Contents

List of contributors
Preface
David S. Ginley and David Cahen
Acknowledgments

Part 1 Energy and the environment: the global landscape

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A primer on climate change</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Melinda Marquis and Pieter Tans</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>The global energy landscape and energy security</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>V. S. Arunachalam and Anshu Bharadwaj</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Sustainability and energy conversions</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Franklin M. Orr, Jr. and Sally M. Benson</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Energy cost of materials: materials for thin-film photovoltaics as an example</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Ajay K. Gupta and Charles A. S. Hall</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Economics of materials</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Lester B. Lave and Frank R. Field III</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Global energy flows</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Richard Sassoon</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Global materials flows</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Fridolin Krausmann</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Carbon dioxide capture and sequestration</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Sally M. Benson</td>
<td></td>
</tr>
</tbody>
</table>

Part 2 Nonrenewable energy sources

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Petroleum and natural gas</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Russell R. Chianelli, Xiomara C. Kretschmer, and Stephen A. Holditch</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Advancing coal conversion technologies: materials challenges</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Bryan D. Morreale, Cynthia A. Powell, and David R. Luebke</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Oil shale and tar sands</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>James W. Bunger</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Unconventional energy sources: gas hydrates</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Carolyn A. Koh, E. Dendy Sloan, Amadeu K. Sum, and David T. Wu</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Nuclear energy: current and future schemes</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>Christopher R. Stanek, Robin W. Grimes, Cetin Unal, Stuart A. Maloy, and Sara C. Scott</td>
<td></td>
</tr>
</tbody>
</table>
Contents

14 Nuclear non-proliferation
Siegfried S. Hecker, Matthias Englert, and Michael C. Miller

15 Nuclear-waste management and disposal
Rodney C. Ewing and William J. Weber

16 Material requirements for controlled nuclear fusion
Nathaniel J. Fisch, J. Luc Peterson, and Adam Cohen

Part 3 Renewable energy sources

17 Solar energy overview
Miguel A. Contreras and Satyen Deb

18 Direct solar energy conversion with photovoltaic devices
David S. Ginley, Reuben Collins, and David Cahen

19 Future concepts for photovoltaic energy conversion
Jean-François Guillemoles

20 Concentrating and multijunction photovoltaics
Daniel J. Friedman

21 Concentrating solar thermal power
Abraham Kribus

22 Solar-thermoelectrics: direct solar thermal energy conversion
Terry M. Tritt, Xinfeng Tang, Qingjie Zhang, and Wenjie Xie

23 Off-grid solar in the developing world
Tiffany Tong, Wali Akande, and Winston O. Soboyejo

24 Principles of photosynthesis
Johannes Messinger and Dmitriy Shevela

25 Biofuels and biomaterials from microbes
Trent R. Northen

26 Biofuels from cellulosic biomass via aqueous processing
Jian Shi, Qing Qing, Taiying Zhang, Charles E. Wyman and Todd A. Lloyd

27 Artificial photosynthesis for solar energy conversion
Boris Rybtchinski and Michael R. Wasielewski

28 Engineering natural photosynthesis
Huub J. M. de Groot

29 Geothermal and ocean energy
Jiabin Han, J. William Carey, and Bruce A. Robinson

30 Wind energy
Michael Robinson, Neil Kelley, Patrick Moriarty, Scott Schreck, David Simms, and Alan Wright

Part 4 Transportation

31 Transportation: motor vehicles
Jerry Gibbs, Ahmad A. Pesaran, Philip S. Sklad, and Laura D. Marlino
32 Transportation: aviation
Robin G. Bennett, Linda A. Cadwell Stancin, William L. Carberry, Timothy F. Rahmes, Peter M. Thompson, and Jeanne C. Yu

33 Transportation: shipping
David S. Ginley

34 Transportation: fully autonomous vehicles
Christopher E. Borroni-Bird and Mark W. Verbrugge

Part 5 Energy efficiency

35 Lighting
Dandan Zhu and Colin J. Humphreys

36 Energy efficient buildings
Ron Judkoff

37 Insulation science
Leon R. Glicksman and Ellann Cohen

38 Industrial energy efficiency: a case study
Joe A. Almaguer

39 Green processing: catalysis
Ronny Neumann

40 Materials availability and recycling
Randolph Kirchain and Elisa Alonso

41 Life-cycle assessment
Corrie E. Clark

Part 6 Energy storage, high-penetration renewables, and grid stabilization

42 Toward the smart grid: the US as a case study
S. Massoud Amin and Anthony M. Giacomoni

43 Consequences of high-penetration renewables
Paul Denholm

44 Electrochemical energy storage: batteries and capacitors
M. Stanley Whittingham

45 Mechanical energy storage: pumped hydro, CAES, flywheels
Troy McBride, Benjamin Bollinger, and Dax Kepshire

46 Fuel cells
Shyam Kocha, Bryan Pivovar, and Thomas Gennett

47 Solar fuels
Christian Jooss and Helmut Tributsch

48 Solar thermal routes to fuel
Michael Epstein
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photoelectrochemistry and hybrid solar conversion</td>
<td>692</td>
</tr>
<tr>
<td>Stuart Licht</td>
<td></td>
</tr>
<tr>
<td>Summary</td>
<td>711</td>
</tr>
<tr>
<td>David S. Ginley and David Cahen</td>
<td></td>
</tr>
<tr>
<td>Appendix A: Thermodynamics</td>
<td>715</td>
</tr>
<tr>
<td>Jennifer A. Nekuda Malik</td>
<td></td>
</tr>
<tr>
<td>Appendix B: Electrochemistry</td>
<td>718</td>
</tr>
<tr>
<td>Jennifer A. Nekuda Malik</td>
<td></td>
</tr>
<tr>
<td>Appendix C: Units</td>
<td>721</td>
</tr>
<tr>
<td>Index</td>
<td>723</td>
</tr>
</tbody>
</table>
Contributors

Wali Akande
Princeton University

Joe A. Almaguer
The Dow Chemical Company

Elisa Alonso
Massachusetts Institute of Technology

S. Massoud Amin
University of Minnesota

V. S. Arunachalam
Carnegie Mellon University

Robin G. Bennett
The Boeing Company

Sally M. Benson
Stanford University

Anshu Bharadwaj
Center for Study of Science, Technology, and Policy (CSTEP)

Benjamin Bollinger
SustainX, Inc.

Christopher E. Borroni-Bird
General Motors

James W. Bunger
James W. Bunger and Associates, Inc.

Linda A. Cadwell Stancin
The Boeing Company

David Cahen
Weizmann Institute of Science

William L. Carberry
The Boeing Company

J. William Carey
Los Alamos National Laboratory

Russell R. Chianelli
University of Texas at El Paso

Corrie E. Clark
Argonne National Laboratory

Adam Cohen
Princeton University

Ellann Cohen
Massachusetts Institute of Technology

Reuben Collins
Colorado School of Mines

Miguel A. Contreras
National Renewable Energy Laboratory (NREL)

Satyen Deb
National Renewable Energy Laboratory (NREL)

Huub J. M. de Groot
Leiden University

Paul Denholm
National Renewable Energy Laboratory (NREL)

Matthias Englert
Stanford University

Michael Epstein
Weizmann Institute of Science

Rodney C. Ewing
University of Michigan

Frank R. Field, III
Massachusetts Institute of Technology

Nathaniel J. Fisch
Princeton University

Daniel J. Friedman
National Renewable Energy Laboratory (NREL)