Skip to content

Due to system maintenance, purchasing is not available at this time. We are working to fix the issue and apologise for any inconvenience caused.

Cart

Your Cart

×

You have 0 items in your cart.

Register Sign in Wishlist

Probabilistic Forecasting and Bayesian Data Assimilation

£35.99

  • Date Published: May 2015
  • availability: Available
  • format: Paperback
  • isbn: 9781107663916

£ 35.99
Paperback

Add to cart Add to wishlist

Other available formats:
Hardback, eBook


Looking for an inspection copy?

This title is not currently available on inspection

Description
Product filter button
Description
Contents
Resources
Courses
About the Authors
  • In this book the authors describe the principles and methods behind probabilistic forecasting and Bayesian data assimilation. Instead of focusing on particular application areas, the authors adopt a general dynamical systems approach, with a profusion of low-dimensional, discrete-time numerical examples designed to build intuition about the subject. Part I explains the mathematical framework of ensemble-based probabilistic forecasting and uncertainty quantification. Part II is devoted to Bayesian filtering algorithms, from classical data assimilation algorithms such as the Kalman filter, variational techniques, and sequential Monte Carlo methods, through to more recent developments such as the ensemble Kalman filter and ensemble transform filters. The McKean approach to sequential filtering in combination with coupling of measures serves as a unifying mathematical framework throughout Part II. Assuming only some basic familiarity with probability, this book is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas.

    • Opens up the subject for non-mathematicians working in any field where Bayesian data assimilation is applied
    • Provides a novel unifying framework for ensemble-based data assimilation techniques
    • MATLAB code is available to download from www.cambridge.org/9781107069398
    Read more

    Reviews & endorsements

    '… an ideal platform for capstone experiences tailored to students with interests spanning applied mathematics and statistics.' D. V. Feldman, Choice

    Customer reviews

    Not yet reviewed

    Be the first to review

    Review was not posted due to profanity

    ×

    , create a review

    (If you're not , sign out)

    Please enter the right captcha value
    Please enter a star rating.
    Your review must be a minimum of 12 words.

    How do you rate this item?

    ×

    Product details

    • Date Published: May 2015
    • format: Paperback
    • isbn: 9781107663916
    • length: 308 pages
    • dimensions: 244 x 170 x 16 mm
    • weight: 0.61kg
    • contains: 70 b/w illus. 7 colour illus. 70 exercises
    • availability: Available
  • Table of Contents

    Preface
    1. Prologue: how to produce forecasts
    Part I. Quantifying Uncertainty:
    2. Introduction to probability
    3. Computational statistics
    4. Stochastic processes
    5. Bayesian inference
    Part II. Bayesian Data Assimilation:
    6. Basic data assimilation algorithms
    7. McKean approach to data assimilation
    8. Data assimilation for spatio-temporal processes
    9. Dealing with imperfect models
    References
    Index.

  • Resources for

    Probabilistic Forecasting and Bayesian Data Assimilation

    Sebastian Reich, Colin Cotter

    General Resources

    Welcome to the resources site

    Here you will find free-of-charge online materials to accompany this book. The range of materials we provide across our academic and higher education titles are an integral part of the book package whether you are a student, instructor, researcher or professional.

    Find resources associated with this title

    Type Name Unlocked * Format Size

    Showing of

    Back to top

    *This title has one or more locked files and access is given only to lecturers adopting the textbook for their class. We need to enforce this strictly so that solutions are not made available to students. To gain access to locked resources you either need first to sign in or register for an account.


    These resources are provided free of charge by Cambridge University Press with permission of the author of the corresponding work, but are subject to copyright. You are permitted to view, print and download these resources for your own personal use only, provided any copyright lines on the resources are not removed or altered in any way. Any other use, including but not limited to distribution of the resources in modified form, or via electronic or other media, is strictly prohibited unless you have permission from the author of the corresponding work and provided you give appropriate acknowledgement of the source.

    If you are having problems accessing these resources please email lecturers@cambridge.org

  • Authors

    Sebastian Reich, Universität Potsdam, Germany and University of Reading
    Sebastian Reich is Professor of Numerical Analysis at the University of Potsdam (full time) and the University of Reading (part time). He also holds an honorary visiting professorship at Imperial College London. Reich is the author of over 100 journal articles and the co-author of Simulating Hamiltonian Dynamics (Cambridge, 2005), which has received more than 600 citations. His research areas cover numerical analysis and scientific computing with applications to classical mechanics, molecular dynamics, geophysical fluid dynamics, and data assimilation. In 2003 he received the Germund Dahlquist Prize from the Society for Industrial and Applied Mathematics (SIAM) for his work on geometric integration methods.

    Colin Cotter, Imperial College London
    Colin Cotter has been a Senior Lecturer in the Department of Mathematics at Imperial College London since 2013. He has published more than 40 journal articles and three book chapters, on the design, analysis and implementation of numerical methods for numerical weather prediction, ocean forecasting and climate modelling; data assimilation; image registration; geometric mechanics and other topics in scientific computing and numerical analysis. His publications have been cited approximately 500 times. He is a key member of the Met Office/STFC/NERC-funded multi-institutional 'Gung-Ho' project which will design a next generation dynamical core for the UK weather prediction and climate forecasting system. He is also a co-investigator for the EPSRC Mathematics of Planet Earth Centre for Doctoral Training, and for the EPSRC Platform for Research in Simulation Methods (PRISM).

Sign In

Please sign in to access your account

Cancel

Not already registered? Create an account now. ×

Sorry, this resource is locked

Please register or sign in to request access. If you are having problems accessing these resources please email lecturers@cambridge.org

Register Sign in
Please note that this file is password protected. You will be asked to input your password on the next screen.

» Proceed

You are now leaving the Cambridge University Press website. Your eBook purchase and download will be completed by our partner www.ebooks.com. Please see the permission section of the www.ebooks.com catalogue page for details of the print & copy limits on our eBooks.

Continue ×

Continue ×

Continue ×

Find content that relates to you

Are you sure you want to delete your account?

This cannot be undone.

Cancel

Thank you for your feedback which will help us improve our service.

If you requested a response, we will make sure to get back to you shortly.

×
Please fill in the required fields in your feedback submission.
×