cm, the emissivity is 0.95, and the albedo is 20%.  Run two 

experiments.  First, assume the sensible heat flux is 15% of the net radiation received at 

the surface, and second assume that the sensible heat flux is 30% of the net radiation 

received at the surface.  Plot the radiation amounts on one graph, show the change in 

ground (skin) temperature on another, and plot the various surface fluxes (sensible, latent, 

and ground) on yet another graph.  What is the phase relationship between the ground 

(skin) temperature and the heat flux into the ground?  What are the times of sunrise and 

sunset?  What is the maximum value of incoming solar radiation? 

 

Remember that 

 

! 

"Tg

"t
=
1

cg
QS +QLd #QLu #QH #QE #$(Tg #Tr )[ ] 
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where κ is assumed to be constant at 11 J m-2 K-1 s-1 and Tr is the reservoir temperature 

(K).  It is assumed that the energy loss due to the surface albedo is already included in QS.   

 

Solution: 

A fortran 77 program to solve this question is shown below.  Time of sunrise is 11.6667 

UTC (1140 UTC), time of sunset is 26.00 (0200 UTC), and the maximum solar radiation 

is 856.45 W m-2.  Plots also are shown for the 2 cases of sensible heat flux being 15 and 

30% of the net radiation.  These indicate that the ground heat flux and ground 

temperature are in phase, while they are slightly offset from the other fluxes that peak 

earlier in the day.   

          program homework2_6 
c**    Calculate the change in surface temperature at Amarillo, TX, using 
c**    basic formulas in Chapter 2.  David Stensrud 2006. 
c 
c**    Use Monteith formula to calculate downwelling radiation, Stefan- 
c**    Boltzmann Law, and formulas for zenith angle from early in Chapter 2. 
c**    Assumptions: 
c**    1)  Sensible heat flux is 15% of net radiation 
c**    2)  Sensible heat flux is 30% of net radiation 
c**    and we are given the Bowen ratio to calculate the latent heat flux 
c**    and the soil conductivity to calculate the ground heat flux. 
c 
c**    This program uses NCAR graphics to plot the fields needed to answer the 
c**    questions.  If this program is not available on your system, then simply 
c**    write out the values and read them in using Excel or some other spreadsheet 
c**    software with plotting abilities. 
c 
c**     Variable names: 
c 
c**     fact - fraction of rnet for sensible heat flux (0.15 or 0.30) 
c**     a - albedo 
c**     bowen - bowen ratio 
c**     cg - thermal capacity of the slab 
c**     delta - declination angle 
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c**     dt - time step size (in seconds) 
c**     dtr - constant conversion factor for degrees to radians 
c**     emiss - emissivity 
c**     h  - local hour of the day.  Choose initial value before sunrise. 
c**          (below selected 11 UTC as start time) 
c**     kappa - soil conductivity 
c**     omega - Stefan-Boltzmann constant 
c**     pi - pi (3.1415927...) 
c**     qe, qeflux - latent heat flux 
c**     qgflux - ground heat flux 
c**     qh, qhflux - sensible heat flux 
c**     qld - downwelling longwave component 
c**     qlu - upwelling longwave component 
c**     qs - shortwave radiation component 
c**     rnet - net radiation 
c**     s -  incoming shortwave radiation (including albedo effects) 
c**     solar - solar constant 
c**     ta - air temperature 40 mb above surface 
c**     tau - transmissivity 
c**     tg, tgr - ground temperature 
c**     time - time (hours) 
c**     tm - reservoir temperature of soil 
c**     wp - precipitable water 
c**     xlat - latitude (degrees) 
c**     xlon - longitude (degrees) 
c 
       real tau,a,omega,emiss,wp,tm,rnet,solar,qh,qs,qld,qlu,kappa 
       real time(288),s(288),tgr(288),qgflux(288) 
       real qeflux(288),qhflux(288)   
c 
c         define variables that are fixed in the program 
c** 
c**     fact must be changed to run the two scenarios.  First, fact=0.15 and  
c**     then fact=0.30 
c** 
c 
        fact=0.15 
        a=0.20 
        bowen=0.7 
        cg=1.4e+05 
        emiss=0.95 
        kappa=11.0 
        omega=5.67e-08 
        solar=1368. 
        ta=298.15 
        tau=0.8 
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        tg=296.15 
        tm=298.15 
        wp=2.5 
        xlat=35.2 
        xlon=-102. 
c 
        pi=4.*atan(1.) 
        dtr=pi/180. 
        dt=5.*60. 
        xsunrise=-10. 
        xsunset=10. 
        xmaxrad=0. 
c 
c**     calculate declination angle for this location 
c**     Note that 30 June 1999 is Julian day 181. 
c 
        delta=23.45*cos( (2.*pi*(181.-173.)) /365.25 ) 
        print *,'declanation angle is ',delta 
c 
c********************************************************************* 
c********************************************************************* 
c       loop over the 24 h day at 5 minute intervals and determine various parameters 
c********************************************************************* 
c********************************************************************* 
c 
      do 10 i=1,288 
c 
       h = ( (11.+ (i-1)*5./60.-12.0)*pi )/12. +xlon*pi/180. 
       time(i) = 11.+float(i-1)*5./ 60. 
       rnside=sin(xlat*dtr)*sin(delta*dtr)+ 
     &        cos(xlat*dtr)*cos(delta*dtr)*cos(h) 
       zenith=acos(rnside) 
       qs=solar*(1.-a)*tau*rnside 
       if(qs.lt.0.0) qs=0.0 
       s(i) = qs 
       if(qs.gt.0.0.and.xsunrise.lt.0.) then 
        xsunrise=time(i) 
        xsunset=-10. 
       end if 
       if(qs.lt.0.0.and.xsunset.lt.0.) then 
        xsunset=time(i) 
       end if 
       if(qs.gt.xmaxrad) then 
        xmaxrad=qs 
       end if 
c 
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c**    According to question, start calculations at sunrise and end at sunset 
c 
       if(qs.gt.0.0) then 
c 
        qlu=emiss*omega*tg**4 
        qld=emiss*(0.725+0.17*log10(wp))*omega*ta**4 
        rnet=qs+qld-qlu 
        qh=fact*rnet 
        qe=(1./bowen)*qh 
        tgnew=tg + (1./cg) * (rnet - qh - qe  
     1         - kappa*(tg-tm) ) * dt 
         tg = tgnew 
         qhflux(i)=-qh 
         qeflux(i)=-qe 
         qgflux(i)=-kappa*(tg-tm) 
         tgr(i)=tg 
        else 
         qeflux(i)=0. 
         qhflux(i)=0. 
         qgflux(i)=0. 
         tgr(i)=tg 
        end if 
c 
 10    continue 
c 
c**     print out time (UTC) of sunrise, sunset, and also maximum value of qs 
c 
       print *,' sunrise at ',xsunrise 
       print *,' sunset at ',xsunset 
       print *,' maximum solar radiation (including albedo)',xmaxrad 
c 
c**   plot time evolution of solar flux, sensible, latent, and ground heat flux,  
c**   and ground temperature using NCAR graphics 
c 
       call opngks 
       call gopwk(3,4,3) 
       call ezxy(time,s,288,'Solar flux$') 
       call ezxy(time,qhflux,288,'Sensible heat flux$') 
       call ezxy(time,qeflux,288,'Latent heat flux$') 
       call ezxy(time,qgflux,288,'Ground heat flux$') 
       call ezxy(time,tgr,288,'Ground temperature$') 
       call gclwk(3) 
       call clsgks 
c 
       stop 
       end 
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Flux values above are in W m-2, while temperatures for the right side plots are in K.  

Postive values of flux act to warm the ground surface, negative values act to cool the 

ground surface.  Note that the ground temperature in the 15% sensible heat flux 

simulation (~326 K) is much warmer than the 30% case (~312 K), owing to the large 

amount of energy that is available to warm the ground.  This is a simple model that is fun 

to play with, so challenge your students to vary more relationships and see how sensitive 

the results are to the energy partitioning! 
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7] Seguin and Gignoux (1974) made wind speed measurements at a number of heights 

over two adjacent, yet very different, regions.  One region consisted of cypress hedges 7 

m in height and separated by short grass of roughly 10 cm tall.  The other region 

consisted of grass only with a height of roughly 40 cm (see Fig. 2.25).  Both regions were 

large and separated by sufficient distance to allow them to be considered independent 

regions.  The wind speeds at the top of the surface layer at 50 m above ground level (over 

which the flux profile laws apply) were virtually identical above both the cypress hedges 

and the 40 cm grass regions.  However, the profiles down to the ground were different.  

The log-wind profile in the grass-only region simply responded to a surface of grass 40 

cm high.  The log-wind profile in the hedge region first responded to a vegetation canopy 

at the height of the cypress hedges (7 m), while the log-wind profile below the hedge top 

responded to the short grass (10 cm).   The height of the hedge top is where they 

observed this change in the log-wind profile behavior in the region with hedges.   

 

a)  Calculate and show graphically the wind speed profiles in the two regions and the 

difference in wind speed at hedge top level and at 2 m between the hedge and grass-only 

regions for a wind speed of 10 ms-1 at 50 m.  Assume neutral static stability.  [Note that 

the two wind regimes in the hedge region must be meshed.  The upper regime has a 

different roughness from the lower.]  Calculate the three relevant friction velocities for 

the problem.  Helpful hint:  zo ≈ h/8 where h is the average height of the grass or hedge. 

Comment on the differences in wind speed between the two regions.  
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Solution: 

This exercise is all about using the log wind profile.  We will use the suggested 

relationships between roughness length and displacement depth that are discussed in 

section 2.4, namely z0 ~ h/8 and d ~ 3h/4 where h is the vegetation height.   For the grass 

region, the wind speed follows the same log wind profile from 50 m down to the 

roughness length.  This should be easy to calculate.  However, for the winds in the hedge 

region, the wind speeds follow 2 different log wind profiles.  One profile responds to the 

hedges and is followed from 50 m down to the height of the hedge tops at 7 m.  The 

second wind profile responds to the 10 cm tall grasses and is followed from the top of the 

hedges at 7 m down to the roughness length for this shorter grass.  Thus, to figure out the 

wind profile below hedge top, one must know the wind speed at hedge top.  This wind 

speed is not provided, and so must be calculated.   

 

Let’s begin with the 40 cm tall grass region.  Here z0  = .40/8 = 0.05 m, and d = 0 (one 

can calculate d and use it in the equation, but to the first two decimal places it has no 

effect).  To determine the wind speed as a function of height, we need to use the log wind 

profile equation (2.30).  However, one immediately noticed that the friction velocity is 

not specified.  Calculate it using the data available at the 50 m height.  Thus, 

 

! 

u* =
u k

ln
zeff

z0

" 

# 
$ 

% 

& 
' 

=
(10)(0.4)

ln
50

0.05

" 

# 
$ 

% 

& 
' 

= 0.58ms
(1. 
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Then this value of u* can be used to calculate the wind speeds at 7 and 2 m heights.  For 

the 7 m height, this yields 

 

! 

u =
u
*

k
ln

zeff

z
0

" 

# 
$ 

% 

& 
' =
0.58

0.4
ln

7

0.05

" 

# 
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% 

& 
' = 7.17ms

(1, 

 

and using the same expression at a 2 m height yields a wind speed of 5.34 m s-1.  If using 

non-zero d values, then the wind speeds decrease to 7.10 and 5.11 m s-1.   

 

In the hedge region, one first must find the wind speed at the hedge top height of 7 m and 

then define a new log wind profile from this height down to the surface.  Above the 7 m 

tall hedge, z0 = 7/8 = 0.875 m and d = 3*7/4 = 5.25 m.   Using the log wind profile to 

again solve for the friction velocity, one finds that 
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u* =
u k

ln
zeff

z0

" 

# 
$ 

% 

& 
' 

=
(10)(0.4)

ln
50 ( 5.25

0.875
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' 
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(1, 

 

and then the wind speed at 7 m height is  
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u =
u
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k
ln
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z
0

" 

# 
$ 

% 

& 
' =
1.016

0.4
ln
7 ( 5.25
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# 
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& 
' =1.76ms

(1. 
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Below the hedge, the winds respond to the 10 cm tall grasses.  Here z0 = 0.10/8 = 0.0125 

m and d = 0 m.  Once again the first step is to calculate the friction velocity for this log 

wind profile, namely 

 

! 

u* =
u k

ln
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z0

" 

# 
$ 

% 

& 
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=
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ln
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(1. 

 

Finally, the wind speed at 2 m height can be calculated from 
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u =
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*
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ln
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ln
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The difference in winds at the 2 m height is 5.34 - 1.4 = 3.94 m s-1, and at hedge top the 

wind speed difference is 7.17 - 1.76 = 5.41 m s-1.  These are pretty large differences, 

especially when one remembers that stress is proportional to the square of the wind 

speed.  This yields differences in stress between the two regions of more than an order of 

magnitude! 
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Wind speed profiles for the hedge and 40 cm tall grass regions. 

 

b)  Calculate the values of resistance to sensible heat flux from the surface to 50 m for the 

two regions.  Assuming a potential difference of 10 K, what are the values of heat flux 

over these two regions?  If the grass-only region, as depicted at the far right of Fig. 2.25, 

has the cypress hedge internal boundary layer above it, how might one estimate the 

change in resistance to heat flux above the grass-only region?  Using this estimation 

technique, how big of a difference in the value of resistance does this make?   

 

Solution: 

Recall that the resitance equation for sensible heat flux is 
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! 

rH =
1

ku
*

ln
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z
0

" 

# 
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% 

& 
' +

1

ku
*

ln
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" 
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% 

& 
' . 

 

The difference in the calculations over the 40 cm grass and the hedge region is that the 

first term in the resistance equation has two parts in the hedge region:  from the 

roughness length to hedge top and from hedge top to 50 m.  Above the hedge region we 

know that u* = 1.016 and d = 5.25, while below the hedge top we know that u* = 0.11 and 

z0  = 0.0125.  Thus, we find that  
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r
H
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(0.4)(1.016)
ln
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& 
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1

(0.4)(0.11)
ln(7)

= 7.98 +143.82 + 44.22 =196.02

. 

 

The sensible heat flux is then 
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QH =
"cp#T

rH
=
(1)(1004)(10)
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= 51.22Wm

$2 . 

 

Over the 40 cm grass region, 
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and the sensible heat flux is then 
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! 

Q
H

=
(1)(1004)(10)

38.16
= 263.1Wm

"2 . 

 

Thus, the sensible heat fluxes differ by a factor of 5 between the hedge region and the 40 

cm grass region!  This is because the resistances differ by a factor of 5, which is a very 

large difference with obvious consequences in the calculation of flux.   

 

To estimate changes in the resistance due to the cypress hedge internal boundary layer 

being above the grass-only region, one needs to estimate the depth of this internal 

boundary layer.   Starting from the 50 m height, replace the resistance for the grass-only 

region with the resistance from the hedge region over successively larger depths.  If z1 is 

the height above the ground at which the hedge internal boundary layer is reached, then 

the resistance can be estimated using 
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Resistance from mixed grass-only and cypress hedge boundary layers as a function of the 

height at which the bottom of the cypress hedge internal boundary layer is reached.  

While the variation is not large, the shape of the resistance profile is curious and reaches 

a minimum at a height of 12 m.   

[This question 7 is based upon course notes from a bioclimatology class taught by Dr. 

Toby Carlson at The Pennsylvania State University in the late 1980s.  I thought the 

question was excellent at the time and still think it illustrates many important points.] 

 

8]  At a given surface observing site, the roughness length is 0.1 m, and at a particular 

time during the daytime the friction velocity u* = 0.85.  The site has two heights at which 

temperature is observed:  10 and 2 m.  The 10 m temperature is 295.4 K and the 2 m 
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temperature is 298.0 K.  Determine the ground temperature and the surface sensible heat 

flux.   

 

Solution: 

This question returns again to using the equation for sensible heat flux and resistance.  

Recall that fluxes are constant in the surface layer, and that the sensible heat flux is 

defined as 

 

! 

QH =
"cp#T

rH
. 

 

With the information given one can determine the sensible heat flux from the temperature 

difference if we can calculate the needed resistance.  Unlike the earlier problems, the 

friction velocity and roughness length are provided.  Thus, assuming neutral stability the 

resistance in the layer from 2 to 10 m is given by 
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Thus, the sensible heat is found to be 

 

! 

QH =
"cp#T

rH
=
(1)(1004)(298 $ 295.4)

4.73
= 551.88Wm

$2 . 
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To solve for the ground temperature, we need to determine the resistance from 10 m 

down to the roughness length for heat.  This is calculated from 
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The sensible heat flux equation is then used to solve for the ground temperature, such that 

 

! 

Tg =
QH * rH

"cp
+ T10m =

(551.88)(19.26)

(1)(1004)
+ 295.4 = 305.99K . 
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Chapter 3 

 

1]  The following data were taken over a tall grass field at Norman, Oklahoma on 17 May 

2004 at local noon.   

 

IR Surface Temperature: 37°C 

Air Temperature:  28°C at 2 m 

Specific Humidity of air: 14 g kg-1 at 2 m 

Wind Speed:   7.0 m s-1 at 10 m 

Vegetation height:  1.0 m 

Leaf Area Index:  2.0 

Net Radiation:   600 W m-2 

Ground Heat Flux:  100 W m-2 

 

Rainfall totals of slightly more than 0.25 inch occurred the day before.    

 

a) Calculate the sensible heat flux, assuming neutral stability for the log profile laws.  

Using the surface energy balance and the calculated sensible heat flux, solve for the 

evapotranspiration flux. 

 

Solution: 
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We know that z0 = h/8 = 1./8. = 0.125 m for this case.  Using the neutral stability 

assumption and further assuming a zero displacement depth, one can then calculate the 

friction velocity from the information provided.  Thus, 
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If the displacement depth is assumed to be non-zero, then the friction velocity is 0.64 m s-

1.  Once the friction velocity is known, then it is easy to calculate the resistance using 

(2.49), such that 
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It is important to note that this resistance is calculated from the surface to the 2 m height, 

since this is where we have a temperature observation.  The wind observation is at 10 m, 

which allows us to calculate the friction velocity, but the only way to calculate the 

sensible heat flux is with knowledge of the temperature difference and this information is 

only available at the 2 m height! 

 

Now one can calculate the sensible heat flux from 

 

! 

QH =
"cp#T

rH
=
(1)(1004)(9)

(18.43)
= 490.3Wm

$2 . 
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The surface energy balance then yields 

 

! 

R
NET

"Q
H
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= 0

# Q
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= R
NET

"Q
H
"Q

G
= 600 " 490.3"100 = 9.7Wm

"2

. 

 

But this doesn’t make sense!  The information given indicates that the data were taken 

over a 1 m tall grass field in May (during the warm season) and that it rained more than 

0.25 inches the day before.  One would expect more latent heat flux than a small value of 

9.7 W m-2 at local noon!  Looking back at our assumptions, the one variable that has 

several expressions is the roughness length for heat, z0h.   Let’s try another formula for 

this roughness length and see how much difference it makes and if the results become 

more realistic.   

 

A second expression for the roughness length for heat is (2.51), which indicates that 
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where κm = 0.18x10-4 m2 s-1 is the molecular thermal diffusivity of air, and α is a fudge 

factor that is typically set to 1.  Using this expression, one finds that 
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Using this roughness length to calculate the resistance yields 
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This is nearly double the value originally calculated.  Replacing the value for resistance 

in the sensible heat flux equation above yields QH = 226 W m-2 and then surface energy 

balance requires that QE = 600 - 226 - 100 = 274 W m-2.   This value of latent heat flux 

makes a lot more sense given the observations.   

 

This question is intended to help the students learn that one needs to always be thinking 

about whether or not the answers are reasonable.  It also illustrates that the formulas used 

for roughness length for heat can make a large difference in the answers one calculates!  

For this problem, the sensible heat flux differs by a factor of 2 depending upon how the 

roughness length is calculated.  One could also use (2.52) to calculate the resistance, 

arriving at yet a third answer.   

 

b) Calculate the Monin-Obukhov length using the value of u* calculated above.  Note 

that Stull (1988) shows that 

 

! 

" w " # v = " w " # 1+ 0.61q [ ] + 0.61# ( " w " q ). 
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Solution: 

To answer this question, one must be able to convert from sensible heat flux units of W 

m-2 to K m s-1 and latent heat flux values from W m-2 to (kg/kg) m s-1.  For sensible heat 

flux, simply divide by ρcp.  For latent heat flux, divide by ρLv.  Thus, assuming a surface 

pressure of 1000 hPa, the buoyancy flux is simply 

 

! 

" w " # v =
QH

$c p

(1+ 0.61q ) + 0.61# 
QE

$Lv

=
226

(1)(1004)
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6
)

= 0.225(1.00854) +183.70(0.0001096) = 0.247Kms
%1

 

 

Now one can calculate the Monin-Obukhov length using (2.41) which yields 

 

! 

L = "
# vu*

3

kg( $ w $ # v )sfc

= "
(303.72)(0.64)

3

(0.4)(9.81)(0.247)
= "82.15<0. 

 

A negative value of L indicates unstable conditions, which fits our expectations for a 

sunny day at local noon.   

 

c) Recalculate the value of u* for non-neutral conditions.  How much does it change 

from the value determined for neutral conditions?   Recalculate the sensible heat flux, 

and note how much it changes.  How much would u* have to change to alter the 

sensible heat flux by 50 W m-2?   
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Solution: 

To recalculate the value of friction velocity for unstable conditions, (2.37) indicates that 

we need to determine the value of ψm.  For unstable conditions, the equation to use is 

(2.39).  Thus, one finds that 
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and then 
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This again agrees with the expectation that the value of ψm should be greater than zero for 

unstable conditions.  Then we can recalculate u* using 
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Thus, the value of u* increases from 0.64 to 0.69 under non-neutral conditions, or a 8% 

change.   

 



40 

The same equations as previously can be used to calculate the sensible heat flux using 

this new value of friction velocity, which yields QH = 243.10 W m-2.  We could also 

include the non-neutral effects in our calculation of rH from the surface to the 2 m height, 

yielding a value of x = 1.08, ψH = 0.16, rH =39.41 s m-1 and QH = 229.3 W m-2 or a 3.3 W 

m-2 difference from the original value.  To obtain a change in QH of 50 W m-2, one can 

calculate the needed resistance and find that rH = 32.74 would yield a sensible heat flux 

of 276 W m-2 (50 more than the original value of 226).  The resistance equation can then 

be used to find that under non-neutral conditions a friction velocity of 0.783 m s-1 is 

needed to get a 50 W m-2 change in sensible heat flux.  This is a 22% change from the 

original friction velocity.   

 

2]  Using the same data as in 1], examine the calculations for bare soil evaporation when 

the green vegetation fraction is zero.  Assume that the Richardson number is zero, Θ1 = 

0.35, Θfc = 0.45, and Θw = 0.18.   Use (3.6)-(3.7) to calculate bare soil evaporation.  Then 

use (3.8)-(3.9) instead to calculate bare soil evaporation.  Comment on the differences in 

the calculated fluxes.   

 

Solution: 

There are a number of equations that are needed to finish this problem.  The first 

challenge for using (3.6)-(3.7) is to calculate the potential evaporation.  Since the 

measurements above the surface are at the 2 m height, we first need to determine the 

wind speed at this level.  Since a zero Richardson number implies neutral stability, we 

use 
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From this we can determine the value of the coefficient Cq in (3.13) as 

 

! 

Cq = k /ln((z + z0) /z0)[ ]
2

= (0.4) /ln((2 + 0.125) /0.125)[ ]
2

= (0.14118)2 = 0.01993. 

 

From this, we can calculate ra = 1/(Cqu) = 1./(0.01993*4.44) = 11.30.  Next the value of 

Δ is needed.  Using the Clausius-Clapeyron equation, one can rewrite (3.12) as 
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assuming a surface pressure of 1000 hPa and using a Skew-T log p diagram to determine 

the saturation mixing ratio at 28°C and 1000 hPa and then converting to vapor pressure in 

hPa.  We now have all that is needed to calculate the potential evaporation using (3.11).  

Thus, 
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Finally, the bare soil evaporation is 
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which some may note is greater than the net radiation.  Since the “observations” that form 

the basis of these questions are fictional, one should not make too big of a deal about this 

flux value being greater than the net radiation.  However, this is an opportunity to remind 

the students that most land surface schemes do not force closure of the surface energy 

budget.  The results are often close to balancing, but the flux values are not required to do 

so.   

 

If we turn to (3.8) and (3.9) to calculate the bare soil evaporation, then the results are 

different.  The first step is to calculate h, where 
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Then from a Skew-T log p we find that the saturation mixing ratio at 37°C is 0.043 kg kg-

1, and from question 1] we know that a realistic resistance in the surface layer for neutral 

conditions is 40.0 s m-1, so the bare soil evaporation is 
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which is slightly less than the net radiation.  Thus, the difference in the bare soil 

evaporation from these two approaches is 151.04 W m-2.  This is a fairly large number, 

and indicates the very different values one can get when using different parameterizations 

for bare soil evaporation.   

 

3]  Again, using the same data as in 1], examine the calculations for evapotranspiration 

from vegetation when the vegetation fraction is 1.  Assume that the Richardson number is 

zero, Θ1 = 0.35, Θ2 = 0.25, Θfc = 0.45, and Θw = 0.18.  The first soil layer is 10 cm deep, 

and the second soil layer that incorporates that rest of the root zone is 40 cm deep.  

Assume that Wc = 0, so that the canopy surface is dry.  Use (3.24)-(3.25) to calculate the 

evapotranspiration.  If one further assumes that QS = 700 W m-2, QGL = 50 W m-2, rcmin = 

100 s m-1, and α = 40 in the definition of F2, then use (3.38)-(3.41) to calculate 

evapotranspiration assuming rr = 15 s m-1.  Comment on the differences in the calculated 

fluxes.   

 

Solution: 

Thankfully, we already calculated the potential evaporation in 3] and so can use it in the 

following question as well.  So to begin with Ep = 892.22 W m-2.  Now, using the values 

for volumetric water content given, one can go ahead and use (3.24) and (3.25) to 

calculate the answer.  One potential item of uncertainty is the value to use for Θref in the 

question.  The discussion after (3.25) indicates that Pan and Mahrt use a value of 0.25, 

but the question indicates a field capacity value of 0.45.  However, since the intent is to 

scale g based upon the volumetric water content in between its largest and smallest 
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values, using 0.45 for Θref makes the most sense.  This value is used in the calculations 

below.   
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+ 

, 
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. 

/ 
0 (1) = 892.22 0.25(0.6296) + 0.75(0.259259)[ ]

= 892.22(0.35184) = 313.92

 

Using (3.38)-(3.41) to calculate evapotranspiration is a bit more complicated, since more 

equations are involved.  We begin by calculating the F factors from Noilhan and Planton 

(1989) that are found in (3.28) - (3.34).   Thus, 
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f = 0.55
QS

QGL

2

LAI
= 0.55

700

50

2

2
= 7.7  

 

from which 

 

! 

F
1

=

f +
rcmin

rcmax

1+ f
=

7.7 +
100

5000

1+ 7.7
= 0.8874 . 

 

The second F factor is from (3.31), such that  
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! 

F2 =
1

1+"[qs(Ta ) # qa ]
=

1

1+ 40 0.0245 # 0.014[ ]
= 0.7042, 

 

where the value of qs(Ta) is found using a Skew-T log p.  One could also calculate it if 

desired.  Then the third factor is 

 

! 

F3 =1"1.6x10
"3
(Tref "Ta )

2
=1"1.6x10

"3
(298 " 301.15)

2
= 0.9841. 

 

The fourth and last F factor is deals with the soil water content and is defined following 

 

! 

F4 =
(" i #"w )dzi

(" fc #"w )(dz1 + dz2 )i=1

2

$ =
(0.35 # 0.18)(10)

(0.45 # 0.18)(40)
+
(0.25 # 0.18)(30)

(0.45 # 0.18)(40)
= 0.1574 + 0.1944 = 0.35184

 

Now we can finally calculate the canopy resistance using (3.27), with 

 

! 

r
c

=
r
cmin

LAI " F1F2F3F4
=

100

(2)(0.8874)(0.7042)(0.9841)(0.35184)
= 231.07sm-1. 

 

The equation for the evapotranspiration is given by (3.38), namely  
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QEV =" f E pBc 1#
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and we see from (3.39) that 
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where we already calculated Δ in the previous problem and rc above, rr is given, which 

leaves Ch for calculation.  With a zero Richardson number, this reduces to 
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assuming that z0h = z0/7.  Thus, we can calculate Bc with knowledge of the 2-m wind 

speed of 4.44 ms-1 from 1], yielding 
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=
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"

r
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c
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h
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r
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=
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3.6559
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Finally, 
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QEV =" f E pBc 1#
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. 
/ = (1)(892.22)(0.0902)(1) = 80.47Wm

#2  . 

 

Thus, the difference in the flux values is 233.44 W m-2.  While the “observations” given 

in 1] are fictional, they are not by any means unrealistic.  This suggests that the additional 
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F factors used to calculate this last value of evapotranspiration also are realistic, yet the 

resulting flux differences are large.   This comparison highlights the challenges to 

accurate surface flux calculations.  Recall that observations are few and far between, and 

the formulations for evapotranspiration are rather crude.  It should not be surprising that 

this magnitude of difference occurs, although it makes one wonder about the accuracy of 

fluxes from operational models.   

 

4]  Using the same data as in 1] and the results of 2] and 3], calculate the total latent heat 

flux as a function of the vegetation fraction as the vegetation fraction varies from 0 to 1 

in increments of 0.1.  If one assumes that errors of 10% in vegetation fraction are 

reasonable, how large is the uncertainty in latent heat flux?   

 

Solution: 

Choose a value for the bare soil evaporation and a value for transpiration from 

vegetation.  The results will vary depending upon the values selected, but the general 

conclusions should be similar.  Here I choose QEB = 410.16 and QEV = 80.47 W m-2 

which then need to be scaled by the vegetation fraction.  Recall that the above questions 

assumed either completely bare soil or a fully vegetated surface, such that the flux values 

calculated represent these conditions.  Thus, for this question we only need to use 

 

! 

QE = (1"# f )QEB +# fQEV  
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and vary the value of σf from 0 to 1 to get the answer.  This yields using a spreadsheet 

program 

 

 

 

Thus, an error of 10% in vegetation fraction yields differences in latent heat flux of 

approximately 33 W m-2.  As the differences in the fluxes between the bare soil and 

vegetated surfaces increase, then this error also increases.  This last conclusion is 

probably the most important one, that as the differences in flux values from bare soil and 

vegetated surfaces get larger, then errors in vegetation fraction have a larger impact.   

 

5]  For a 50% vegetation fraction at a particular grid cell, assume errors of 10% in 

vegetation fraction and errors of 0.05 m3 m-3 in volumetric soil moisture measurements.  
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Using (3.6)-(3.7) for the bare soil evaporation and (3.24)-(3.25) for evapotranspiration 

from the vegetation, determine the range in uncertainty for the total latent heat flux owing 

to these two factors.  Comment on the importance of these two measurements.   

 

Solution: 

This question again looks at uncertainties in the flux values due to errors in both soil 

moisture and vegetation fraction.  One way to approach this question is to evaluate the 

uncertainties separately, and then combined, to more fully explore the sensitivies to these 

errors.  Recall that both expressions use a function g where 
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Thus, one can rewrite the total latent heat flux, assuming zero canopy water, as 
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where γ represents the contribution to transpiration from soil moisture and β represents 

the contribution to bare soil evaporation from soil moisture.  Start with the default values 

for soil moisture and vegetation fraction, and knowing that Ep = 892.22 W m-2 from 
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question 2].   Vary the soil moisture in the two vertical levels by plus and minus 0.05 and 

recalculate the values of γ and β.  Then use these values with the 2 different vegetation 

fractions (40% and 60%).  This leads to a table of results, such that 

 

 γ β QE QE with 40% QE with 60% 
initial 0.35184 0.62962 437.8391206 462.6232078 413.0550334 

-0.05 0.16666 0.4444 272.5999766 297.3804949 247.8194583 
0.05 0.537 0.8148 603.051498 627.8373696 578.2656264 

 

where initial is the default value for soil moisture and vegetation fraction.   

 

From this table, one can see that the latent heat flux varies from a low value of 247.8 to a 

high value of 627.8 W m-2, yielding a maximum flux difference of 380 W m-2 for these 

size errors in soil moisture and vegetation fraction.  Errors in vegetation fraction of 30% 

are reported in studies when the model uses a climatology for vegetation fraction 

(Kurkowski et al. 2003).  Uncertainty in volumetric water content of 0.05 m3 m-3 are not 

uncommon.  Thus, this problem highlights that errors in flux values due to improper 

specification of the land surface can be quite large. 

 

6]  Calculate the values of soil potential for sand, loam, and sandy clay from Θ = 0.05 to 

0.40 with Θs = 0.40 assumed for all three soil textures.  Assume that κs = 1x10-5 m s-1 and 

that ψs = -0.5 J kg-1.  Using the results in Table 3.1, incorporate one standard deviation in 

the values of b and recalculate the values of soil potential.  Using (3.67), calculate the 

values of diffusivity D for these 9 values of soil potential.  Comment.   
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Solution: 

The equation for soil potential is (3.56), which states that 
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"
soil

="
s
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s
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*b

, 

 

such that if we know the saturation matric potential, the porosity, and the exponential b 

factor, then it is easy to calculate the soil potential.  The question provides the porosity 

and the saturation matric potential, so all we need to do is look up the value of b for the 3 

soil types.  The table shows that the values of b and its standard deviation for sand are 

2.79 and 1.38, for loam are 5.25 and 1.66, and for sandy clay are 10.73 and 1.54.  Thus, 

using a spreadsheet program, one can generate the following chart using the above 

equation for soil potential.   
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This chart shows a few common behaviors. First, as the value of b increases, the curves 

shift to the right (i.e., the potentials become negative faster as volumetric water content 

decreases).  Second, if one chooses a volumetric water content, the differences in 

potential for the 3 values of b for each soil type can be large.  Take loam soil with a 

volumetric water content of 0.125 m3 m-3 and one finds that for the 3 values of b, the 

potential varies from -32 to -1547 J kg-1!  Finally, the potential curves from different soil 

types overlap in their range (loam and sand in the above chart).   

 

To calculate the value of the diffusivity D, we use (3.67) as indicated.  This equation 

states that 

 

! 

D =
"(#)

g

$%

$#
, 
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and we further know from (3.57) that 
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This yields 
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in which we can calculate the derivative of potential with respect to volumetric water 

content from the spread sheet we created to produce the graphs.  This yields a chart of 

diffusivity as a function of volumetric water content for the 3 soils.   
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Again, as with potential, one sees that the values of diffusivity can overlap for different 

soil types when their range of values is taken into consideration.  Also note that 

diffusivity values are small and remain fairly constant for volumetric water contents 

below 0.25, but increase fairly rapidly for volumetric water contents above 0.3.  

Minimum values of diffusivity are roughly 10-11.   

 

7]  Using the same basic data as in 1],  examine the benefits of mosaic tiling.  The latent 

heat flux for 1 m tall grasses has already been calculated.  Now assume that 70% of the 

model grid cell is represented by these grasses, but that 30% of the model grid cell is 

represented by oak trees that are 8 m tall and have a LAI of 10.   Determine the latent heat 

flux using the tiling approach of (3.44).  Comment on the differences in the values of 

latent heat flux for a homogeneous versus heterogeneous land surface as described.   
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Solution: 

This is a really open-ended question that can be solved in a number of ways, depending 

upon the assumptions one makes.  For example, in previous problems we always 

calculated the fluxes at the 2 m height where the data are available.  However, this is not 

so simple for oak trees that are 8 m tall.  For these trees, the displacement depth is 6 m, 

below which the winds are light but not exactly zero.  The notes provide no formulas for 

calculating the wind speed at heights below the displacement height.  Thus, one needs to 

make a guess or hunt for another formula.  This question challenges the students to think 

about the problem and how to solve it in a way that makes sense, but without breaking 

any important rules or making really, really bad assumptions.   

 

One option is to begin by assuming that the value of Ep calculated in 2] still applies and 

using equations (3.38)-(3.41) with the F-factors to calculate a new transpiration over the 

oak tree region.  Use the same assumptions as in questions 2] and 3] to make life easier.  

The next step is to see if any of the F-factors need to be calculated with different input 

values.  With identical soil moisture and incoming radiation levels, and assuming the 

same resistances, the big differences are the value of LAI and the wind profile due to the 

height of the trees.   

 

The F1 factor will be different than the earlier calculation.  Recall that  
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f = 0.55
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=1.54  
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from which 
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F
1

=

f +
rcmin

rcmax

1+ f
=

1.54 +
100

5000

1+1.54
= 0.6142. 

 

However, the other 3 F-factors are all the same.  Thus, the canopy resistance becomes 
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r
c

=
r
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LAI " F1F2F3F4
=

100

(10)(0.6154)(0.7042)(0.9841)(0.35184)
= 66.77. 

 
Next, the value of Δ is the same, but the values of Ch and ua are going to be different.  

Calculating the wind speed is problematic, as we need to provide values of roughness 

lengths that we don’t have from the question.  So again we guess.  We know that the 

winds below the displacement height are light, perhaps much less than 1 m s-1.  Assume a 

value of 0.2 m s-1 below the displacement height.  Further guess a small roughness length 

of 0.1 m and estimate that the roughness length for heat is 1/7 of this value.  This leads to 

an estimate of  
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from which one can calculate Bc once again.  This yields 
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Finally, we can calculate the latent heat flux over the oak region to be 
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QEV =" f E pBc 1#
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assuming a vegetation fraction of 1.  For a grid cell that is 70% grasses with a latent heat 

flux of 80.47 W m-2 and 30% oak trees with a latent heat flux of 797.64 W m-2, one can 

combine these to get an estimate for the latent heat flux from the total grid cell using 

(3.46) or simply 

 

! 

QE =
70*QE _ grass + 30*QE _ oak

100
=
70(80.47) + 30(797.64)

100
= 295.62Wm

"2 . 

 

Compared to the original flux value over the grass region of less than 100 W m-2, the flux 

that represents both the grass and oak tree region is over 3 times larger!  Even though the 

oak trees represent only 30% of the grid cell area.  Thus, under the right conditions 

subgrid variability of vegetation type can have a large role in determining the flux values.   
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Chapter 4 

 

1]  Go onto the world-wide web and search for a site that provides daily or weekly global 

SST analyses or regional SST analyses appropriate for your location and available over at 

least a 1-year period.  Explore these data for a 1-year period and describe the SST 

evolution nearest to where you live.  What is the typical range of SST values?  Are there 

any features or structures that you can describe (e.g., currents, anaomlies such as warm 

rings)?  How do you think the oceans influence the weather where you live? 

 

Solution: 

The hope is that this question will encourage the students to see what information is 

available on the internet, and challenge them to think about how the oceans influence the 

weather where they live.  A quick search on Google with the words “SST analyses” leads 

to several candidate sites.  One is the NOAA Optimum Interpolation Sea Surface 

Temperature page at http://www.emc.ncep.noaa.gov/research/cmb/sst_analysis/ that has 

archived images from 2000 onward that can be downloaded as images.  While the images 

do not have a lot of small-scale structure, they definitely paint a picture of the general 

evolution of ocean SSTs.   

 

Much greater detail can be found with the RTG_SST analysis from the NCEP/EMC 

Marine Modeling and Analysis Branch.  The web page for this is 

http://polar.ncep.noaa.gov/sst/ but it does not appear to have archived imagery available 

as images (it may have data from a few months back available in GRIB files).   
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2]  Using the sensible heat flux equation (4.1), examine  the sensitivity to roughness 

lengths z0 and z0h.  First, assume ρ = 1.0 kg m-3, TSST = 303 K, T (10 m) = 300 K, L = -50 

m, w* = 1.0 ms-1, the 10 m wind speed is 10 m s-1, u* = 0.8 m s-1, and viscosity ν = 

1.46x10-5 m2 s-1.  Determine z0 using (4.7) and then z0h from (4.13) and (4.14).  Calculate 

QH using both values of z0h.  How sensitive are the results to the formulas used?   

 

Solution: 

This question again explores the differences one finds when using various formulas to 

calculate the sensible heat flux.  In particular, the information provided focuses the 

question on the sensitivity to the roughness length calculations.  To begin, use (4.7) to 

calculate the roughness length over water.  Thus, 

 

! 

z0 ="cu*
2
/g + 0.11# /u* =

(0.011)(0.8)
2

9.81
+
(0.11)(1.46x10

$5
)

(0.8)
= 0.000718m . 

 

Next, to determine z0h from (4.13) one first must calculate the roughness Reynolds 

number Rr.  We know that 

 

! 

R
r

=
u*z0

"
=
(0.8)(0.000718)

1.46x10
#5

= 39.34 , 

 

so from Table 4.1 we see that ah = 34.904 and bh = -2.067.  Then (4.13) yields 
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Using the resistance formula (4.2), we have that 
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so we still need to calculate the value for ψh.  Thus, we look back to Chapter 2 for the 

definition of this function and note that it requires us to calculate x first.  The expression 

is from (2.40) and states 
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and so from (2.46) 
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Finally, we can calculate the resistance and then the sensible heat flux over the water, 

using 
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= 27.283+ 24.093 = 51.376

 

 

and 

 

! 

QH =
"cp (TSST #T(z))

rH
=
(1)(1004)(303# 300)

51.376
= 58.62Wm

#2 . 

 

Now we turn to calculating the roughness length for heat from (4.14).  The value of the 

roughness Reynolds number was already found to be 39.34, so we use the rough surface 

formula.  This yields 

 

! 

z0h = ae
"bu*

1/4

= 0.169e
"1.53(0.8)

1/4

= 0.03976m . 

 

However, this roughness length for heat is larger than the roughness length of 0.000718 

m.  I have double checked the formulas for both roughness length and roughness length 

for heat, and they appear correct.  While the observations used to start this problem are 

fictitious, they do not appear unrealistic.  Thus, I include this as a problem to illustrate to 

the students that not everything you read in the literature can be immediately translated 

into code without a bit of testing.  I am not certain that the roughness length for heat 

should be larger than the roughness length, but perhaps this can occur and is realistic.  
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Regardless, it raises a question that should be answered before these two formulas are 

used together in a model.  Here, I simply choose to use the roughness length calculation 

for smooth surfaces instead, which states that 
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z0h =
d"

u*

=
(0.395)(1.46x10

#5
)

0.8
= 7.2x10

#6
m . 

 

The roughness length for heat is now smaller than the roughness length, which is 

consistent with expectations.  This value is then plugged into the equation for resistance, 

noting that only the last term is influenced by this change in z0h, and we calculate that rH 

= 41.66.   Using this value it is simple to calculate the sensible heat flux again, yielding 

QH = 72.3 W m-2.  While this is only a 13.6 W m-2 difference from the first calculated 

value, in percent the change from the original value of 52.6 is 26%!  So a larger air-sea 

temperature difference could lead to a significant change in flux values.  Think about 

those cases in the fall when cold continental air surges southward and out over the Gulf 

of Mexico or off the east coast of the United States.   

 

3]  Using the results from 2], now calculate z0 using (4.8) and assume that the neutral 

wind speed is equal to the assumed 10 m wind speed given.  Recalculate the values of z0h 

using (4.13) and (4.14) and again determine the values for QH.  How sensitive is the value 

of QH to the values of z0h and to the values of z0?   

 

Solution: 
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To answer this question, one just moves through equations (4.9)-(4.11).  Start with the 

equation for the significant wave height h = 0.0248u where u is the 10 m wind speed.  

Thus, h = 0.0248(10) = 0.248 m.  Next move to the domaint wave period calculation, 

such that Tp = 0.729u = 0.729(10) = 7.29.  From the wave period one calculates the wave 

length of the peak energy spectrum Lp = gTp
2/2π  = (9.81)(7.29)2/(2π) = 82.97.  Finally, 

we can calculate the roughness length using (4.8) such that  
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z0 =1200hs
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" 

# 
$ $ 

% 

& 
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4.5

=1200(0.248)
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82.97
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(9
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To calculate z0h we use (4.13) and (4.14).  To use (4.13) we need to recalculate the 

roughness Reynolds number 
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R
r

=
u*z0

"
=
(0.8)(1.3x10

#9
)

1.46x10
#5

= 7.1x10
#5. 

 

From Table 4.1 we find that ah = 0.177 and bh = 0.  Thus,  

 

! 

z0h =
"

u*

a
h
R
r

bh =
1.46x10

#5

0.8
(0.177)(1) = 2.6x10

#6
m , 

 

which is larger than the roughness length z0!  If one instead uses (4.14) then you see that 

the calculation does not change and the roughness length z0h = 7.2x10-6 m.  Thus, both of 
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these calculated values of z0h are larger than the roughness length z0.  Thus, I will assume 

that z0/z0h = 1 in the heat flux calculations.   

 

The two resistances for heat flux are then the same, since the roughness lengths for heat 

are identical to the roughness length, with rH = 68.6.  This yields a sensible heat flux 

value of QH = 43.9 W m-2.  This is smaller than the other calculated values by slightly 

less than 10 W m-2, but the differences remain a large fraction of the total flux.   

 

These questions are not intended to cast stones at the formulas used.  However, it is 

important for students (and the rest of us) to learn that one must be careful in applying 

formulas from studies to models where the formulas will be applied over a wide range of 

values.  One must first test the results using these formulas and make sure they are 

reasonable.  There probably is a simple explanation for why the results behave as they do, 

but I have yet to find it.  Perhaps your students will find the answers! 

 

4]  We know that SST varies slowly in comparison to changes the atmospheric surface 

layer, even over the tropical oceans far away from land.  What processes could produce 

variability in the atmospheric surface layer over the oceans?   

 

Solution: 

This is another open ended question designed to make the students think a bit.  Over the 

tropical oceans, convection is obviously one phenomena that can influence the surface 

layer.  Cold downdrafts from convection descend into the boundary layer and surface 
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layer, dramatically changing the conditions within these layers, producing cooler and 

often drier conditions.  Winds within cold downdrafts also can be quite strong, leading to 

the generation of sea spray.   
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Chapter 5 

 

1] Following the outline provided by the section on Reynolds averaging and turbulence 

closure, derive the equations for the perturbation velocity and potential temperature 

 

! 
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= ... 
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" # $ 

"t
= ... 

 

the equations for the turbulent fluxes 
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"t
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! 
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i
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and the equations for the variances 
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Begin by expanding the variables into a mean and a perturbation component and use the 

Boussinesq equation (5.3) and    

 

! 

"#

"t
+ u j
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"x j

= $
" 2#

"x j

2
. 

 

 

Show all work.  

 

Solution: 

The first part of the solution for the momentum term simply follows the equation 

development in section 5.3, however, I have found it important for the students to work 

through this derivation on their own.  See Stull (1988) and other boundary layer 

textbooks for further details.  Thus, beginning with (5.3) we have 
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The next step is to expand each variable into a mean and perturbation, yielding 
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Now all the terms are multiplied out and separated to obtain 
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However, this equation represents the evolution of both the mean and turbulent portions 

of the momentum equation.  So average over the entire equation to obtain an equation for 

the time rate of change of the mean, yielding 
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We can then subtract this equation for the mean from the equation just prior to it in order 

to get an equation for the turbulent gust, namely 
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This equation already contains the rewritten Reynolds stress term developed in section 

5.3.   

 

To develop an equation for the turbulent fluxes, recall that 
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So to obtain the evolution of the Reynolds stress term, simply multiply the equation for 

the turbulent gust by 

! 

" u 
k
 to produce the second term on the right hand side of the above 

equation.  The first term on the right hand side can be determined by taking the equation 

for the turbulent gust, changing all the i-indices to k-indices and then multiplying by 

! 

" u 
i
.  

This is a messy process, but is not difficult and the end result is 
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This represents 9 different equations, including equations for 

! 

" u " u , " u " v , " u " w , " v " v , " v " w , and 

! 

" w " w .   However, the total number of equations is reduced to 6 owing to symmetry (e.g., 

! 

" u " v = " v " u ).   

 

Next, for the momentum variance equation, recall from the product rule of calculus that 
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So multiply the equation for the turbulent gust by 

! 

2 " u 
i
.  This yields 
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Apply the product rule again to combine terms where possible, yielding 
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Now Reynolds average the entire equation to obtain 
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where the only term that averages to zero is the last term on the right-hand-side, since a 

perturbation is multiplying an averaged quantity.   This equation is often rewritten using 

knowledge that the perturbation continuity equation equals zero [see equations (5.7) 

through (5.10)].  Thus, multiplying the perturbation continuity equation by 

! 

( " u 
i
)
2  and 
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averaging it will still yield zero, allowing the fourth term on the left-hand-side of the 

above equation to be rewritten, yielding 

 

! 

"( # u i)
2

"t
= $u j

"( # u i)
2

"x j

$ 2 # u i # u j
"u i

"x j

$
"( # u j ( # u i)

2
)

"x j

+

2%i3
# u i
# & v

& v
g

' 

( 
) 

* 

+ 
, + 2 f-ij3

# u i # u j $
2

. 
# u i
" # p 

"xi

+ 2/ # u i
" 2 # u i

"x j

2

. 

 

For the potential temperature equations, we start with 
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and expand into mean and perturbations, yielding 
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Reynolds average to obtain an equation for the mean, namely 
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where we used the shallow Boussinesq assumption (incompressibility) to rewrite the 

Reynolds flux term.  Finally, subtract the equation of the mean from the equation above it 

to obtain the equation for the perturbation potential temperature tendency, 
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To calculate the turbulent flux, note that 
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so one simply multiplies the turbulent gust equation by 
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" #  and the perturbation potential 

temperature tendency equation by 
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Reynolds average, use the product rule to combine terms, and find that the resulting 

equation is 
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where again the perturbation continuity equation is used to produce the triple correlation 

term.   

 

Last, the potential temperature variance equation is calculated by starting with the 

equation for the perturbation potential temperature and multiplying it by 
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2 " # , yielding 
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Use the produce rule to simplify terms and Reynolds average, to obtain 
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As done previously, the continuity equation is used to develop the flux term (the third 

term on the right-hand-side of the equation).   

 

2] Using knowledge of turbulence closure, discuss the pros and cons to going to higher-

order closure schemes (i.e., third-order closure).   
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Solution: 

This question is intended to cement the ideas covered in section 5.3 on turbulence 

closure.  The reasoning behind this parameterization philosophy is stated nicely by 

Lumley and Khajeh-Nouri, namely, that if a relatively crude assumption for second 

moments predicts first moments adequately, then perhaps a relatively crude assumption 

for third moments will predict second moments adequately - yielding even better 

predictions for the first moments.  The farther we move the assumptions away from the 

terms of most interest (typically the mean quantities), then the more realistic the model 

and hopefully the less effect the assumptions play in determining the resulting behavior 

of the parameterization. 

  

3] One set of equations for a mixed layer model are 
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where  M denotes the moisture availability, CT is a transfer coefficient, and VS is the 

surface wind speed.  Let us now examine the consequences of changing both the 

entrainment parameter ke and the moisture availability.  Assume the following: 
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CT = 0.015 

VS = 10 m s-1 

M  =  0.5 

θS =  311 K + 10 *Δt (3 hours)-1  (potential temperature increases linearly with time to 

 321 K at 3 hours and 331 K at 6 hours) 

qS  =  17 g/kg - 2.5*Δt (3 hours)-1 (mixing ratio decreases by 2.5 g kg-1 over 3 hours) 

 

and the initial environmental potential temperature and mixing ratio profiles look like: 

 

θ = 310 K + 5K*z (1000 m)-1 

q = 11 g kg-1 at and below z = 1000 m  

q =  3  g kg-1 above z = 1000 m 

 

where H = 30 m at time zero (if H is zero at time zero, then the model blows up).  

Develop a finite difference version of these mixed layer equations and integrate the 

equations for 3 hours and 6 hours using three different values of ke:  0.1, 0.3, and 0.5.  

Then answer the following questions.  What are the final values of θ and q in the mixed 

layer?  What are the final values of mixed layer depth H?  What do these results say 

about the importance of choosing an appropriate value for the entrainment coefficient 

when using a PBL model?  Do these differences increase or decrease over longer time 

periods?   
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One simple integration scheme is to define 

! 

" x i,n = f (xi,n ), where i denotes the variable 

(i=1, 2, 3) and n is the time level, and then integrate forward one time step to n+1  using 
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) *"t .  This simple time integration scheme is stable for 

the mixed layer model, but requires a time step of about 1 second.   

  

Solution: 

 

First, below is a fortran77 code that integrates the mixed layer equations forward in time.   

 

c****************************************** 
       program mixed_model 
c 
c**    simple mixed layer model program 
c 
       real ct,vs,ke,h,ts,tbar,qs,qbar,dq,dtheta,m 
       real tbar2,qbar2,h2 
c 
       ke=0.5 
       m=0.5 
c 
       ct=0.015 
       vs=10. 
       tbar=310. 
       qbar=11. 
       h=30. 
c 
       dt=1.0 
       itime=int(6.*3600./dt) 
c 
       do i=1,itime 
c 
        ts=310.+10.*i/(3.*3600.) 
        qs=17.-2.5*i/(3.*3600.)  
c 
        dtheta=(310.+h*5./1000.)-tbar 
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        if(h.le.1000.) then 
         dq=11.-qbar 
        else 
         dq=3.-qbar 
        end if 
c 
        tbar2=tbar+dt*(1.+ke)*ct*vs*(ts-tbar)/h 
        qbar2=qbar+dt*ct*vs*( m*(qs-qbar) + ke*(ts-tbar)*dq/dtheta )/h 
        h2=h+dt*ke*ct*vs*(ts-tbar)/dtheta 
c 
        tbar=tbar2 
        qbar=qbar2 
        h=h2 
c 
c**  print out model data every hour. 
c 
        if(mod(i,3600).eq.0) print *,(dt*i)/3600.,tbar,h,qbar,ts,qs 
c 
        end do 
c 
        stop 
        end 
 
 

The results from this model run using a 1 second timestep are shown in the following 

table.   

 ke = 0.1 ke = 0.3 ke = 0.5 

3-h θ (Κ) 315.9 315.9 316.0 

3-h q (g/kg) 11.1 10.3 9.8 

3-h H (m) 1277.8 1457.6 1602.5 

6-h θ (Κ) 321.7 321.9 322.0 

6-h q (g/kg) 8.3 7.9 7.6 

6-h H (m) 2555.6 2915.6 3205.1 
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These results show that while the potential temperature does not change very much as the 

entrainment coefficient changes (although note the decrease in mixing ratio as 

entrainment increases), the mixed layer depth varies from 2556 to 3205 m and the mixing 

ratio varies from 8.3 to 7.6 g kg-1!  This is a change of 25% in height and 10% in mixing 

ratio.  The smaller sensitivity of mixing ratio may be due in part to the initial profile 

chosen and the specified decrease in qs with time.  However, just the change in mixed 

layer depth alone indicates how important the entrainment coefficient is for mixed layer 

models.  The differences increase in absolute value, but the fractional change in mixed 

layer depth is constant between 3 and 6 h at just over 25%.  This is due in part to the 

simple environmental potential temperature profile specified that increases linearly with 

height.   The change in mixing ratio actually is a little larger at 3 h than at 6 h, again 

likely due to the specified initial profile of constant mixing ratio below 1 km.   

 

4]  Using the program developed in question 3, assume that the land surface scheme has a 

bias of +1 K in the temperature forecast over a 3-h period.  Thus, θS =  311 K + 11 *Δt/(3 

hours).  Rerun the mixed layer scheme with this surface temperature evolution and with 

ke = 0.3.   What are the values of mixed layer depth H at 3 and 6 hours?  How do these 

changes compare to changes in the entrainment coefficient?   

 

Solution: 

In the computer program, select the proper value for the entrainment coefficient and then 

modify the definition of variable ts in the code, such that 

 
ts=311.+11.*i/(3.*3600.) 
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and rerun.  The results are as follows: 

 ts = 310+10*i/(3*3600) ts=311+11*i/(3*3600) 

3-h θ (K) 315.9 316.8 

3-h q (g/kg) 10.3 9.6 

3-h H (m) 1457.6 1691.6 

6-h θ (K) 321.9 323.1 

6-h q (g/kg) 7.9 7.7 

6-h H (m) 2915.6 3241.9 

 

As expected, the warmer surface temperatures lead to a deeper, warmer, and drier mixed 

layer.  The differences in the variables is generally around 10% and the warmer surface 

temperature produces roughly the same results at 6 h as using an entrainment coefficient 

of 0.5.  Thus, one can imagine that errors in both entrainment coefficient and surface 

temperatures could lead to fairly substantial and operationally relevant errors in boundary 

layer depth, temperature, and mixing ratio.   

 

5]  Using the same initial potential temperature and mixing ratio profiles as in question 3, 

and with the same time rate of change of surface potential temperature and mixing ratio, 

develop a simple finite difference model of the lowest 10,000 m of the atmosphere based 

only upon K-theory mixing.  Use 
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and 
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and set up a vertical grid starting at the surface [z=0 so that θs = 

! 

" (0)] with 50 m vertical 

increments.  Here 

! 

"  is the mean potential temperature of a given model layer and is 

allowed to vary with height.  Assume that KH is a constant.   The time evolution of 

potential temperature and mixing ratio at z=0 is then specified.  Try the finite difference 

approximation  
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H
"t

("x)
2
F
m+1,n + F

m#1,n # 2Fm,n[ ] , 

 

where m is the vertical grid level, and n is the time level.  Try time steps of 1 second.  

Integrate the model out to 6 h and examine the potential temperture and mixing ratio 

profiles.  Try using several values of KH between 10 and 200.  What behaviors are seen?  

Is this result realistic? 

 

Solution: 

Below is a simple fortran77 program to integrate the PBL forward in time using a K-

theory approach.  It uses the same time specification for surface potential temperature and 
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mixing ratio as the mixed layer model, but then uses K-theory to mix from the surface 

upward.   

c************************************ 
      program kdiff 
c 
c**    simple K-theory model for PBL 
c 
       real kh,tbar,qs,qbar,dq,dtheta,m 
       real tbar2,qbar2,h2 
       real t(200),q(200) 
       real ti(200),qi(200) 
       real t2(200),q2(200) 
c 
       kh=10.0 
       dx=50. 
c 
       dt=1.0 
       itime=int(6.*3600./dt) 
c 
       do i=1,200 
        z=dx*(i-1) 
        t(i)=310.+z*5./1000. 
        ti(i)=310.+z*5./1000. 
        if(z.le.1000.) then 
         q(i)=11. 
         qi(i)=11. 
        else 
         q(i)=3. 
         qi(i)=3. 
        end if 
       end do 
 
       do i=1,itime 
c 
        time = time + dt 
 
        t(1)=310.+10.*time/(3.*3600.) 
        q(1)=17.-2.5*time/(3.*3600.)  
c 
        do k=2,199 
         if(k.le.5) kh1=kh+kh*(5-k) 
         t2(k)=t(k)+kh1*dt*(t(k+1)+t(k-1)-2.*t(k))/(dx**2) 
         q2(k)=q(k)+kh1*dt*(q(k+1)+q(k-1)-2.*q(k))/(dx**2) 
        end do 
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        do k=2,199 
         t(k)=t2(k) 
         q(k)=q2(k) 
        end do 
 
        end do 
c 
        do k=1,100 
         print *,(k-1)*dx,t(k),q(k),t(k)-ti(k),q(k)-qi(k) 
         write(10,100) (k-1)*dx,t(k),q(k) 
        end do 
100     format(3f12.3) 
 
        stop 
        end 
 
 

Results for values of KH = 10, 50, 100, and 200 are shown on the graphs below. 
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This exercise is used to help the students learn about K-theory mixing.  Although in a real 

PBL model, the value of K will change with height based upon various assumptions, 

some behaviors are commonly seen from parameterizations that use K-theory.   

 

First, note that off the surface the potential temperature decreases with height to a fairly 

large depth.  This layer is a superadiabatic layer and has been seen over fairly deep layers 

in models that use this type of approach, although not to the large depths seen above.  

Second, note the smooth profiles, which make it hard to determine the top of the 

boundary layer.  As the value of KH is decreased, the vertical depth of the estimated 

boundary layer is less and the structures are better defined (i.e., easier to find the top of 

the boundary layer).  However, the decrease in potential temperature with height just 

above the ground to the middle of the boundary layer is larger and quite unrealistic for 

these lower values of KH.   
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While this example is extreme, it does provide a general idea of how K-theory works and 

the challenges to using it to describe PBL evolution.   

 

6]  Obtain an observed sounding from near local noon or late afternoon (0000 UTC in the 

USA is fine) and a corresponding 2-m temperature and mixing ratio.  Determine the 

positive and negative areas of this sounding, as defined from the penetrative convection 

non-local closure scheme, and the boundary layer top.  Using the diffusion scheme, 

calculate the surface value of θv + θT  and from this value also the boundary layer top.  

Finally, using the observed wind and thermodynamic profiles, estimate values for KH 

within this boundary layer using mixing length theory as in (5.59) and (5.61).  How does 

the implied mixing from the local closure scheme compare to the implied mixing from 

the non-local closure schemes?  Explain.   

 

Solution: 

Begin with the penetrative convection scheme found in section 5.4.2.  Note that the 

positive area in the boundary layer produced by a thermal rising from the surface 

conditions is related to the negative area by the entrainment coefficient.  For our 

purposes, the positive area in the sounding is simply the integral of the potential 

tempeature difference between the rising thermal and the environmental temperature (Δθ) 

multiplied by the change in depth Δz.  Thus, for each observation height we calculate the 

value of Δθ and then multiply it by the change in height Δz between this level and the one 

below.   
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I grabbed the 0000 UTC 3 January 2007 sounding from Norman, Oklahoma, for this 

exercise.  I converted the temperature data into potential temperature and list them below.   

Pressure (hPa)  Height(m)  Potential temperature(K) Wind speed(m/s) 

984.   345   282.4   1.54 
976.   412   282.9   2.06 
962.   531   282.9   2.57 
952.8   610   282.9   3.08 
928.   826   283.1   2.06 
925.   852   283.2   2.06 
918.   914   283.2   2.06 
905.   1029   283.3   2.57 
901.   1065   283.7   2.57 
899.   1083   283.9   2.57 
890.   1164   284.3   3.08 
886.   1200   284.8   3.08 
883.9   1219   287.1   3.08 
870.   1348   289.6   3.08 
850.   1538   292.8   2.57 
 

The Norman surface observations from the time of the sounding launch indicate 

conditions that are cooler than the boundary layer from the sounding, so I choose instead 

conditions from 2 hours earlier.  These conditions are used to determine a surface 

potential temperature of 283.8 K.   

 

As indicated in Figure 5.13, the positive area in the boundary layer is the area over which 

a rising thermal from the surface layer (defined using surface conditions) is warmer than 

the environment.  For this example, our surface layer has a potential temperature of 283.8 

K as indicated by the surface observations at 2 m height.  Thus, the positive area can be 

calculated simply by calculating the difference in potential temperature between the 

surface and each observed height in the sounding and multiplying this difference by the 

change in height.   Thus, 
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Pres(hPa) Height(m)  Potential (K) Δθ (K)  Δz (m) 

984.  345  282.4  1.5  0 
976.  412  282.9  1.0  67  
962.  531  282.9  1.0  119 
952.8  610  282.9  1.0  79 
928.  826  283.1  0.8  216 
925.  852  283.2  0.7  26 
918.  914  283.2  0.7  62 
905.  1029  283.3  0.6  115 
901.  1065  283.7  0.2  36 
899.  1083  283.9  0.0  18 
890.  1164  284.3  -0.4  81  
886.  1200  284.8  -0.9  36 
883.9  1219  287.1  -1.5  19 
870.  1348  289.6  -5.7  129 
850.  1538  292.8  -8.9  190 
 

One can immediately tell that the inversion height zi is at 1083 m or 899 hPa sicne this is 

where the surface parcel has the same temperature as the sounding.  Multiply Δθ*Δz from 

the surface to the inversion height and add them together.  The result is 575.6 Km.  

Assuming an entrainment coefficient of 0.2, yields a negative area of -115.12 Km.  Now 

repeat this process above the inversion height until you match the assumed negative area 

of -115.12 Km.  To do this, you need to use partial layers.  The result is a calculated PBL 

top of 1223 m.  This is 140 m above the inversion height.   

 

The next part of the question involves an examination of the non-local diffusion scheme 

described in section 5.4.3.  If one examines (5.44), then you might notice that the results 

of the exercise above provide information on all the variables except for θs.  Thus, one 

can rewrite (5.44) to solve for this variable, which yields 
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We know that h = 1223 m, θ(h) = 285.4 K (taking the value from the closest temperature 

observation to the calculated boundary layer height), Ric = 0.25, U(h)=3.08 m s-1, θva = 

283.9, and g=9.81 m s-2.  Plug these values into the above equation and find that θs = 

285.34 K.  Using the definition of θs in (5.45), then θT = 1.44 K which is well within the 

range specified (not to exceed 3.0).  Last, since we used the boundary layer depth 

calculated earlier to obtain a value for θs, the boundary layer depth from this approach 

will be the same value of 1223 m.   

 

Finally, estimate values for KH using mixing length theory from (5.59) and (5.61).    Note 

that to answer this question a value for mixing length l is needed.  We will assume a 

value of 100 m for l, although values between 50 and 100 are certainly reasonable.  Then 

we see that (5.61) indicates that 
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Going back to the sounding, we have  

Pres (hPa) Height(m) Wind speed(m/s) ΔU  Δz  KH 

984.  345   1.54  1.54  0  0 
976.  412   2.06  0.52  67  77.6 
962.  531   2.57  0.51  119  42.9 
952.8  610   3.08  0.51  79  64.6 
928.  826   2.06  -1.02  216  47.2 



88 

925.  852   2.06  0.0  26  0.0 
918.  914   2.06  0.0  62  0.0 
905.  1029   2.57  0.51  115  44.3 
901.  1065   2.57  0.0  36  0.0 
899.  1083   2.57  0.0  18  0.0 
890.  1164   3.08  .51  81  63.0 
886.  1200   3.08  0.0  36  0.0 
883.9  1219   3.08  0.0  19  0.0 
870.  1348   3.08  0.0  129  0.0 
850.  1538   2.57  -0.51  190  26.8 
 

First, note that the values of KH calculated here are within the range of values used in 

question 5.  Second, to address the question about the implied mixing from these values, 

one first recognizes that there are several layers for which there is no mixing suggested 

by mixing-length theory.  There is mixing suggested over the bottom four observation 

levels, nearer the ground surface where wind shear is larger, but in the rest of the 

boundary layer only sporadic mixing occurs.  In contrast, the non-local schemes assume 

that mixing occurs throughout the boundary layer depth, and as such the implied mixing 

structures are very different between a mixing-length local closure and a non-local 

closure approach.   

 

 

7]  Choose a single observed sounding location site and compare the observed soundings 

against model forecast soundings at all available observation times for a 7 day period.  

Construct a table comparing boundary layer depth, mean boundary layer potential 

temperature, and mean boundary layer mixing ratio from both the model and 

observational data.  Separate the data based upon observation time.  Summarize the 

results. 
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Solution: 

This question may or may not be possible to answer, depending upon the resources 

available at your location.  It is not hard to analyze soundings to get the numbers needed 

for these calculations, but most model web pages do not provide sounding plots as part of 

their standard output.  This is an unfortunate situation and one that I think should be 

remedied.  Sounding structure is so important that I am continually amazed that these 

vertical profiles are not routinely plotted and shown.   

 

I have found one web site that plots soundings for the Rapid Update Cycle model.  This 

site is located at http://rucsoundings.noaa.gov/ and could be used for this type of project.  

However, as of early 2007 the data were only available for roughly a 36 h period, so one 

could not look at an entire week worth of model data in one sitting.   

 

I typically like to ask this question and offer bonus points to students who can actually 

find the data and complete the analysis.  Just having them recognize that these data are 

not easily available, and yet are so important, is worthwhile. 
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Chapter 6 

 

1]  Plot the sounding data below on a Skew-T log-p diagram.  

    HT        P         TC    TD    SPD  DIR    U        V      

   791.0    920.5   36.7  16.3   11.0  180.    0.0    11.0     

   965.1    903.0   31.9  12.7   13.0  187.    1.6    12.9     

  1503.9   850.0   26.1  12.2   15.0  196.    4.1    14.4     

  2132.6   791.0   20.4  11.9   14.0  191.    2.7    13.7     

  2819.5   730.0   13.8  10.4     7.0  214.    3.9      5.8     

  2889.4   724.0   16.0   1.7      5.0  218.    3.1      3.9     

  3175.4   700.0   15.2  -8.2      1.0  204.    0.4      0.9     

  5098.8   554.0   -0.9 -15.9      1.0  290.    0.9    -0.3     

  5906.3   500.0   -8.4 -19.0      5.0  304.    4.1    -2.8     

  6713.2   450.0 -15.4 -24.4      7.0  269.    7.0      0.1     

  7091.2   428.0 -16.3 -34.5    12.0  267.  12.0     0.6     

  7597.0   400.0 -19.7 -37.3    12.0  264.  11.9     1.3     

  8409.8   358.0 -26.4 -43.0    13.0  270.  13.0     0.0     

  8960.1   329.8 -30.0 -34.0    14.2  284.  13.8    -3.5   

  9387.1   310.6 -30.4 -32.9    17.5  273.  17.5    -1.0   

  9630.6   300.1 -32.7 -35.5    17.4  270.  17.4     0.1   

 10501.1  264.7 -40.2 -40.0    18.0  259.  17.6     3.3   

 10888.0  250.0 -43.8 -50.0    18.5  255.  17.8     4.8   

 12355.9  200.0 -53.3 -60.0    33.2  251.  31.4   10.8   
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 13723.4  161.0 -62.5 -70.0    24.9  282.  24.3    -5.1   

 14160.5  150.0 -62.1 -75.0    20.8  294.  18.9    -8.6   

 15157.9  127.4 -67.1 -80.0    25.8  300.  22.4  -12.8   

 

Solution: 

Either graph on a Skew-T log p diagram by hand, or use one of many plotting programs.  

The result is a classic high plains sounding from the USA with an elevated mixed layer.  

This particular sounding is from Dodge City, Kansas, at 0000 UTC 24 June 1985.  

 

Sounding plotted on Skew-T log p diagram. 

 

2]  Calculate the saturation points (SPs) of the sounding (use different colored pencils). 
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Solution: 

Saturation points (SPs) are calculated by lifting parcels dry adiabatically to their lifting 

condensation level (LCL).  Thus, select a particular pressure level and identify the 

appropriate temperature and dewpoint values at this pressure level.  From the selected 

temperature value, draw a line upward along a dry adiabat.  From the corresponding 

dewpoint temperature value, draw a line upward along a line of constant mixing ratio.  

Where these two points meet is the SP for this parcel.  Repeat this procedure for a 

number of the observed values along the sounding.  This process is illustrated graphically 

below.   

 

SPs indicated by black dots.  Gray lines connect these SPs to their originating 

points.  Arrows show how the SP is calcluated for the 700 hPa conditions. 
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3]  Label any distinct mixing lines that occur over layers at least 100 hPa deep (if any) 

and calculate the value of β for those mixing lines.  Do at most three of these layers, if 

there are that many.   

 

Solution: 

Mixing lines are identified when you can connect SPs with a straight line on a 

thermodynamic diagram.  Three mixing lines are shown on this sounding plot below.  

The first is not really a line, but a bunch of SPs that cluster in the same location.  These 

SPs are all from the well-mixed boundary layer and end up in the same location.  Thus, 

the value of β for these points is zero, since 

 

! 

" =
#p*
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and the p* values do not change for these parcels even though their original levels (p 

value) do change from the bottom to the top of the mixed boundary layer. 

 

The second mixing line connects the SPs from the top of the mixed layer at 730 hPa to 

the top of the warm layer at 700 hPa.  Thus, p* changes from 700 hPa at the bottom to 

490 hPa at the top, while p varies from 730 to 700 hPa.  This yields a β value of (210/30) 

or 7!  This indicates that the temperature and dewpoint temperature profiles are diverging 

in this shallower layer, which is certainly true.   
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The third mixing line is from 490 to 310 hPa and is shown in black.  The original parcels 

at the top and bottom of this mixing line start at 700 and 428 hPa, respectively.  This 

yields a β value of 0.66, indicating that the temperature and dewpoint temperature lines 

are moving closer together.   

 

While one could argue that other mixing lines exist, or take issue with the fit of the 

mixing lines I have selected, the general idea and process should be clear.   

 

Three mixing lines (box, thick gray, and thick black lines) identified on this 

sounding.  The box indicates that all the SPs from the boundary layer have the 

same SP, since the boundary layer is very close to being perfectly well mixed.  

The gray mixing line is for the 730 to 700 hPa originating layer, while the black 

mixing line is for the 700 to 428 hPa originating layer.   
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4]  Calculate cloud base (LCL) and cloud top (equilibrium temperature level) for a 

representative parcel.  How is this parcel defined?  Discuss why the way in which this 

parcel is defined is important.   

 

Solution: 

Cloud base is typically defined by taking an average parcel in the low levels.  However, 

one could also take the parcel with the highest equivalent potential temperature (which 

for this sounding would be the parcel from the surface).  I have selected a parcel from the 

boundary layer, especially since it is fairly well mixed.  This is used to define a moist 

adiabatic that is shown starting at the LCL of a typical boundary layer parcel.  When this 

moist adiabat intersects the environmental sounding again in the upper levels, this is 

cloud top or the equilibrium level.   

 

Choose the surface parcel instead and see how far it moves the moist adiabat to the right 

on this sounding.  It certainly makes a big difference in the location of the moist adiabat, 

but will not dramatically affect the outcome of the BMJ scheme.  It will change the 

height of the equilibrium level, however, which does influence the scheme closure to 

some extent.   
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Cloud base is defined by an average parcel from the boundary layer, and cloud 

top is defined as the level at which the moist adiabat from cloud base equals the 

environmental temperature above the level where this adiabat is warmer than the 

environmental temperature.   

 

5]  Draw the first-guess reference temperature and humidity profiles for the Betts-Miller 

convective scheme.  Please use a second Skew-T log-p diagram for this plot.  Using 

knowledge of this scheme, adjust the BMJ profiles to conserve enthalpy and plot the 

resulting profiles.  Will the scheme activate?  Discuss how this decision was made.  If the 

scheme will not activate, then what would it take to make the scheme activate?  [Note 
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that a more general, approximate answer is desired.  There is no need to code up the 

entire scheme!] 

 

Solution: 

Recall that the BMJ scheme creates a reference temperature profile that has a lapse rate 

85% of the moist adiabatic lapse rate between cloud base and the freezing level and then 

asymptotes to the cloud base moist adiabat (sketched in question 4) between the freezing 

level and cloud top.  For this exercise, a simple estimate of this profile is sufficient.  An 

example is shown in the sounding below.  For the reference mixing ratio profile, note that 

Figure 6.13 shows the saturation pressure departure assumed by the scheme.  This is the 

pressure difference between the parcel LCL and its originating level.  The pressure 

departure is -25 hPa at cloud base, -40 hPa at 500 hPa, and -15 hPa at cloud top.  A 

sketch of this profile, defined using these pressure departures and calculated using the 

same SP methods as in questions 1-3, is also shown on the sounding below.  Note the 

characteristic shape of this reference profile.   
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Estimated reference temperature and mixing ratio profiles (dashed) for the BMJ 

scheme.   

 

The next step is to shift the profile to the left (in this case) to conserve enthalpy.  I use an 

approximate technique by dividing the cloud layer into 3 parts, from 700 to 500 hPa, 

from 500 to 300 hPa, and from 300 to 200 hPa.  For each layer I estimate an average 

temperature and mixing ratio value for both the original sounding and from the BMJ 

reference profile.  In order to conserve the total enthalpy, one needs  
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which is not true for the initial first-guess reference profile.  In this case the above 

integral is much greater than zero.  One can crudely estimate a correction by taking the 

total enthalpy and dividing by the difference in pressure between cloud base and cloud 

top and then dividing again by cp.  My calculations indicate a shift to the left of roughly 5 

K should come pretty close to conserving enthalpy for this case.  I make the shift, 

estimate again the layer-average values of temperature and mixing ratio and recalculate 

the total enthalpy.  It is not quite zero, but it is pretty small.  Good enough for this 

question.   

 

Looking at the final reference profile after enthalpy conservation, it is clear that the 

adjusted sounding is more moist than the original sounding.  You can verify this with a 

few simple calculations if you like.  This means that the scheme if activated would add 

moisture to the atmosphere, whereas we know convection removes moisture (and 

moisture removal is required by the BMJ scheme).  Thus, the scheme will NOT activate.  

Greater cloud layer moisture in the environment would be needed to activate the scheme.   
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Estimated final temperature and mixing ratio profiles for the BMJ scheme after 

total enthalpy is conserved.  Note the significant shift to the left compared to the 

first-guess profiles shown earlier.  In addition, the final mixing ratio profile is 

moister than the environment, indicating that the BMJ scheme will NOT activate.  

The dot indicates the original cloud base SP.   

 

6]  Assume that the Kain-Fritsch scheme activates at this grid point.  Draw an undilute 

updraft profile and an undilute downdraft profile.  Knowing that the final profile is a 

mixture of the updraft, downdraft, and environmental profiles, estimate a final reference 

profile for the scheme.  Draw these estimated reference temperature and moisture profiles 
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for the KF scheme, and explain how the three contributing profiles are mixed.  Please use 

a third Skew-T log-p diagram for this plot.  [Note the details on how to do this calculation 

were not provided formally, and since the KF scheme uses a buoyancy sorting procedure, 

one cannot reproduce the resultant profiles exactly without writing a lengthy computer 

program.  However, several examples were provided and the general working of the KF 

scheme was summarized, so it is possible to provide a general sketch of what the 

reference profiles look like.]   

 

Solution: 

Approximation and a few facts are needed to solve this question.  First, we know that the 

KF scheme defines a 60 hPa deep updraft source layer and evaluates these layers starting 

from the ground.  So define an updraft source layer as the first 60 hPa above ground and 

lift the average parcel defined by this layer to it’s LCL.  Then construct a moist adiabat 

starting at this LCL and use it to determine the equilibrium level or cloud top.  This moist 

adiabat is a crude approximation to the updraft profile in the KF scheme.   

 

The downdraft is determined by the average conditions within the first 150 to 200 hPa 

above the updraft source layer.  I choose to use a value of 200 hPa for this example.  

Once this layer is defined, then calculate the average conditions within this layer (average 

temperature, mixing ratio, and pressure), and bring this parcel up to it’s LCL.  This 

defines the wet bulb potential temperature of the downdraft parcel.  We know that the 

downdraft remains saturated above cloud base, but the become unsaturated below cloud 

base.  Construct an estimated downdraft profile using this knowledge.   
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Estimated updraft and downdraft profiles (dashed thick black lines) for the KF 

scheme.  Updraft source layer and downdraft origination level are shown.  The 

updraft is assumed to be saturated, while the downdraft is assumed to be 

saturated only above cloud base.   

 

The final profile from the KF scheme must lie between the downdraft, updraft, and 

environmental profiles.  It also needs to remove most of the CAPE in the environment 

and also should be slightly drier than the environment.  Using these conditions, estimate a 

final adjusted profile from the KF scheme.  One could spend a lot of time making sure 

moisture is removed by the scheme, but the main point is to focus on how the updraft, 
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downdraft, and environmental profiles all combine to produce the final result.  It is a 

much different process than used by the BMJ scheme.  Also emphasize that the BMJ 

scheme only directly influences the cloud layer, whereas the KF scheme influences the 

boundary layer as well.   

 

Estimated final adjusted profiles of temperature and mixing ratio (thick gray 

lines) produced by the KF scheme for this sounding.  The updraft and downdraft 

profiles are still shown (thick black dashed lines).  Note that CAPE is very small 

and that the final profile reduces the boundary layer moisture a lot, even though it 

moistens the cloud layer.  The net result is a very small decrease in moisture when 

the scheme activates.  In this type of environment, the KF scheme likely will not 

produce much rainfall.   
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7]  How do the adjusted profiles from the Betts-Miller and Kain-Fritsch schemes 

compare?  Under what circumstances would  one be preferred over the other?  Why? 

 

Solution: 

As mentioned previously, one main difference between the two schemes is that the BMJ 

scheme does not directly influence the environment below cloud base.  This is clearly 

seen when the two final profiles from the BMJ and KF schemes are plotted on the same 

sounding.  Note also that the KF scheme is able to respond more to the local 

environmental conditions.  Students may notice that the BMJ scheme does not warm the 

mid-level environment as much as the KF scheme, but then this example is not a great 

comparison since the BMJ would not activate for this sounding.  Thus, one must be 

careful in drawing too many conclusions.  The difference to highlight is the effect of the 

schemes on the boundary layer and the smooth vertical structure to the BMJ profiles 

compared to the KF scheme that responds more to changes in environmental conditions.   
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Overlay of the final BMJ (dashed) and KF (thick gray) adjusted profiles for the 

same sounding.  Note the dramatic differences below cloud base.   

 

8]  Rework questions 1 through 7 using a sounding from a more tropical environment. 

 

Solution: 

This one is up to you.  Just follow the basic procedures discussed above.  What you 

typically see when using a more tropical sounding is that the cloud base is much lower 

and so the differences between the two schemes in the boundary layer are less.  The BMJ 

also is more likely to activate, since most tropical regimes are moister in the cloud layer.  
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The differences in the final profiles from the KF and BMJ schemes are smaller, but still 

noticeable.   

 

9]  If possible, examine hourly soundings from an operational model forecast in a region 

of convection.  From this examination, find soundings just prior to, during, and after 

convection has developed in the model.  Outline the convective scheme used in this 

model forecast, and use these soundings to illustrate the behavior of this scheme.   

 

Solution: 

As mentioned in the solutions to Chapter 5, I am amazed that it is so hard to find 

sounding plots from numerical weather prediction models.  Horizontal fields abound, but 

sounding output is rare on the internet and this situation needs to change in my opinion.  

However, if you have access to such a display system it is helpful for the students to see 

how rapidly the soundings change once convection is active.  Seeing an evolution like 

that shown in Figure 6.21 is somehow different when you see it yourself.  You also will 

begin to see some characteristic behaviors for some schemes, and this can be helpful in 

evaluating the environmental conditions and gives you a better understanding of how 

convection affects the environment.   

 

10]  Present an argument for why one would choose a deep-layer over a low-level control 

convective scheme, or vice versa.   Why are both types of convective schemes are in use 

today?   
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Solution: 

This question is really wide open and almost any reasonable discussion would be 

acceptable.  From my perspective, low-level control schemes more closely mimic our 

conceptual view of how convection is activated by lifting a parcel to its level of free 

convection.  This is quite appealing to me and is one reason why I tend to favor low-level 

control schemes.  However, convection is a complicated beast and deep-layer control 

schemes clearly are picking up on some of the processes that influence convection.  They 

tend to focus more on moisture-control instead of instability-control.  Both types of 

schemes are in use today because of the wide variety of needs and the wide variety of 

model grid spacings.  To really begin to handle the processes that lead to convective 

initiation by a parcel lifted to its level of free convection, model grid spacings need to be 

in the mesoscale model range (15 to 40 km or so).  At larger grid spacings, it is difficult 

to argue that the model simulation can capture the processes that lead to this type of 

initiation.  Thus, deep-layer control schemes are more reasonable when grid spacings are 

large and there is a good argument that one should move to low-level control schemes as 

the grid spacing decreases.  But it is clear that both types of schemes capture some signal, 

and so mixtures of the best parts of the two types of schemes may be the most profitable 

approach. 
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Chapter 7 

 

1]  Plot the saturation ratio S for pure water as a function of cloud droplet radius. 

 

Solution: 

The saturation ratio S for pure water is given by equation (7.2), such that 

 

! 

S =
e
s
(r)

e
s
(")

= e
2# / rR

v
$
w
T
. 

 

We know that σ is the surface tension (approximately 0.075 kg s-2 over the range of 

meteorologically relevant temperatures), ρw is the density of water, Rv is the gas constant 

for water vapor (461 J kg-1 K-1), and T is the temperature of the air.  Thus, I simply 

created an Excel worksheet to calculate S as a function of cloud droplet radius (r).  One 

has to assume a value for temperature, and I choose to use values of 273 and 293 K to 

explore the effects of temperature on the saturation ratio.   
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Saturation ratio as a function of droplet radius (m) for temperatures of 293 and 

273 K.  Note how the curves largely overlap, although the colder temperature 

requires a slightly higher value of saturation ratio.  Also note that for droplets on 

the order of 1x10-9 m the values of saturation ratio required exceed 3 or 300% 

relative humidity.   

 

Calculated values of S also are shown in this Table for reference. 

Radius (m) S-293 S-273 
0.000000001 3.035908172 3.293222938 
0.000000002 1.74238577 1.814723929 
0.000000004 1.31999461 1.347116895 
0.000000008 1.148910184 1.16065365 
0.00000001 1.117451964 1.126580198 
0.00000002 1.057096005 1.061404823 
0.00000004 1.028151742 1.03024503 
0.00000008 1.013978176 1.015009867 
0.0000001 1.011166997 1.011989977 
0.0000002 1.005567997 1.005977126 
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0.0000004 1.002780134 1.00298411 
0.0000008 1.001389102 1.001490944 
0.000001 1.001111127 1.001192577 
0.000002 1.000555409 1.000596111 
0.000004 1.000277666 1.000298011 
0.000008 1.000138823 1.000148994 
0.00001 1.000111057 1.000119194 
0.00002 1.000055527 1.000059595 
0.00004 1.000027763 1.000029797 
0.00008 1.000013881 1.000014898 
0.0001 1.000011105 1.000011919 
0.0002 1.000005553 1.000005959 
0.0004 1.000002776 1.00000298 
0.0008 1.000001388 1.00000149 
0.001 1.000001111 1.000001192 
0.002 1.000000555 1.000000596 
0.004 1.000000278 1.000000298 
0.008 1.000000139 1.000000149 
0.01 1.000000111 1.000000119 

 

2]  In the calculation  of saturation ratio S, include the effects of a solute and replot the 

curve for various amounts of solute mass.  Assume the solute is sodium chloride (NaCl) 

and that the solute has mass values of 1x10-16, 1x10-15, 1x10-14, 1x10-13, 1x10-12, 1x10-11, 

and 1x10-10 g. 

 

Solution: 

Using the same basic Excel spreadsheet, add columns for S based upon solute mass.  

Note that since solute mass in given in grams, then the density of water used in the b term 

also must have units of grams to be consistent (or vice versa).  The equation needed is 

(7.3), in which  
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where 

! 

b = 3im
S
M

W
/4"#

L
M

S
, mS is the solute mass (kg), Ms is the molecular weight of 

the solute, MW is the molecular weight of a water molecule (18.016), and i is the degree 

of ionic dissociation (e.g., i=2 for a dilute NaCL solution).  For NaCL the molecular 

weight is 58.44.  The only other variable is thus the droplet radius r.   

 

Saturation ratio as a function of NaCL solute mass.  Note that the maximum value 

of saturation ratio (high point on the curves) occurs for the smallest solute mass 

and decreases towards 1 as the mass of the solute is increased.  However, the 

maximum value of S for a droplet in solution is always greater than 1 for some 

critical drop radius and then decreases as the drop radius increases.  Haze 

particles can occur for small drop sizes for relative humidities less than 100% (or 

S less than 1.0).  As the solute mass increases, the size of these haze particles also 

increases.   



112 

 

A few example values are shown in this table for NaCL solute mass values of 1x10-16 and 

1x10-15 g.   

Radius (m) S 1x10-16 1x10-15 
0.000000001 3.035908172 0 0 
0.000000002 1.74238577 0 0 
0.000000004 1.31999461 0 0 
0.000000008 1.148910184 0 0 
0.00000001 1.117451964 0 0 
0.00000002 1.057096005 0 0 
0.00000004 1.028151742 0.791698112 0 
0.00000008 1.013978176 0.984828926 0.722485672 
0.0000001 1.011166997 0.996283957 0.862336603 
0.0000002 1.005567997 1.003717918 0.98706721 
0.0000004 1.002780134 1.002549515 1.000473947 
0.0000008 1.001389102 1.001360315 1.001101229 
0.000001 1.001111127 1.001096392 1.000963777 
0.000002 1.000555409 1.000553569 1.000537001 
0.000004 1.000277666 1.000277436 1.000275366 
0.000008 1.000138823 1.000138795 1.000138536 
0.00001 1.000111057 1.000111043 1.00011091 
0.00002 1.000055527 1.000055525 1.000055509 
0.00004 1.000027763 1.000027763 1.000027761 
0.00008 1.000013881 1.000013881 1.000013881 
0.0001 1.000011105 1.000011105 1.000011105 
0.0002 1.000005553 1.000005553 1.000005553 
0.0004 1.000002776 1.000002776 1.000002776 
0.0008 1.000001388 1.000001388 1.000001388 
0.001 1.000001111 1.000001111 1.000001111 
0.002 1.000000555 1.000000555 1.000000555 
0.004 1.000000278 1.000000278 1.000000278 
0.008 1.000000139 1.000000139 1.000000139 
0.01 1.000000111 1.000000111 1.000000111 

 

3]  Plot the Marshall-Palmer rain drop size distributions for n0r = 1x10-4 m-4, ρ = 1.0 kg 

m-3, and rain water mixing ratios between 1x10-8 kg kg-1 and 1x10-3 kg kg-1.  Plot the 

curves at regular intervals of rain water mixing ratio.  At what value of rain water mixing 

ratio do more than 10 drops with diameters greater than 5 mm occur for a bin size of 1 

mm? 
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Solution: 

The Marshall-Palmer distribution is defined by (7.4) such that 

 

! 

n(D) = n
O
e
"#D  

 

where D is the particle diameter (m), n is the number of particles per unit volume (m-4), λ 

is the slope parameter that defines the fall off of particles as the diameter increases (m-1), 

and nO is the intercept parameter that defines the maximum number of particles per unit 

volume at D = 0 size.  As mentioned in section 7.4, when the intercept parameter is 

defined the slope parameter λx varies as the mixing ratios change, such that from (7.5) we 

have  
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. 

 

Thus, to solve this problem calculate λx as the mixing ratio is varied across the range 

specified.  Again, I create an Excel spreadsheet, calculate the value of  λx for each value 

of rainwater mixing ratio and then plot the Marshall-Palmer distribution as a function of 

particle diameter.  This process yields the following plot.   
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Number of drops as a function of rain drop diameter (m) for various rainwater 

mixing ratios (-8 implies 1x10-8 kg kg-1, -7 implies 1x10-7 kg kg-1, etc).   

 

The plot shows that more than 10 drops of size 5 mm occur when the rain water mixing 

ratios are larger than 1x10-5 kg kg-1.   

 

4]  Calculate the autoconversion rate using the Kessler, Lin et al, and Tripoli and Cotton 

expressions over a likely range of cloud water mixing ratios.  How large are the 

differences in autoconversion rates? 

 

Solution: 
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The expressions for autoconversion are found in the text for the 3 schemes.  To answer 

this question, assumptions are required to specify the air density and temperature.  Here I 

simply choose a value of 1.0 kg m-3 for air density and 293 K for temperature.  These 

values are only important for the Lin and Tripoli-Cotton calculations.  I again create an 

Excel spreadsheet with cloud water mixing ratio increasing downward in one column, 

and then the equations for the 3 autoconversion rates in the other columns.  The 

calculations yield the following information. 

 

Autoconversion rate versus cloud water mixing ratio (kg kg-3) from the Kessler, 

Lin et al, and Tripoli and Cotton approaches.  The Kessler approach has the 

smallest values of autoconversion for the larger cloud water mixing ratios, but 

has smaller autoconversion rates for the lower values of cloud water mixing ratio 

(not clearly seen in this plot, but easily seen when looking at the actual values).   
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The differences in autoconversion rate can easily be calculated and plotted as well.  This 

is done by dividing the autoconversion rates of Lin and Tripoli-Cotton by the Kessler 

value.  The results show differences of over 50 between the schemes. 

 

Differences between the Kessler (K), Lin et al. (L), and Tropili and Cotton (T-C) 

autoconversion rates versus cloud water mixing ratio (kg kg-1).  Differences of 

greater than 50 are found. 

 

5]  Derive the Kessler form of the accretion equation (7.23) to (7.25).  Show all steps.   

 

Solution: 
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This is not very hard, but it is often helpful to have the students go through the derivation.  

Starting with (7.24), we note that 

 

! 
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If one assumes Vr = aDb, then 
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assuming that density and cloud water mixing ratio are constant.   

 

The gamma function is defined as 
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and so  
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If we now replace t by λD, then we have  
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since λ is a constant.  Thus, using this expression for the gamma function, we simply 

need to divided by  

! 

"b+3.  This yields 
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6]  Compare the Kessler, Tripoli and Cotton, and Schultz accretion rates.  Assume that a 

= 841.996 m1-b s-1 and b = 0.8 in the fall speed equation.  At what value of rain water 

mixing ratio are the schemes the most different? 

 

Solution: 

First convert the Kessler accretion equation so that it depends upon rainwater mixing 

ratio by using equation (7.5), such that 
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For b = 0.8, this becomes 
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assuming that E = 1.0 and plugging in values for water density and the variable a as 

given in the question.   

 

With knowledge of the definition of specific content for the Schultz formulation, the 

accretion rate becomes 

 

! 

PACCR =17lrlc =17"2qcqr . 

 

Finally, for Tripoli and Cotton one must first determine the Stokes number and the 

efficiency E before moving to the accretion rate equation.  The discussion in the text 

indicates that the efficiency often is near 1.0, so for simplicity assume E = 1.0.  Thus,  
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assuming an atmospheric density of 1.0 for simplicity.   

 

An Excel spreadsheet is used to plot the values of these 3 equations assuming ρ = 1.0, qc 

= 0.004. and n0r = 1x10-4 m-4.  These calculations yield the figure below.   
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Accretion rate versus rain water mixing ratio (kg kg-1) for the Kessler, Tripoli and 

Cotton, and Schultz parameterizations.  Note that all three are approximately 

linear with respect to rain water mixing ratio, but with magnitudes that differ by 

roughly an order of magnitude.  Even the Kessler and Tripoli and Cotton 

approaches differ by nearly a factor of 5.   

 

The schemes are most different at the largest rain water mixing ratios and will continue to 

become more different as rain water mixing ratio increases.   

 

7]  Calculate a distance a rain drop can fall in an environment with a constant relative 

humidity of 80% and a constant temperature of 278 K for drop sizes of 0.5 mm, 2 mm 

and 5 mm.  Assume the ventilation factor F = 1 to simply the calculations.   Assume that 
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the thermal conductivity Ka = 2.5x10-2 J m-1 K-1 s-1 and that the diffusivity of water vapor 

in the air Ddiff = 2.4x10-5 m2 s-1.   

 

Solution: 

This question is asking about how long it will take for a drop to evaporate, but with the 

added complication that one needs to calculate the fall speed and total depth over which 

the drop falls before it evaporates completely.  Start with the equation for evaporation 

(7.30), which states that 
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where S is the supersaturation, and  
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We are given two of the constants in A and B and either know or can determine the rest.  

For T of 278, the saturation vapor pressure is approximately 872 Pa.   Thus, A = 890698.1 

m s kg-1 and B = 5878807.3 m s kg-1.  Their sum is approximately 6.77x106 m s kg-1.  For 

a relative humidity of 80%, S = 0.8.  Thus, we have as the main equation governing the 

rate of change of raindrop mass as  
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6.77x10
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. 



122 

 

We also know that rain drop mass is related to its diameter D by 

 

! 

m(D) = "
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assuming water density at 1000 kg m-3.  We can solve this equation for D and substitute 

this in the equation for dm/dt to yield 
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dm(D)
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We also know that the fall speed of a drop can be approximated by aDb, where a = 

841.996 and b = 0.8.  If we use a simple 1 second time step to calculate the change in rain 

drop mass and then calculate how far a rain drop of given size falls in 1 second, 

converting from rain drop mass to rain drop diameter D, then we can step through these 

calculations until the rain drop has zero mass.  This can be done using a computer 

program or even on a spreadsheet if it can retain enough accuracy (but most don’t).   

 

          program raindrop 
c 
c**     Simple program to calculate how long it takes for a falling rain drop to 
c**     evaporate in a specified environment.  Also determines the distance this 
c**     rain drop will fall before it evaportes. 
c 
c**     m - mass of rain drop 
c**     dm - change in mass of rain drop 
c**     d - diameter of rain drop 
c**     v - fall velocity of raindrop 
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c**     dist - distance rain drop falls 
c**     time - total time it takes rain drop to evaporate (seconds) 
c**     pi - constant pi 
c 
        real*8 m,d,v,dist,pi,time,dm 
        pi = 4.*atan(1.) 
        print *,' pi ',pi 
        dist = 0. 
        time = 0. 
c 
        print *,' enter initial rain drop diameter in meters' 
        read(5,*) d 
c 
c**     calculate rain drop mass from diameter 
c 
        m = 1000.*pi*(d**3)/6. 
        print *,' initial rain drop mass (kg) ',m 
c 
c**     increment over 1 second time intervals, following the drop as it falls and 
c**     calculating its decrease in size and change in fall speed 
c 
        do 10 i=1,100000 
c 
c**     calculate fall speed of the drop and the amount it falls over 1 second interval. 
c**     add this value to the total distance fallen 
c 
        v = 841.996*d**0.8 
        dist = dist + v 
        time = time + 1. 
c 
c**     using 1 second time steps, calculate decrease of raindrop mass as 
c**     rain drop falls through environment with T = 278K and 80% RH (or S = 0.8) 
c 
 
        dm = -0.4*pi*d/6770000. 
        m = m + dm 
        if(m.le.0.0) goto 99 
c 
c**     recalculate diameter d from mass of rain drop 
c 
        d = (m/523.6)**0.33333 
c 
 10     continue 
        print *,' exited loop 10 without complete evaporation!' 
        print *,' rain drop mass ',m 
c 
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 99     continue 
        print *,' time taken for rain drop to evaporate ',time 
        print *,' distance rain drop fell ',dist 
        stop 
        end 
         
Results from this program indicate that a rain drop with diameter 0.5 mm will evaporate 

by the time it falls 1454 m.  For a raindrop with 2 mm diameter, the rain drop will fall 

over 70,000 m before it evaporates!  The depth is even greater for a 5 mm rain drop.  Play 

around with drops smaller than 0.5 mm and see that they will evaporate very quickly.  

Thus, there is a large variation in how quickly drops will evaporate depending upon their 

size, and this exercise (although imperfect) is an attempt to make the students understand 

this challenge.   

 

Now imagine what happens for a typical bulk microphysical model with a single fall 

speed for all drops in the distribution.  This gives one a lot of things to ponder.   

 

8]  Compare ice aggregation to form snow rate equations from Lin et al., Dudhia, and 

Murikami for a reasonable range of values for the ice mixing ratio.  State any 

assumptions made.  How large are the differences in snow production rate from these 

three approaches? 

 

Solution: 

The expressions for ice aggregation are given by (7.40) to (7.44).  However, the 

expressions depend upon temperature and ice mixing ratio, so these will be varied across 

a range to see how the values change.  I choose to vary the ice mixing ratio from 0.0005 
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go 0.01 kg kg-1 and at temperatures of 263, 253, and 243 K.  Also note that the density of 

ice is 917 kg m-3.  

 

A few other assumptions are needed.  The Murikami scheme requires a number 

concentration for ice, which is predicted by the scheme.  Here I simply assume (perhaps 

badly) the concentration suggested by the Fletcher curve.  Also note that the minus sign 

in (7.44) typically yields negative rates for this scheme.  This minus sign is found in the 

Reisner et al. paper, but I think that it is intended to mean the rate of ice loss to snow.  So 

the minus sign disappears when you look at snow creation by ice aggregation.  So I 

remove the minus sign from (7.44) in the calculations. For the Dudhia scheme, the 

aggregation rate is dependent upon the model time step.  This is a known concern about 

using this type of rate equation, and strongly influences the results.  Following the 

original paper, a timestep of 10 second is assumed.   
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Aggregation rates versus ice mixing ratio for the Lin et al, Dudhia, and Murikami 

schemes for a temperature of 263 K.  Note the large differences in the 

aggregation rates, varying by several orders of magnitude.  While the timestep in 

the Dudhia scheme plays a role, even the differences between the Lin and 

Murikami schemes are nearly 2 orders of magnitude.   
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Aggregation rates versus ice mixing ratio for a temperature of 253 K.  Similar 

differences in magnitude are seen as found previously for 263 K.  Also note the 

value of ice mixing ratio for which aggregation is first allowed changes.  All 3 

schemes have different values of ice mixing ratio that need to be exceeded for 

aggregation to occur, but these are determined in different ways.   
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Aggregation rate versus ice mixing ratio for temperature of 243 K.  Again, the 

differences in magnitudes are large, but the Murikami scheme has developed a 

different shape.  I have checked this several times, and for the parameters chosen 

I think it is correct.  When the number of ice crystals is large (hundreds of 

thousands), then the scheme appears to produce larger aggregation rates for 

smaller ice mixing ratios.   
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Chapter 8 

 

The basic ideas behind most of the radiative transfer parameterization schemes are 

similar, so let us examine the behavior and construction of one of the schemes.  Lacis and 

Hansen (1974) examine how ozone and water vapor influence the total solar flux.  The 

fraction of total solar flux absorbed in the lth layer of the atmosphere by ozone, where l = 

1 is the top of the atmosphere and l increases downward, is defined as 

 

! 

A
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where 

! 

R (µ
0
)  is the albedo of the reflecting region, xl is the ozone path traversed by the 

direct solar beam in reaching the lth layer, and xl* is the ozone path of the diffuse 

radiation illuminating the lth layer from below.   Ozone absorption is modeled as a purely 

absorbing region sitting on top of a purely reflecting region.  For our purposes, all ozone 

is generally assumed to lie above the troposphere, or above approximately 100 hPa.   The 

albedo of the reflecting region is defined as 
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where Rg is the ground albedo, 

! 

R a* = 0.144, and the effective albedo of the lower 

atmosphere is defined as 
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! 

R a(µ0) =
0.219

1+ 0.816µ0
,                                              (8.83) 

 

for clear skies.  They also define xl = ulM, where ul is the ozone amount in a vertical 

column above the lth layer, and  
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,                                              (8.84) 

 

is the magnification factor (Rodgers 1967) to  account for path slant and refraction.  The 

ozone path traversed by the diffuse radiation illuminating the lth layer from below is 

defined as 
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where ut is the total ozone above the main reflecting layer (the ground for clear skies), 

and 

! 

M  = 1.9 is the effective magnification factor for diffuse radiation.   

 Finally, the fraction of incident solar flux absorbed by the Chappius visible band 

is defined as 
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and the absorption of the ultraviolet region is defined as 
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where the total absorption by ozone in the lth layer is the sum of the individual 

absorptions from the visible and ultraviolet regions. 

 If we assume a single layer of ozone above the troposphere with an ozone path x2 

above a single scattering layer, then following Zamora et al. (2003) we find that  
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1]  Calculate the absorption of ozone for a zenith angle of 60 and for ozone path x2 = 0.2, 

0.3, 0.4, 0.5, and 0.6.  Assuming a solar constant of 1368 W m-2 and ground albedo Rg = 

0.10, how much does the presence of ozone decrease the incoming solar radiation?   

 

Solution: 

This is basically a coding exercise.  All the information needed is found in the equations 

(8.81) to (8.85).  A program to calculate the absorption of ozone is as follows. 

 

         program rad_ozone 
c 
c**    calculate influence of ozone absorption on solar radiation.   
cc**  follow variable naming convention in the text.   
c 
       real pi,zenith,mu,rabar,rbar,rg,rdbar,m 
c 
       pi=4.*atan(1.) 
       zenith=60.*pi/180. 
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       rdbar=0.144 
       rg=0.10 
c 
       mu=cos(zenith) 
       print *,pi,zenith,rdbar,rg,mu 
c 
       rabar=0.219/(1.+0.816*mu) 
c 
       m=35/(1244.*mu**2+1.)**0.5 
c 
       rbar=rabar+(1-rabar)*(1-rdbar)*rg/(1-rdbar*rg) 
       print *,rabar,m,rbar 
c 
c**    calculate absorption  
c 
       do i=1,5 
        x2=0.1+0.1*i 
        print *,i,x2 
c 
       avis=0.02118*x2/(1.+0.042*x2+0.000323*x2**2) 
       aultra=1.082*x2/(1.+138.6*x2)**0.805+0.0658*x2/(1.+(103.6*x2)**3) 
       atotal=avis+aultra 
c 
c**    absorption for x2(M+Mbar) 
c 
       x3=x2*(m+1.9) 
       avis=0.02118*x3/(1.+0.042*x3+0.000323*x3**2) 
       aultra=1.082*x3/(1.+138.6*x3)**0.805+0.0658*x3/(1.+(103.6*x3)**3) 
       atotalx3=avis+aultra 
c 
       x4=x2*m 
       avis=0.02118*x4/(1.+0.042*x4+0.000323*x4**2) 
       aultra=1.082*x4/(1.+138.6*x4)**0.805+0.0658*x4/(1.+(103.6*x4)**3) 
       atotalx4=avis+aultra 
c 
c**    finish calculations 
c 
       a=mu*(atotal+rbar*(atotalx3-atotalx4)) 
c 
       solar=1368.*(1.-a) 
       print *,' end result ',x2,solar 
c 
       end do 
       stop 
       end  
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Results from this code indicate that ozone absorption decreases incoming solar radiation 

by 14.4, 17.4, 20.0, 22.5, and 24.8 W m-2 for ozone paths of 0.2 to 0.6.  Note that the 

ozone paths as used here are in units of cm, so that 0.2 cm is equivalant to 200 Dobson 

units. 

 

2]  Now let us turn our attention to the absorption of solar radiation by water vapor.  

Lacis and Hansen (1974) further discuss water vapor absorption.  One formula for water 

water absorption is 

 

! 

A(y) =
2.9y

(1+141.5y)
0.635

+ 5.925y
,                                      (8.86) 

 

where y is the precipitable water vapor in cm.  The fractional absorption in the lth layer is 

then defined under clear skies as 
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Al = µ
0
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where the effective water vapor amount traversed by the direct solar beam is 
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in units of kg m-2, and where the effective water vapor amount traversed by the diffuse 

radiation reaching the lth layer from below is 
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where pg is the ground pressure, g is gravity, p0=1013 mb, and T0=273.15 K.  One can 

convert yl to units of cm by dividing by the density of water (1000 kg m-3) and 

multiplying by 100 to convert from m to cm.  Assuming the atmospheric profile given 

below, calculate the heating rate in clear sky conditions using n=0, 0.5, and 1 for 

calculating the effective water vapor.  Describe the influence of the pressure scaling on 

the resulting heating rates.   

 

The sounding to use in calculating water vapor absorption is as follows. 

p(mb)    T (C)    q (g/kg)  
 
950.0     36.0      13.0    
900.0     32.0      11.0  
850.0     26.0      11.0 
800.0     20.0      11.0  
750.0     15.0      11.0  
700.0     15.0        4.0  
650.0     10.0        2.0 
600.0       5.0        1.5 
550.0       0.0        1.5  
500.0      -8.0        1.0 
450.0    -15.0        1.0  
400.0    -20.0        0.4  
350.0   -26.0        0.4  
300.0   -30.0        0.4 
250.0   -44.0        0.2 
200.0   -53.0        0.1 
150.0   -62.0        0.05  
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127.4   -67.0        0.05 
 

Solution: 

This again is a coding exercise.  The following program codes the equations shown above 

and uses the sounding provided.   

 

        program rad_water 
c 
c**    program to calculate water vapor absorption using a sounding 
c 
       real p(18),t(18),q(18),a(17) 
       real n,m,g,to,po,mu 
 
       data p/950.,900.,850.,800.,750.,700.,650.,600.,550.,500., 
     1        450.,400.,350.,300.,250.,200.,150.,100./ 
       data t/36.,32.,26.,20.,15.,15.,10.,5.,0.,-8.,-15.,-20., 
     1       -26.,-30.,-44.,-53.,-62.,-67./ 
       data q/13.,11.,11.,11.,11.,4.,2.,1.5,1.5,1.,1.,0.4,0.4, 
     1        0.4,0.2,0.1,0.05,0.05/ 
 
       po=101300. 
       to=273.15 
       cp=1004. 
       g=9.81 
       pi=4.*atan(1.) 
       zenith=60.*pi/180. 
       mu=cos(zenith) 
       m=35./((1225*mu**2+1.)**0.5) 
       rg=0.10 
c 
c**    convert to units of Pa, Kelvin, and kg/kg. 
c 
       do k=1,18 
        p(k)=p(k)*100. 
        t(k)=t(k)+273.15 
        q(k)=q(k)*0.001 
       end do 
c 
c**    loop over the three values for n in the scaling approximation. 
c 
       do i=1,3 
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        n=0+(i-1)*0.5 
        print *,' results for n = ',n 
c 
c**   calculate the effective water vapor amount traversed by the direct solar beam 
c**   in reaching each of the layers, starting at the top of the atmosphere and moving 
c**   downward 
c 
        yint=0. 
        do k=17,1,-1 
          qavg=0.5*(q(k)+q(k+1)) 
          tavg=0.5*(t(k)+t(k+1)) 
          pavg=0.5*(p(k)+p(k+1)) 
          yint=yint+(p(k)-p(k+1))*qavg*((pavg/po)**n)*(to/tavg)**0.5 
        end do 
        yint=(m/g)*yint 
        yint=(yint/1000.)*100. 
        print *,' total column yl ',yint,' in cm' 
c 
c**     begin integration over the layers, starting at the top 
c 
        do l=17,1,-1 
c 
        yl=0. 
        ylstar=0. 
        ylp=0. 
        ylpstar=0. 
c 
c**     yl first 
c 
        do k=17,l,-1 
          qavg=0.5*(q(k)+q(k+1)) 
          tavg=0.5*(t(k)+t(k+1)) 
          pavg=0.5*(p(k)+p(k+1)) 
          yl=yl+(p(k)-p(k+1))*qavg*((pavg/po)**n)*(to/tavg)**0.5 
        end do 
        yl=yl*m/g 
        yl=(yl/1000.)*100. 
c 
c**     ylp next 
c 
        if(l.ne.1) then 
         do k=17,l-1,-1 
          qavg=0.5*(q(k)+q(k+1)) 
          tavg=0.5*(t(k)+t(k+1)) 
          pavg=0.5*(p(k)+p(k+1)) 
          ylp=ylp+(p(k)-p(k+1))*qavg*((pavg/po)**n)*(to/tavg)**0.5 
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         end do 
         ylp=ylp*m/g 
         ylp=(ylp/1000.)*100. 
        else 
         ylp=yint 
        end if 
c 
c**     ylstar next 
c 
        if(l.ne.1) then 
         do k=l-1,1,-1 
          qavg=0.5*(q(k)+q(k+1)) 
          tavg=0.5*(t(k)+t(k+1)) 
          pavg=0.5*(p(k)+p(k+1)) 
          ylstar=ylstar+(p(k)-p(k+1))*qavg*((pavg/po)**n)*(to/tavg)**0.5 
         end do 
         ylstar=yint+ylstar*5/(3.*g) 
         ylstar=(ylstar/1000.)*100. 
        else 
         ylstar=yint+(5./(3.*m))*yint 
         ylstar=(ylstar/1000.)*100. 
        end if 
c 
c**     ylpstar next 
c 
        if(l.gt.2) then 
         do k=l-2,1,-1 
          qavg=0.5*(q(k)+q(k+1)) 
          tavg=0.5*(t(k)+t(k+1)) 
          pavg=0.5*(p(k)+p(k+1)) 
          ylpstar=ylpstar+(p(k)-p(k+1))*qavg*((pavg/po)**n)*(to/tavg)**0.5 
         end do 
         ylpstar=yint+ylpstar*5/(3.*g) 
         ylpstar=(ylpstar/1000.)*100. 
        else 
         ylpstar=yint+(5./(3.*m))*yint 
         ylpstar=(ylpstar/1000.)*100. 
        end if 
 
c 
        ayl=2.9*yl/( (1.+141.5*yl)**0.635 + 5.925*yl ) 
        aylp=2.9*ylp/( (1.+141.5*ylp)**0.635 + 5.925*ylp ) 
        aylstar=2.9*ylstar/( (1.+141.5*ylstar)**0.635 +  
     1          5.925*ylstar ) 
        aylpstar=2.9*ylpstar/( (1.+141.5*ylpstar)**0.635 +  
     1          5.925*ylpstar ) 
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c 
c**    calculate the absorption over an entire day (86400 seconds) 
c 
        a(l)=1368.*g*mu*(aylp-ayl+rg*(aylstar-aylpstar))/(cp*5000.) 
c       print *,aylp,ayl,aylstar,aylpstar 
        print *,l,a(l)*86400. 
c 
        end do 
        end do 
c 
        stop 
        end 
 
         
 
Results from running this program indicate that the scaling factor is important to the end 
result, especially for longer simulation or forecast time periods.    
 

 
Heating rate calculated from the given sounding as a function of atmospheric 
pressure using scaling parameter constant values of n = 0.0, 0.5, and 1.0.  While 
the general shape of the heating profile is the same regardless of the value of n, 
the actual values differ by over 0.5 C/day at the upper levels of the troposphere.   
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Chapter 9 

 

1]  Fill in the details in the derivation of the Sundqvist cloud cover parameterization 

approach.  Starting with (9.17) derive (9.24).   

 

Solution: 

Taking directly from the book, we have that beginning with the relationship 

 

! 

q =Uqs ,                                                          (9.17) 

 

where qs is the saturation specific humidity and taking the derivative with respect to time, 

one finds 
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Using the approximation qs ≅ εes/p to replace qs in the last term of (9.18), where es is the 

saturation vapor pressure, p is pressure, and ε = 0.622,  yields 
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Making use of the Clausius-Clapeyron equation, 

! 
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d
T
2, where Rd is the 

specific gas constant for dry air, and Lv is the latent heat of vaporation.  The next step is 

to use the relation 
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2  to replace des and to multiply all terms on both 

sides of the equation by (1/q) and remembering that (1/q) = (1/Uqs) = (p/Uεes).  This 

leads to 
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Cancel like terms and you are left with 
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 Following Sundqvist et al. (1989), the tendency equations for temperature, 

specific humidity, and cloud water mixing ratio (qc) in the case of stratiform 

condensation and evaporation are 
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where the A-terms represent the tendencies due to all processes other than condensation 

and evaporation, cp is the specific heat of air at constant pressure, P is the rate of release 

of precipitation, Er is the evaporation rate of precipitation, and E0 is the total evaporation 

rate due to Er and the evaporation of cloud water.  When the environment is saturated, U 

≡ 1 and the dU/dt term on the right-hand side of (9.20) is identically zero.  If this 

modified version of (9.20) for saturated conditions is inserted into (9.22), and if (9.21) is 

then used to eliminate the temperature tendency, one arrives at 
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,                                             (9.24) 

 

where M is the convergence of available latent heat into the grid cell as specified by 

(9.25).  Since this last part of the derivation is very straightforward, I leave it to you.   

 

2] Let us examine the effects of clouds on longwave radiation.  Assume a very simple 

atmosphere of only one layer, with FDclear = 315 W m-2 and FDcloud = 350 W m-2.  Using 

(9.37) and (9.38), calculate the downwelling surface longwave radiation as a function of 

cloud cover.  Also vary the cloud aspect ratio from 1 to 5.  Describe the results.   

 

Solution: 

This is again best examined using a simple spreadsheet.  Set it up to vary the cloud cover 

b, but modify it using (9.38), and then plug this value into (9.37) and display the results.   
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Downwelling longwave radiation as a function of cloud cover using the original 

linear scaling for cloud cover and the modified version based upon the cloud 

aspect ratio a.  Note that as the cloud aspect ratio increases, meaning that the 

clouds are deeper than wide, the downwelling radiation is weighted more by the 

cloudy sky contribution.   

 

3]  Using the results of question 2], how large are errors in downwelling surface radiation 

for uncertainties of 30% in cloud cover?  What does this say about the importance of 

cloud cover parameterization in models? 

 

Solution: 
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A simple examination of the above plot suggests that 30% errors in cloud cover can 

easily yield 10 W m-2 errors in downwelling longwave radiation.  However, this error is 

larger if the clouds are tall, with errors approaching 30 W m-2.  These errors are relatively 

large, amounting to 10% or so of the typical value, and may influence model forecasts.   

 

4]  Turning our attention to shortwave radiation, vary the values of cloud water path from 

10 to 10,000 g m-2 and calculate the transmissivity using (9.42).  Assuming that the 

incoming shortwave radiation at the top of the cloud is 800 W m-2, plot the values of 

shortwave radiation exiting the bottom of the cloud as a function of cloud water path 

using (9.43) - (9.49).  Assume that µ0 = 0.87, β = 0.06, and 

! 

˜ " 
0
 = 0.8.   

 

Solution: 

Solve for the optical thickness using the various values of cloud water path using (9.42).  

With knowledge of the assumed single scattering albedo, choose the appropriate 

equations to calculate u2, τeff, R, and then Tr.  Multiply the calculated value of Tr by 800 

W m-2 to get the incoming shortwave radiation as a function of cloud water path.   
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Incoming shortwave radiation as a function of cloud water path.  Note that the 

incoming radiation drops off quickly as the cloud water path increases slowly and 

decreases by at least 300 W m-2 for cloud water paths greater than 170 g m-3.   

 

5]  Using the results of 4] with a cloud water path of 1000 g m-3, determine the difference 

in the shortwave radiation exiting the bottom of the cloud for an uncertainty of 100 g m-3 

in cloud water path.  Since cumulonimbus clouds are associated with cloud water paths of 

10,000 g m-3, an error of 10% or 1000 g m-3 is probably even more reasonable for this 

cloud type.  Repeat the difference calculations for the exiting shortwave radiation at the 

bottom of the cumulonimbus cloud.  How important are these uncertainties to the 

resulting calculations of shortwave radiation?   
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Solution: 

For large values of CWP, such as for cumulonimbus clouds, the differences in shortwave 

radiation exiting the bottom of the cloud are not large.  For a 1000 g m-3 cloud water path, 

a difference of 100 yields only slightly more than a 3 W m-2 difference in shortwave 

radiation.  At 10,000 g m-3, a 10% error yields differences of around 2 W m-2.  Much 

larger differences are found for the values of cloud water path less than 200 g m-3, where 

the differences can be much larger for an error of 10%.   
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Chapter 10 

 

1]  Using the sounding data listed below, plot the sounding on a thermodynamic diagram, 

and calculate the values of N using (10.1) for each height level.   

 

Solution: 

Using the sounding data listed at the bottom, plot the sounding on a Skew-T log p 

diagram.   

 

Sounding from data found below. 
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The next step is to calculate the values of N based upon the sounding data.  Recall that  

 

! 

N
2

=
g
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#z
, 

 

and so we can easily find N by calculating the potential temperature at each vertical level 

and then its vertical gradient.  Since the number of vertical data points are few, I decided 

to calculate the vertical gradient of potential temperature from just 2 vertical points 

instead of a centered difference.   These calculations yield the following results. 

 

p h t t(k) theta N 
861 1475 -2.9 270.26 282.0790752 0.037901286 
850 1573 0 273.16 286.1562865 0.019232075 
813 1930 0.2 273.36 290.0341052 0.014696734 
762 2438 -1.8 271.36 293.2963841 0.018338522 
726 2831 -1.9 271.26 297.2746551 0.007238 
700 3120 -4.3 268.86 297.7338099 0.015268872 
653 3658 -6.2 266.96 301.5650614 0.011599079 
604 4267 -9.9 263.26 304.094323 0.011206229 
500 5710 -19.1 254.06 309.7639492 0.007985052 
400 7320 -32.3 240.86 313.0224775 0.011521169 
300 9300 -45.3 227.86 321.5225327 0.012797878 
250 10500 -52.5 220.66 328.0294013 0.018777395 
200 11920 -55.3 217.86 345.2096445 0.020157006 
150 13750 -56.7 216.46 372.4050435 0.017347659 
100 16270 -64.9 208.26 402.3517217  

Table showing pressure (hPa), height (m), temperature (C), temperature (K), potential 

temperature (K), and (s-1).   

 

2]  Assume that a mountain exists near this sounding location with a ridge orientation of 

180°.  Vary the mountain height between 100 and 500 m by 50 m increments and 
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calculate the inverse Froude number using (10.2).  What type of atmospheric response 

would be expected from this obstacle to the flow? 

 

Solution: 

The Froude number is defined using (10.2) as 

 

! 

Fr =
Nh

U
. 

 

We already have calculated N, and the problem provides value for h, and the value of U 

is defined by the sounding.  All that is left is to calculate Fr for various values of h.  The 

only challenge is to determine the appropriate values of U and N for given obstacle height 

values.  Here I simply average the values of U and h over the given depth, in an 

approximate fashion.  The corresponding flow behavior is indicated.  Note that for the 

value of Fr = 1.71, I am uncertain if the stratification is strong enough that the flow 

would only go entirely around the obstacle, or if some of the flow would go over the 

obstacle.  I have opted to be cautious and indicate that the flow would both go around and 

over the obstacle. 

h Fr Flow behavior 
100 0.57 Over 
200 1.14 Over and around 
300 1.71 Over and around 
400 2.29 Around 
500 2.24 Around 
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3]  Given a surface stress of 1.0 kgm-1s-2 and B = 0.2, calculate δh and Rimin for each 

height level using (10.22)-(10.23).  Explain the mechanics of this calculation and any 

assumptions made.  Would wave breaking occur?   

 

Solution: 

Use (10.22) and (10.23) to first calculate the height displacement due to gravity waves 

(δh) and then calculate the minimum Richardson number for each height level.   

 

h N U t(k) rho dh Ri Rimin 
1475 0.037901286 2 270.26 1.110042182 7.708560586 0.383228274 0.275217345 
1573 0.019232075 8 273.16 1.084226268 5.474783849 11.78497638 10.64610663 
1930 0.014696734 6 273.36 1.036271808 7.397110592 1.984345909 1.852614423 
2438 0.018338522 0.7 271.36 0.978424331 19.95217254 9.818792943 0.673489458 
2831 0.007238 3 271.26 0.932543215 15.71377751 0.273472002 0.252973767 
3120 0.015268872 7 268.86 0.907172651 7.181042974 67.48052912 52.14180621 
3658 0.011599079 8 266.96 0.852285482 7.951255562 1.386050608 1.33362483 
4267 0.011206229 14 263.26 0.799411083 6.314022928 65.37198313 60.03489644 
5710 0.007985052 16 254.06 0.685727891 7.554578385 10.32968929 10.04580951 
7320 0.011521169 20 240.86 0.578646609 6.123715664 20.81533931 20.09003492 
9300 0.012797878 25 227.86 0.458744917 5.836606116 0.921294428 0.913295826 

10500 0.018777395 41 220.66 0.394761234 4.056095368 2.777201504 2.754958856 
11920 0.020157006 25 217.86 0.319867856 5.569506186 54.42697539 50.76336163 
13750 0.017347659 20 216.46 0.241452501 7.725626623 76.44389614 67.7591633 
16270  15 208.26 0.167306279    

 

Note that the minimum Richardson number never decreases below it’s critical value of 

0.25, although it comes close at the surface and again at 2831 m.   

 

4]  Increase the values of N in the column by 10%.  How does this change the 

expectations for wave breaking? 

 

Solution: 
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Simply multiply N by 1.1 and recalculate.   

h N U t(k) rho dh Ri Rimin 
1475 0.041691415 2 270.26 1.110042182 7.349824136 0.463706211 0.321972382 
1573 0.021155282 8 273.16 1.084226268 5.220001584 14.25982142 12.70403509 
1930 0.016166408 6 273.36 1.036271808 7.052868218 2.40105855 2.22260863 
2438 0.020172374 0.7 271.36 0.978424331 19.02365009 11.88073946 0.64282294 
2831 0.0079618 3 271.26 0.932543215 14.98249899 0.330901123 0.30369206 
3120 0.01679576 7 268.86 0.907172651 6.846855827 81.65144023 60.89015856 
3658 0.012758987 8 266.96 0.852285482 7.581224716 1.677121236 1.606149685 
4267 0.012326852 14 263.26 0.799411083 6.020184649 79.10009959 71.75569542 
5710 0.008783557 16 254.06 0.685727891 7.203007867 12.49892404 12.10858281 
7320 0.012673286 20 240.86 0.578646609 5.838733792 25.18656057 24.18683984 
9300 0.014077666 25 227.86 0.458744917 5.564985579 1.114766258 1.103955718 

10500 0.020655134 41 220.66 0.394761234 3.867335192 3.36041382 3.330037694 
11920 0.022172706 25 217.86 0.319867856 5.310315788 65.85664022 60.80929016 
13750 0.019082425 20 216.46 0.241452501 7.366095964 92.49711433 80.58482521 
16270  15 208.26 0.167306279    

 

Increasing N moves the values of minimum Richardson number farther away from it’s 

critical value.  At 2831 m, it increases from 0.252 to 0.30, which is more than a 10% 

change in value.  Thus, small changes in N can lead to different expectations.  Try again 

with a 10% decrease in N and see what happens!   

 

5]  Increase the values of wind speed normal to the ridge orientation by 10%.  How does 

this change the expectations for wave breaking? 

 

Solution: 

Simply multiply U by 1.1 and recalculate.   

h N U t(k) rho dh Ri Rimin 
1475 0.037901286 2.2 270.26 1.110042182 7.349824136 0.316717582 0.241037705 
1573 0.019232075 8.8 273.16 1.084226268 5.220001584 9.739649898 8.977880935 
1930 0.014696734 6.6 273.36 1.036271808 7.052868218 1.639955297 1.551177031 
2438 0.018338522 0.77 271.36 0.978424331 19.02365009 8.114704912 0.845844385 
2831 0.007238 3.3 271.26 0.932543215 14.98249899 0.226009919 0.211909989 
3120 0.015268872 7.7 268.86 0.907172651 6.846855827 55.76903233 45.34948519 
3658 0.011599079 8.8 266.96 0.852285482 7.581224716 1.145496371 1.110176387 
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4267 0.011206229 15.4 263.26 0.799411083 6.020184649 54.02643234 50.48613486 
5710 0.007985052 17.6 254.06 0.685727891 7.203007867 8.536933295 8.348837787 
7320 0.011521169 22 240.86 0.578646609 5.838733792 17.20275976 16.723296 
9300 0.012797878 27.5 227.86 0.458744917 5.564985579 0.761400354 0.756007706 

10500 0.018777395 45.1 220.66 0.394761234 3.867335192 2.295207855 2.280373171 
11920 0.020157006 27.5 217.86 0.319867856 5.310315788 44.98097139 42.55506593 
13750 0.017347659 22 216.46 0.241452501 7.366095964 63.17677367 57.38855281 
16270  16.5 208.26 0.167306279    

 

Changes in the value of U by 10% lead to two heights with minimum Richardson 

numbers below it’s critical value, right off the surface and at 2831 m.   

 

6]  Decrease the value of B from 0.2 to 0.1.  Describe the changes to the values of Rimin.   

 

Solution: 

Change the value of B in the equation and recalculate.   

h N U t(k) rho dh Ri Rimin 
1475 0.037901286 2 270.26 1.110042182 10.90155093 0.383228274 0.239012135 
1573 0.019232075 8 273.16 1.084226268 7.74251357 11.78497638 10.21808646 
1930 0.014696734 6 273.36 1.036271808 10.46109412 1.984345909 1.801126543 
2438 0.018338522 0.7 271.36 0.978424331 28.21663301 9.818792943 0.232821485 
2831 0.007238 3 271.26 0.932543215 22.22263727 0.273472002 0.244884829 
3120 0.015268872 7 268.86 0.907172651 10.15552837 67.48052912 47.23203775 
3658 0.011599079 8 266.96 0.852285482 11.24477345 1.386050608 1.312581049 
4267 0.011206229 14 263.26 0.799411083 8.929376857 65.37198313 58.0066728 
5710 0.007985052 16 254.06 0.685727891 10.68378721 10.32968929 9.931316277 
7320 0.011521169 20 240.86 0.578646609 8.660241743 20.81533931 19.79991279 
9300 0.012797878 25 227.86 0.458744917 8.254207527 0.921294428 0.910005043 

10500 0.018777395 41 220.66 0.394761234 5.73618508 2.777201504 2.745810463 
11920 0.020157006 25 217.86 0.319867856 7.876471183 54.42697539 49.34885505 
13750 0.017347659 20 216.46 0.241452501 10.92568595 76.44389614 64.57508635 
16270  15 208.26 0.167306279    

 

Decreasing the value of B by half leads to a general decrease in the minimum Richardson 

number.  There now exist 3 levels where the minimum Richardson number is below 0.25, 

with the additional level at 2438 m.   
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7]  Using the results of questions 3 through 6, discuss the sensitivities of the 

parameterization scheme to the model forecasts of the environment the schemes use to 

predict orographically-produced gravity waves.   

 

Solution: 

It is clear that changes of 10% in N and U can have significant implications for our 

expectation of gravity wave development from soundings.  This type of behavior is very 

consistent with what we have seen in other parameterizations, namely that small 

environmental differences can lead to large changes in expected behavior.  Thus, one 

would expect a fair amount of uncertainty in whether or not gravity waves would be 

expected above a given location if the values of N and U conspire to place the minimum 

Richardson number close to it’s critical value.   

 

Sounding data for use in questions 1 through 7.  

    P (hPa)   H(m)      T(°C)  TD(°C) U(ms-1)  
    861      1475       -2.90      -6.40       2.00      
    850      1573        0.00      -8.00       8.00        
    813      1930        0.20     -13.80      6.00        
    762      2438       -1.80     -10.73      0.70        
    726      2831       -1.90      -8.90       3.00        
    700      3120       -4.30     -11.30      7.00       
    653      3658       -6.20     -15.94      8.00       
    604      4267       -9.90     -21.35     14.00      
    500      5710     -19.10     -39.10     16.00     
    400      7320     -32.30     -48.30     20.00       
    300      9300     -45.30     -55.30     25.00       
    250     10500    -52.50     -61.50     41.00      
    200     11920    -55.30     -71.30     25.00       
    150     13750    -56.70     -80.70     20.00      
    100     16270    -64.90     -87.90     15.00      
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