

Cambridge Sketch Engine
Using Corpus Query Language (CQL) (1.3)

© Cambridge University Press 2012 CONFIDENTIAL
Last updated: January 2012

1

© Cambridge University Press 2012 CONFIDENTIAL
Last updated: January 2012

2

Understanding and using Corpus Query Language (CQL) (version 1.1)

This guide outlines how Corpus Query Language can be used in order to carry out complex searches using
Sketch Engine. It is intended to be used in conjunction with the other documentation (e.g. Getting Started,
and Advanced Help), and so presumes an element of prior knowledge of Sketch Engine.

This guide is a working document - please contact corpus@cambridge.org if you have any queries or
suggestions. All comments welcome!

CONTENTS

1. What is Corpus Query Language (CQL) and what can you do with it?

2. Using CQL with Sketch Engine

3. Basic principles of CQL

4. Searching for words, lemmas and Parts of Speech (POS)

5. Searching for adjacent words, lemmas or POS

6. Searching for more than one word /lemma/POS at the same time

7. Understanding and using wildcards

8. Using wildcards

9. Combining words and tags

10. Leaving gaps in your searches

11. Excluding elements

12. Optional elements

13 Searching for punctuation

14. Using CQL to look at grammatical variation

15. FAQs: CQL search strings

http://www.cambridge.org/sketch/help/sketch_getting_started.pdf
http://www.cambridge.org/sketch/help/sketch_advanced.pdf
mailto:corpus@cambridge.org

CQL uses a particular notation (described in more detail below) in order to run these searches.

CQL allows you to:

- Search for grammatical constructions. For example, it is possible to search for present
progressive verbs, or all adjectives occurring directly before nouns.

- Search for gapped constructions. For example, it is possible to search for “more X than” and
return results such as “more important than” and “more likely than”

- Search for words that contain a particular string of characters. For example, it is
possible to search for all words ending in “-ical” or starting with “pre-“

CQL also allows you to run many other searches; these are described in more detail in the

subsequent sections.

1. What is CQL and what can you do with it?
Corpus Query Language (CQL) is a powerful function that allows you to search the Corpus for complex
grammatical patterns.

In Sketch Engine, typically, you can search the Corpus by typing words into the query box. As mentioned
in the Getting Started guide, along with the default simple search, it is possible to run a lemma,
phrase, word form, or a CQL search. Typing in your own queries using CQL gives you greater control
over the patterns you search for.

2. Using CQL with Sketch Engine
To enter a CQL query in Sketch Engine:

- Choose the corpus you’d like to work with from the Sketch Engine homepage
- Display the Query Type menu, by selecting it from the lower left hand side menu
- Select CQL from the dropdown, as shown below.
- Type your CQL search string into the CQL: box situated underneath the dropdown.

TIP: When using CQL, it’s
useful to open the list of
grammar tags in a
separate window, for
reference.

To find the list of grammar
tags (i.e. PoS tags) in
Sketch Engine, click on
Tagset summary found
underneath the search box,
as shown opposite.

© Cambridge University Press 2012 CONFIDENTIAL
Last updated: January 2012

3

http://www.cambridge.org/sketch/help/sketch_getting_started.pdf
http://trac.sketchengine.co.uk/wiki/tagsets/penn
http://trac.sketchengine.co.uk/wiki/tagsets/penn

3. Basic principles of CQL

- Each element of a query has to be enclosed in square brackets: []

- Quotation marks: " " enclose specific search items. Usually this is the particular word or lemma
(e.g. “dog” or “make”), or the particular Part of Speech (POS) tag, (e.g. the tag for adverbs – “RB”,
or the tag for possessive pronouns – “PP”).

- The type of search, e.g. for a word, lemma or tag also needs to be specified, by typing word= or
lemma=, etc in the query.

- For example, to search for the word find using CQL, you would type: [word="find"]

© Cambridge University Press 2012 CONFIDENTIAL
Last updated: January 2012

4

4. Searching for words, lemmas and Parts of Speech (POS)

Following from the example set out above with find, searching for single words, parts of speech or lemmas are
easy! This is best demonstrated using examples:

A search for the word find would therefore look

like this if you typed it into Sketch Engine:

To search for the word mind type: [word="mind"]
To search for the word cake type: [word="cake"]

To search for the tag for adjectives (which is JJ) type: [tag="JJ "]
To search for the tag for coordinating conjunctions (which is CC) type: [tag="CC"]

To search for the lemma be type: [lemma="be"]
To search for the lemma run type: [lemma = "run"]

(Of course, any word, POS or lemma can be substituted in between the inverted commas). Remember to look
at the grammatical tagset for a list of all of the POS tags used in Sketch.

http://trac.sketchengine.co.uk/wiki/tagsets/penn

5. Searching for adjacent words, lemmas or POS

As mentioned in Section 3 (basic principles of CQL), square brackets delineate search elements. To search for
two or more adjacent elements, simple write the search string one after another. This is shown below:

To search for the adjacent words mind and your type: [word="mind"][word="your"]

To search for adjectives (JJ) with an adjacent coordinating conjunction (CC), type: [tag="JJ "][tag="CC"]

To search for the lemma be adjacent to the lemma run, type: [lemma="be"][lemma="run"]

NOTE: Adjacent elements don’t have to be of the same type. For example, you can search for:

- a POS followed by a word (in this case, adjective + man): [tag="JJ "] [word="man"]

This returns results such as lovely man, old man, strange man.

Also, you can search for any number of elements, providing they are separated by square brackets:

- to search for the words very + quickly + the lemma GO: [word="very"] [word="quickly"]
[lemma="go"]

- to search for a singular noun + modal + the word go: [tag="NP"] [tag="MD"] [word="go"]

This returns results such as Jim might go, Laura could go, Tony will go.

Using this principle we can begin to see how it is possible to build up complex queries.

6. Searching for more than one word /lemma/POS at the same time

It is possible to search for more than one word, POS or lemma at the same time, using CQL. For example, you
can search for the words small, tiny and miniscule and get results for all of these together. Or, you can search
for both adjectives and adverbs and see the results together.

This bar can be found here on most
keyboards as shown circled in red:

To do this, you need include the
words or POS within the same square
brackets. The words need to be
separated by a vertical bar: |

© Cambridge University Press 2012 CONFIDENTIAL
Last updated: January 2012

5

The CQL search string for the combined results for small, tiny and miniscule would therefore look like this:
[word = "small|tiny|miniscule"]

This same principle applies for two POS tags. E.g. the search string for the combined results for adjectives and
adverbs would look like this: [tag="JJ|RB"]

Searching for more than one word using CQL is quite neat as by clicking on Node forms under frequency on
the left hand side menu bar you can generate a graph for the results, as shown below.

CQL search string: [word="enormous|big|massive|significant|substantial"]

7. Understanding wildcards

Wildcards are used in order to substitute for any other character or characters in a string. The CQL wildcards
that can be used in Sketch Engine are shown below:

wildcard use example string example results

. full stop substitutes for one character
only

[word=“to.”] top, tot, too, toy, tow

* asterisk
repeats a preceding wildcard
– can be used in conjunction

with full stop
[word=“.*ing]

going, working, finding,
saying, calling

! exclamation
mark

Excludes an element - see
Section 10

[lemma="fast" & tag != "AJ0"]
fast as a noun, verb and
adverb, but not as an
adjective.

? question
mark

Makes an element optional -
see Section 11

[word="did"] [word="not"]? [word="go"] did not go and did go

/ forwardslash

Protects the elements
sometimes used as

wildcards, e.g. punctuation.
See Section 12

[word="\."]
this will return instances

of full stops found in
the texts.

.

© Cambridge University Press 2012 CONFIDENTIAL
Last updated: January 2012

6

8. Using wildcards
We can use wildcards to make searches less complex. For example, if we wanted to search for all nouns, we
could use the string [tag="NN|NNS|NP|NPS"] – i.e. search for the values where the tag is NN or NNS or
NP or NPS.

However, it would be much easier to instead search for [tag=“N.*”] This search means: search for the values
where the tag starts with N and ins followed by any other letter. Therefore, this search would therefore find all
tags that start with N (i.e. those shown in the table below)

We can also use the .* wildcard to search for words that have letters in common.

For example, [word=".*ing"] would return: walking, running, saving, exploiting
[word="pre.*"] would return: prefer, pretence, prelude
[word="b.*n"] would return: bun, bitten, bargain

NB- these wildcards can also be used in other places within Sketch. See Using the Cambridge Learner Corpus
and Advanced Help for more details on using wildcards along with error tags and wordlists

9. Combining words and tags
It is possible to be more specific about the word you are searching for. Words and POS can be combined to
search for, e.g. impact, only as a verb, or record only as a noun.

This is achieved using the ampersand symbol: &
The symbol must appear within the square brackets of a search string.

For example, to search for the lemma“impact" as any noun: [lemma = "impact" & tag = "N.*"]
To search for the lemma“impact” as any verb: [lemma = "impact" & tag = "V.*"]
To search for the word “record” as a noun: [word = "record" & tag = "N.*"]

These search items can also be combined, to search then more than one word/lemma/POS.

For example, to search for the words “flood” or “dam” as a verb: [word="flood|dam" & tag="V.*"]
To search for the word “baby” as a noun or verb: [word="baby"&tag="N.*|V.* "]

© Cambridge University Press 2012 CONFIDENTIAL
Last updated: January 2012

7

http://www.cambridge.org/sketch/help/sketch_advanced.pdf

© Cambridge University Press 2012 CONFIDENTIAL
Last updated: January 2012

8

10. Leaving gaps in your searches
It is possible to leave gaps in your search. For example, you may want to search for two words occurring next
to each other, but with a number of words between them. This is possible in two ways:

Leave an empty set of brackets to indicate a word, (shown here in red):
For example: [word="make"] [] [tag="J.*"] will return: make the best, make a big, and make it easy.
[tag="V.*"] [] [] [tag="RB"] will return: hear from you soon, happened to me recently and enjoyed it very much.
[lemma="be"] [] [] [] [word=".*ing"] will return: is visiting us next Thursday, and was given to the hospital.

The number of empty brackets you leave relates to the number of spaces that are searched for.
NB – searching in this way means that these are not “optional” gaps. A search with three sets of empty
square brackets will not return results with any less than three words between your search words, i.e.
instances where only one or two of the empty brackets are filled will not be included.

However, it is possible to search for a number of optional spaces, and also to search for larger spans without
having to type in numerous sets of empty square brackets.

To do this, add curly brackets after your empty square brackets. Inside these, write the number of spaces you’d like
to leave:

E.g.: [lemma = "break"] []{5} [lemma="it"] will find examples with exactly 5 words between break and it.
[tag = "CC"] []{9} [word="finished"] will find examples with exactly 9 words between break and it.

You can make the fixed number of spaces between your search items into a range of spaces by adding a comma
between the numbers inside the curly brackets.

For example, [lemma = "break"] []{2,5} [lemma="it"] will find examples with between 2 and 5 spaces
between break and it, such as: breaks and consequently it, break his arm now it, and broken my bed jumping on it.

[tag = "CC"] []{1,3} [word="finished"] will find examples with between 1 and 3 spaces between the
conjunction (CC) and the word finished, such as: and I finished, and and will have finished, and and she has just
finished.

© Cambridge University Press 2012 CONFIDENTIAL
Last updated: January 2012

9

11. Excluding elements
It is possible to specify elements to exclude from your search. To do this, you need to use the exclamation
mark symbol: !

When used preceding the equals sign, the exclamation mark means does not equal.

The following query will find fast as a noun, verb and adverb, but not as an adjective1:
[lemma="fast" & tag != "AJ0"]

The next example finds dream followed by anything other than the word about.
[lemma="dream"] [word !="about"]

The next examples find all forms of break or smash followed by a gap of 1 to 3 words and then table not as
a verb. [lemma = "break|smash"] []{1-3} [lemma !="table"]

12. Optional elements
It is possible to specify elements that may be optional in a search string (i.e. those that may or may not be
present). To do this, you need to use the question mark symbol: ?

When used after an element (outside the brackets) it indicates that the element inside the square brackets is
optional.

In this search string, the word did is optional:
[word="did"]? [word="not"] [word="go"] e.g. why not go?, and However, we did not go there.

In this search string, the word not is optional:
[word="did"] [word="not"]? [word="go"] e.g. so I did go on the walk, and he did not go far enough.

In this search string, the word go is optional:
[word="did"] [word="not"] [word="go"]? e.g. he did not invent it, and we did not go home.

1 It should be noted that the methods described here detail how to search using POS tags only – the application of these POS tags
by Sketch Engine can sometimes be incorrect, and this is something to take into consideration.

© Cambridge University Press 2012 CONFIDENTIAL
Last updated: January 2012

10

13. Searching for punctuation
As some punctuation symbols serve as wildcards (as we have seen already with e.g. ? and !), when using CQL
we need to indicate that we would like to search for them as punctuation rather than as a wildcard.

To do this, simply type a backslash before the punctuation: \
The punctuation must appear in the usual CQL format, as shown below.

Searching for which preceded by a comma: [word = "\,"][word = "which"]
Searching for now followed by an exclamation mark: [word ="now"][word = "\!"]

15. Using CQL to look at grammatical variation

The patterns below capture the underlined parts of the constructions in the examples only. They do not, for
example capture any possible intervening adjectives or negation (e.g. I am not playing, I quickly played). See
Section 11 (on optional elements) and Section 9 (on gapped searches) for information on adding intervening
elements. See also 15b on some common intervening elements that you may like to add.

VERBS

Grammatical
construction

Example

simple present I play [tag="V.*P|V.*Z"]

simple past I played [tag="V.*D"]

future (with will) I will play [word="will"& tag="MD"] [tag="V.*"]

present progressive I am playing [tag="VBP|VBZ"][tag="V.*G"]

past progressive I was playing [tag="V.*D"] [tag="V.*G"]

future progressive I will be playing [word="will"& tag="MD"][tag="VB"] [tag="V.*G"]

present perfect I have played [tag="VH.*"] [tag="V.*N|V.*D"]

past perfect I had played [tag="VH.*"] [tag="V.*N|V.*D"]

future perfect I will have played
[word="will"& tag="MD"] [tag="VH"]

[tag="V.*N|V.*D"]

present perfect
progressive

I have been playing [tag="VH.*"] [tag="VBN"] [tag="V.*G"]

past perfect progressive I had been playing [tag="VHD"] [tag="VBN"] [tag="V.*G"]

future perfect
progressive

I will have been playing
[word="will"& tag="MD"] [tag=”VH”] [tag=”VBN”]

[tag="V.*G"]

This list is by no means exhaustive, but hopefully you should be able to form your own verbal CQL search
strings by analogy, using the table above as a resource.

© Cambridge University Press 2012 CONFIDENTIAL
Last updated: January 2012

11

15b. Adding intervening elements to the patterns above

Intervening element CQL

negation (e.g. not, n’t) [word="not|n't" & tag="RB"]

adverb (e.g. quickly, usually) [tag="RB"]

any element []

(any) modal verb [tag="MD"]

specific modal verb (in this
case, would)

[word="would" & tag="MD"]

16. Notes on using CQL
While using CQL allows you to perform very powerful searches, it should be used with care when searching in
the Cambridge Learner Corpus. The POS tagger used on the CLC can make some errors in its application of
these tags due to the nature of the language used in the exam scripts. For this reason, where possible, you
should include the word forms in your search, rather than the POS only.

17. FAQs: CQL search strings

This is a working list of CQL queries that have been requested recently. It is by no means complete or perfect,
but is instead an ongoing document. Please contact corpus@cambridge.org if you have any queries or
suggestions.

Below are the raw CQL searches only. Usually to see useful frequency results, click on frequency, or one of the
frequency options (e.g. node forms, node tags) from the resulting concordance page.

1. Most frequent verbs directly before will
CQL search string: [tag="V.*"] [word="will" &tag="V.*|MD"]

2. Most frequent verbs directly after will
CQL search string: [word="will" &tag="V.*|MD"] [tag="V.*"]

3. Most frequent verbs in the span 0-4 around will
CQL search string: [word="will" &tag="V.*|MD"] []{0,3} [tag="V.*"]

5. Present progressive verbs
CQL search string: [lemma="be"] [tag="VBG"]

6. Verbs found 0-3 after present progressives
CQL search string: [lemma="be"] [tag="VBG"] []{0,3} [tag="V.*"]

7. Verbs found -3-0 before present progressives
CQL search string: [tag="V.*"] []{0,3} [lemma="be"] [tag="VBG"]

mailto:corpus@cambridge.org

© Cambridge University Press 2012 CONFIDENTIAL
Last updated: January 2012

12

8. How frequent are I’m hoping / I’m planning to vs I’m going to ...
CQL search string: [word="I"] [word="'m|am"] [word="planning|hoping"] [word="to"]

9. Verbs directly before going to
CQL search string: [tag="V.*"] [word="going"] [word="to"]

10. Verbs directly after going to
CQL search string: [word="going"] [word="to"] [tag="V.*"]

11. Verb + to + infinitive
CQL search string: [tag=“V.*”] [tag=“TO”] [tag=“V.*]

12. Verb + verb + ing combinations
CQL search string: [tag=“V.*”] [tag=“V.*”] [word=“.*ing”]

13. adjective + noun (e.g. last year, tall man):
CQL search string: [tag="J.*"] [tag="N.*"]

14. Finding adj before ANY noun:
CQL search string: [tag=“J.*”]
Then, filter and then change the span to 0-1 to find things after the adjective
Then, type in [tag=“N.*”] in the search box. Then click on node forms.

15. Comparative adjectives
CQL search string: [tag="JJR"]

16. Searching for a word as a particular POS (e.g. so as a past tense verb, rather than just as a verb).
E.g. significantly as an adverb.
CQL search string: [word = "word in here" & tag = "tag in here*"]
So, [word=“significantly” & tag=“R.*”]

17. Frequencies of adjectives filling the gap "more X than"
CQL search string: [word="more"] [tag= "J.*"] [word="than"]

18. Adjectives filling the gap "less X than"
CQL: [word="less"] [tag= "J.*"] [word="than"]

19. Adjectives ending in -ic
CQL search string: [word = ".*ic" & tag = "J.*"]

20. Adjectives ending in -ical
CQL search string: [word = ".*ical" & tag = "J.*"]

21. Comparative adjectives ending –er
CQL search string: [word= ".*er" & tag = "JJR"]

22. Most frequent of a list of words
Searching using CQL is quite nice for this, because then you can get a lovely graph, as shown below.
CQL search string:
[word= "enormous|big|massive|tremendous|considerable|serious|significant|substantial" & tag= "J.*"]

© Cambridge University Press 2012 CONFIDENTIAL
Last updated: January 2012

13

	Cambridge Sketch Engine
	Using Corpus Query Language (CQL) (1.3)
	Understanding and using Corpus Query Language (CQL) (version 1.1)
	CONTENTS
	1.
	What is Corpus Query Language (CQL) and what can you do with it?
	2.
	Using CQL with Sketch Engine
	3.
	Basic principles of CQL
	4.
	Searching for words, lemmas and Parts of Speech (POS)
	5.
	Searching for adjacent words, lemmas or POS
	6.
	Searching for more than one word /lemma/POS at the same time
	7.
	Understanding and using wildcards
	8.
	Using wildcards
	9.
	Combining words and tags
	10.
	Leaving gaps in your searches
	11.
	Excluding elements
	12.
	Optional elements
	13
	Searching for punctuation
	14.
	Using CQL to look at grammatical variation
	15.
	2. Using CQL with Sketch Engine
	To enter a CQL query in Sketch Engine:
	- Choose the corpus you’d like to work with from the Sketch Engine homepage
	- Display the Query Type menu, by selecting it from the lower left hand side menu
	- Select CQL from the dropdown, as shown below.
	- Type your CQL search string into the CQL: box situated underneath the dropdown.
	3. Basic principles of CQL
	- Each element of a query has to be enclosed in square brackets: []
	- Quotation marks: " " enclose specific search items. Usually this is the particular word or lemma (e.g. “dog” or “make”), or the particular Part of Speech (POS) tag, (e.g. the tag for adverbs – “RB”, or the tag for possessive pronouns – “PP”).
	- The type of search, e.g. for a word, lemma or tag also needs to be specified, by typing word= or lemma=, etc in the query.
	- For example, to search for the word find using CQL, you would type: [word="find"]
	4. Searching for words, lemmas and Parts of Speech (POS)
	5. Searching for adjacent words, lemmas or POS
	As mentioned in Section 3 (basic principles of CQL), square brackets delineate search elements. To search for two or more adjacent elements, simple write the search string one after another. This is shown below:
	Using this principle we can begin to see how it is possible to build up complex queries.
	6. Searching for more than one word /lemma/POS at the same time
	7. Understanding wildcards
	Wildcards are used in order to substitute for any other character or characters in a string. The CQL wildcards that can be used in Sketch Engine are shown below:
	wildcard
	use
	example string
	example results
	.
	full stop
	substitutes for one character only
	[word=“to.”]
	top, tot, too, toy, tow
	*
	asterisk
	repeats a preceding wildcard – can be used in conjunction with full stop
	[word=“.*ing]
	going, working, finding, saying, calling
	!
	exclamation mark
	Excludes an element - see Section 10
	?
	question mark
	Makes an element optional - see Section 11
	[word="did"] [word="not"]? [word="go"]
	did not go and did go
	/
	forwardslash
	Protects the elements sometimes used as wildcards, e.g. punctuation. See Section 12
	[word="\."]
	this will return instances of full stops found in the texts.
	.8. Using wildcards
	We can use wildcards to make searches less complex. For example, if we wanted to search for all nouns, we could use the string [tag="NN|NNS|NP|NPS"] – i.e. search for the values where the tag is NN or NNS or NP or NPS.
	However, it would be much easier to instead search for [tag=“N.*”] This search means: search for the values where the tag starts with N and ins followed by any other letter. Therefore, this search would therefore find all tags that start with N (i.e. those shown in the table below)
	We can also use the .* wildcard to search for words that have letters in common.
	For example, [word=".*ing"] would return: walking, running, saving, exploiting
	[word="pre.*"] would return: prefer, pretence, prelude
	[word="b.*n"] would return: bun, bitten, bargain
	NB- these wildcards can also be used in other places within Sketch. See Using the Cambridge Learner Corpus and Advanced Help for more details on using wildcards along with error tags and wordlists
	9. Combining words and tags
	10. Leaving gaps in your searches
	11. Excluding elements
	12. Optional elements
	It is possible to specify elements that may be optional in a search string (i.e. those that may or may not be present). To do this, you need to use the question mark symbol: ?
	When used after an element (outside the brackets) it indicates that the element inside the square brackets is optional.
	In this search string, the word did is optional:
	[word="did"]? [word="not"] [word="go"] e.g. why not go?, and However, we did not go there.
	In this search string, the word not is optional:
	[word="did"] [word="not"]? [word="go"] e.g. so I did go on the walk, and he did not go far enough.
	In this search string, the word go is optional:
	[word="did"] [word="not"] [word="go"]? e.g. he did not invent it, and we did not go home.
	13. Searching for punctuation
	15b. Adding intervening elements to the patterns above

