Considering the worldwide increase of interest in fusion research over the last decade - the recognition that a large number of new, environmentally attractive, sustainable energy sources will be needed to meet ever-increasing demands for electrical energy, is obvious. This book serves up the latest interest in alternative energy. Based on a series of graduate course notes in plasma physics and fusion energy at MIT, the text begins with an overview of world energy needs, current methods of energy generation, and the potential role that fusion may play in the future. It covers energy issues such as the production of fusion power, power balance, the design of a simple fusion reactor, and the basic plasma physics issues faced by the developers of fusion power. This book is suitable for graduate students and researchers working in applied physics and nuclear engineering.

### Contents

Preface; Acknowledgements; Units; Part I. Fusion Power: 1. Fusion and world energy; 2. The fusion reaction; 3. Fusion power generation; 4. Power balance in a fusion reactor; 5. Design of a simple magnetic fusion reactor; Part II. The Plasma Physics of Fusion Energy: 6. Overview of magnetic fusion; 7. Definition of fusion plasma; 8. Single particle motion in a plasma - guiding center theory; 9. Single particle motion - Coulomb collisions; 10. A self consistent two-fluid model; 11. MHD - macroscopic equilibrium; 12. MHD - macroscopic stability; 13. Magnetic fusion concepts; 14. Transport; 15. Heating and current drive; 16. The future of fusion research; Appendix A. Analytical derivation of