Cambridge Catalogue  
  • Your account
  • View basket
  • Help
Home > Catalogue > Introduction to Finite Fields and their Applications
Introduction to Finite Fields and their Applications


  • 12 b/w illus. 6 tables 500 exercises
  • Page extent: 432 pages
  • Size: 234 x 156 mm
  • Weight: 0.8 kg

Library of Congress

  • Dewey number: 512/.3
  • Dewey version: 20
  • LC Classification: QA247.3 .L54 1994
  • LC Subject headings:
    • Finite fields (Algebra)

Library of Congress Record

Add to basket


 (ISBN-13: 9780521460941 | ISBN-10: 0521460948)

DOI: 10.2277/0521460948

  • Published July 1994

Manufactured on demand: supplied direct from the printer

 (Stock level updated: 01:59 GMT, 29 August 2015)


The theory of finite fields is a branch of modern algebra that has come to the fore in recent years because of its diverse applications in such areas as combinatorics, coding theory, cryptology and the mathematical study of switching circuits. The first part of this updated edition presents an introduction to this theory, emphasising those aspects that are relevant for application. The second part is devoted to a discussion of the most important applications of finite fields, especially to information theory, algebraic coding theory and cryptology. There is also a chapter on applications within mathematics, such as finite geometries, combinatorics and pseudo-random sequences. The book is meant to be used as a textbook: worked examples and copious exercises that range from the routine, to those giving alternative proofs of key theorems, to extensions of material covered in the text, are provided throughout. It will appeal to advanced undergraduates and graduate students taking courses on topics in algebra, whether they have backgrounds in mathematics, electrical engineering or computer science. Non-specialists will also find this a readily accessible introduction to an active and increasingly important subject.

• Includes many examples and exercises • Few prerequisites • Contains many applications


1. Algebraic foundations; 2. Structure of finite fields; 3. Polynomials over finite fields; 4. Factorization of polynomials; 5. Exponential sums; 6. Linear recurring sequences; 7. Theoretical applications of finite fields; 8. Algebraic coding theory; 9. Cryptology; 10. Tables.


' … a model of how a text book should be written; it is clear, unfussy and contains lots of examples … of particular interest to anybody wishing to teach a course in concrete algebra' Mathematika

' … a very useful and highly readable introduction to the classical theory and the standard applications of finite fields. It has a clear and precise presentation with many examples and a large selection of exercises.' The Mathematical Gazette

printer iconPrinter friendly version AddThis